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Abstract: To more effectively prevent and manage the scourge of gully erosion in arid and
semi-arid regions, we present a novel-ensemble intelligence approach—bagging-based alternating
decision-tree classifier (bagging-ADTree)—and use it to model a landscape’s susceptibility to gully
erosion based on 18 gully-erosion conditioning factors. The model’s goodness-of-fit and prediction
performance are compared to three other machine learning algorithms (single alternating decision
tree, rotational-forest-based alternating decision tree (RF-ADTree), and benchmark logistic regression).
To achieve this, a gully-erosion inventory was created for the study area, the Chah Mousi watershed,
Iran by combining archival records containing reports of gully erosion, remotely sensed data from
Google Earth, and geolocated sites of gully head-cuts gathered in a field survey. A total of 119 gully
head-cuts were identified and mapped. To train the models’ analysis and prediction capabilities,
83 head-cuts (70% of the total) and the corresponding measures of the conditioning factors were input
into each model. The results from the models were validated using the data pertaining to the remaining
36 gully locations (30%). Next, the frequency ratio is used to identify which conditioning-factor
classes have the strongest correlation with gully erosion. Using random-forest modeling, the relative
importance of each of the conditioning factors was determined. Based on the random-forest results,
the top eight factors in this study area are distance-to-road, drainage density, distance-to-stream,
LU/LC, annual precipitation, topographic wetness index, NDVI, and elevation. Finally, based on
goodness-of-fit and AUROC of the success rate curve (SRC) and prediction rate curve (PRC), the
results indicate that the bagging-ADTree ensemble model had the best performance, with SRC (0.964)
and PRC (0.978). RF-ADTree (SRC = 0.952 and PRC = 0.971), ADTree (SRC = 0.926 and PRC = 0.965),
and LR (SRC = 0.867 and PRC = 0.870) were the subsequent best performers. The results also indicate
that bagging and RF, as meta-classifiers, improved the performance of the ADTree model as a base
classifier. The bagging-ADTree model’s results indicate that 24.28% of the study area is classified
as having high and very high susceptibility to gully erosion. The new ensemble model accurately
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identified the areas that are susceptible to gully erosion based on the past patterns of formation,
but it also provides highly accurate predictions of future gully development. The novel ensemble
method introduced in this research is recommended for use to evaluate the patterns of gullying in
arid and semi-arid environments and can effectively identify the most salient conditioning factors
that promote the development and expansion of gullies in erosion-susceptible environments.

Keywords: gully head-cuts; machine learning modeling; soil erosion; Iran

1. Introduction

Gullies are common features in arid and semi-arid regions, and they are major causes of sediment
erosion; they supply from 10 to 94% of the total sediment yield in some watersheds [1]. High erosion
rates undercut agricultural sustainability and necessitate the search for (usually expensive) solutions
in the context of costly governmental policies. However, studying and predicting gully erosion is
difficult [2–4]. In terms of the ecosystem effects and environmental damages from gully erosion, studies
have focused on the influential factors and on identification of susceptible areas using geographic
information systems (GIS) and remote sensing (RS) [5–8]. This study develops a new model to detect
and predict gully locations with high spatial accuracy to reduce gully erosion damages.

One method that many have used is gully-erosion susceptibility mapping (GESM). This approach
can provide useful and easy-to-understand information to planners and hazard managers [9], but there
is no standard procedure for producing these maps. In recent decades, researchers have devised and
experimented with many GESM techniques and various traditional data-driven approaches, including
logistic regression (LR) [10,11], weights of evidence (WoE) [12,13], conditional analysis (CA) [14,15],
certainty factor (CF) [16], index or entropy (IOE) [17], analytical hierarchy process (AHP) [18,19], and
frequency ratio (FR) [12].

One of the difficulties in the regional GESM process is that the factors influencing gully erosion
require data usually derived from various sources at different spatial scales, which may contain
uncertainties and imprecisions. Traditional data-driven approaches cannot be used to determine
the relationships between geo-environmental factors and gully erosion occurrence because of the
limitations caused by imbedded statistical assumptions about variables’ independence and data
distributions in susceptibility analyses [20,21]. New modeling methods are needed that go beyond
traditional data-driven approaches, and methods that can deal with the above issues and can enhance
model performance.

Recently, machine-learning (ML) techniques have become popular for the spatial prediction
of natural hazards like wildfires [22], sinkholes [23], groundwater depletion and flooding [24–38],
droughts [39], earthquakes [40], land subsidence [41], and landslides [42–48]. ML is a type of artificial
intelligence (AI) that uses computer algorithms to analyze and forecast information by learning from
training data. ML algorithms that have been used for GESM include random forest (RF), boosted
regression tree (BRT), support vector machine (SVM), classification and regression trees (CART),
artificial neural networks (ANN), stochastic gradient tree-boost (SGT), maximum entropy (ME), and
multivariate adaptive regression splines (MARS) [13,49–58].

Ensemble models have been used in GESM due to their novelty and their ability to comprehensively
assess gully-erosion parameters for discrete classes of independent factors [51,52]. Although some
studies have been conducted on the spatial prediction of gullies, a standard framework considering all
influential factors for achieving a reasonable and reliable prediction has not been established. Some
studies and techniques should be used in different hydro-geomorphological environments to devise a
global framework for gully-erosion modeling. Additionally, some factors contribute to gullying that
are either difficult to recognize (and measure), or they are difficult to convert to raster formats for
modeling. Therefore, one of the future fields of gully modeling should focus on the detection and



Water 2020, 12, 16 3 of 25

application of the unknown factors that influence gully formation. This may be achieved by combining
gullying research with GIS and data-mining tools to create a tool or technique that can map future,
unknown factors. This could help planners, decision makers, and environmental managers to prepare
gully erosion maps of the highest quality with the best possible accuracy to better manage gullying in
erosion-susceptible areas.

The main difference between this study and previously conducted studies is that this study
explores a new ensemble-intelligence approach that employs bagging as a meta-classifier with an
alternating decision tree (ADTree) as a base classifier to spatially predict gully erosion. The results
produced by this new ensemble-intelligence approach are compared to the results generated with a
single alternating decision tree, a rotational-forest-based alternating decision tree (RF-ADTree), and
benchmark logistic regression (LR) to assess and improve the accuracy of GESM. These ML modes
haven’t been used for GESM, so we assess the performance of the new ensemble model using a variety
of statistical metrics and the area under the curve (AUC).

The Chah Mousi watershed (northeastern Iran) is an arid region very prone to gully erosion.
Gullies are widespread throughout the region and cause land degradation and economic damages
every year. This study illustrates and compares individual and ensemble machine learning models to
assess gullying susceptibility. We test the efficacy of these models and compare them to find the most
suitable model for land use planning. The main objectives of this study are identifying and mapping the
extant gullies in the Chah Mousi watershed by (a) creating an inventory; (b) mapping, modeling, and
predicting the locations of gully head-cuts; (c) characterizing the roles of various geo-environmental
features as factors that control the distribution of gullies; and (d) evaluating gully erosion susceptibility
in the study area.

2. Materials and Methods

2.1. Study Area

The Chah Mousi watershed is in Semnan province, Iran, and is located between 35◦15′05” and
35◦37′12” N and 54◦35′44” and 55◦23′05” E (Figure 1). It is a relatively small area of approximately
2176.02 km2. The greatest change in elevation is along a NE to SE axis. The average elevation in the
northeastern quadrant is 2123 m.a.s.l. In the southeastern quadrant, it is 672 m.a.s.l. As the region is
relatively small, the slope degree varies significantly from flat to 67.8◦, although the average is about
3◦. Due to the predominance of flat landscapes, standing and slow-moving water is more typical
than runoff. The mean annual precipitation ranges from 48 to 206 mm, principally during the wet
season from January to March [59]. Temperatures typically reach a peak of 41 ◦C during summer,
especially in the south, and a low below 0 ◦C during winter in the northern parts of the region; though
average temperatures during the rest of the year range from 13 to 23 ◦C [59]. Together, these numbers
indicate the potential for meteorological stress on the land surface with high thermal and precipitation
variations and local spikes that may cause freezing and thawing of soils and expansion and contraction
within the regolith [13].

The land covers include agriculture, bare land, kavir (barren sandy and rocky desert), rangeland,
rock outcrops, salt lakes, wetlands, and salt lands. The latter are particularly vulnerable to dissolution
processes during the wet season as the salt crust is easily weathered, giving rise to pores that promote
changing groundwater levels and erosion of soils [60]. The distribution of salt crusts is evident in
the regional soil map (primarily in areas featuring aridisols and entisols and where the outcropping
lithologies are also reported). The main lithological units in the study area are marl, gypsiferous marl
and limestone, shale, sandstone, granite, conglomerate, and salt flat [60].
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Figure 1. Study area. (a) Location of the study area in Iran and Semnan Province. (b) Elevation and 
Hillshade model of the study area. 

2.2. Gully Mapping 

Archival records containing reports of gully erosion that have been compiled by the Semnan 
Agricultural and Natural Resources Research and Education Center were used as the first source of 
locational data. Upon this historical foundation, gully locations and dimensions were identified and 
measured using remotely sensed data viewed through Google Earth. Finally, a field survey was 
conducted in the study region to update and refine the inventory (Figure 2). Sites of gully head-cuts 
were geolocated with a DGPS (Differential Global Positioning System) device. The survey yielded 
119 gully head-cuts (Figure 2) to be used for modeling. Of the overall dataset, 75 gullies (63.02%) 
were identified from archives, 19 gullies (15.96%) collected using Google Earth, and 25 gullies 
(21.008%) were collected in a field survey. All gullies were checked and mapped using DGPS with 
millimeter accuracy. The universal transverse Mercator (UTM) coordinate system was used. The 
models described above were applied to the locations of 83 head-cuts (70% of the total). The models 
were tested (or validated) with the remaining 36 gully locations (30% of the total). As the models 
selected in this study correspond to a family that predicts the presence or absence of a phenomenon, 
an equal number of locations (36 no gully locations as validation data and 83 no gully locations as 
calibration data) were selected and tested as well [52]. In turn, this procedure creates a balanced 
dataset for the subsequent analyses, although it should be noted that the geomorphological features 
still debates whether balanced or unbalanced datasets should be created prior to a susceptibility 
analysis [19,58]. Some of mapped gullies are shown in figure 3. 

 

Figure 1. Study area. (a) Location of the study area in Iran and Semnan Province. (b) Elevation and
Hillshade model of the study area.

2.2. Gully Mapping

Archival records containing reports of gully erosion that have been compiled by the Semnan
Agricultural and Natural Resources Research and Education Center were used as the first source
of locational data. Upon this historical foundation, gully locations and dimensions were identified
and measured using remotely sensed data viewed through Google Earth. Finally, a field survey was
conducted in the study region to update and refine the inventory (Figure 2). Sites of gully head-cuts
were geolocated with a DGPS (Differential Global Positioning System) device. The survey yielded
119 gully head-cuts (Figure 2) to be used for modeling. Of the overall dataset, 75 gullies (63.02%) were
identified from archives, 19 gullies (15.96%) collected using Google Earth, and 25 gullies (21.008%) were
collected in a field survey. All gullies were checked and mapped using DGPS with millimeter accuracy.
The universal transverse Mercator (UTM) coordinate system was used. The models described above
were applied to the locations of 83 head-cuts (70% of the total). The models were tested (or validated)
with the remaining 36 gully locations (30% of the total). As the models selected in this study correspond
to a family that predicts the presence or absence of a phenomenon, an equal number of locations (36 no
gully locations as validation data and 83 no gully locations as calibration data) were selected and tested
as well [52]. In turn, this procedure creates a balanced dataset for the subsequent analyses, although
it should be noted that the geomorphological features still debates whether balanced or unbalanced
datasets should be created prior to a susceptibility analysis [19,58]. Some of mapped gullies are shown
in Figure 3.Water 2020, 12, x FOR PEER REVIEW 5 of 26 
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2.3. Gully Erosion Conditioning Factors

Several factors affect a location’s susceptibility to gully erosion [17,19]. After completing a study
of the gully-erosion literature, and considering local conditions and data availability, 18 variables were
selected for inclusion in the modeling process. These include elements of topographical, geological,
and hydrological conditions.

The following topographical factors were considered: elevation, slope gradient, aspect, plan
curvature, convergence index (CI), slope length (LS), topographic wetness index (TWI), topographic
position index (TPI), and terrain ruggedness index (TRI). Each was calculated using PALSAR DEM
with 12.5 m spatial resolution applying the basic terrain analyses in SAGA GIS. A detailed explanation
of the equations used to calculate LS, TWI, and SPI is available in Arabameri et al. [19].

The description of the lithology was acquired from a geological map at a scale of 1:100,000
(Geological Survey Department of Iran, [59]). The map was digitized and 6 geological classes were
identified in the study area: A (including marl, gypsiferous marl, and limestone; dacitic to andesitic
volcano sediment; well-bedded green tuff and tuffaceous shale; dacitic to andesitic volcanic; dacitic to
andesitic volcano breccia; andesitic volcano breccia, sandstone, marl, and limestone; granite, pale-red
polygenic conglomerate, and sandstone), B (including phyllite, slate, and meta-sandstone; Jurassic
dacite to andesite lava flows), C (including Cretaceous rocks, in general), D (including light red to
brown marl and gypsiferous marl with sandstone intercalations; red marl, gypsiferous marl, sandstone,
and conglomerate), E (including fluvial conglomerate, piedmont conglomerate, and sandstone), and
F (salt flat, high-level piedmont fan and valley terrace deposits, low-level piedmont fan and valley
terrace deposits, and salt lake) (Figure 4p).

The hydrological gully erosion factors that were included in the modeling process are drainage
density, distance-to-stream, mean annual rainfall, and stream-power index (SPI). Drainage density
and distance-to-stream were calculated using the stream network information developed from the
PALSAR DEM in ArcGIS 10.5. Raster maps of these factors were prepared using line-density and
Euclidean-distance tools in ArcGIS 10.5. The SPI was calculated as follows:

SPI = As× tanβ (1)

where As is the specific catchment area, and β is slope (◦).
Annual precipitation data were obtained for the period from 1984 to 2014 recorded at the Toroud,

Razveh, Moalleman, and Hosseinan weather stations operated by the Iran Meteorological Organization
(IRIMO, 2014). The rainfall data were interpolated using the kriging interpolation tool in ArcGIS 10.5.
Gully erosion is also influenced by soils, land use, and vegetation [19]. Therefore, these factors are
represented by soil types, land use/land cover (LU/LC), and normalized difference vegetation index
(NDVI), and were used as conditioning factors. Soil type data were based on the information from the
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Soil Conservation Section of Agricultural and Natural Resources Research Centre of Semnan Province.
LU/LC and NDVI data were obtained from Landsat 8 images (15 August 2017) with a 30 m resolution.
The LU/LC map containing eight classes (agriculture, bare land, kavir, poor range, rock, salt lake, salt
land, and wetland) was prepared using the supervised classification method and maximum likelihood
in ENVI4.8 software. The map was verified using the kappa coefficient with 459 ground control points
(GCP). The kappa value of the resulting map was 0.976. The NDVI was calculated using Landsat 8
bands 4 (red) and 5 (infrared) data in ArcGIS 10.5.Water 2020, 12, x FOR PEER REVIEW 7 of 26 
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Figure 4. Gully erosion conditioning factors. (a) Elevation, (b) slope, (c) aspect, (d) plan curvature,
(e) convergence index (CI), (f) slope length (LS), (g) stream power index (SPI), (h) topography position
index (TPI), (i) terrain ruggedness index (TRI), (j) topography wetness index (TWI), (k) distance to
stream (l) drainage density, (m) rainfall, (n) distance to road (o) NDVI, (p) lithology (q) land use/land
cover (LU/LC), and (r) soil type.
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Roads also affect gully erosion as they intercept and concentrate overland flow [17]. This factor is
represented by the distance to road in gully and non-gully locations, which is determined by vectorizing
topographic maps and Google Earth images, and then transforming the data to a raster map using line
density tools in ArcGIS 10.5.

2.4. Models

2.4.1. Rotational Forest (RF)

RF modeling is a relatively new ensemble algorithm that increases the accuracy and diversity
of base classifiers, and it was first proposed by Rodriguez et al. [39]. The success of RF modeling
depends on the rotation matrix generated by transformations and base classifiers [61,62]. The basis of
RF modeling is principal component analysis (PCA), which can extract features and create training
datasets for learning base classifiers [63]. RF has been applied to classification problems, such as
landslide-susceptibility research, land use mapping, and flash flood susceptibility research [64–66].

Suppose x = (x1, x2, x3, . . . , xn) is the vector of the landslide conditioning factor, y = (y1, y2) is
the vector of landslide or non-landslide class, X is the training dataset, A1, A2, A3, . . . , AL are the
classifiers in the ensemble, and B is the landslide conditioning factor set. The steps of training classifier
Ai are as follows. The rotation matrix Ri

a generated by the matrix of Ri is shown in Equation (2).

Ri =


ai,1

(1), ai,1
(2), . . . , ai,1

(Q1) 0 · · · 0
0 ai,1

(1), ai,1
(2), . . . , ai,1

(Q2)
· · · 0

...
...

. . .
...

0 · · · · · · ai,1
(1), ai,1

(2), . . . , ai,1
(Qk)

 (2)

Ri is produced by the following four steps:

(i) Divide B into K subsets, and the number of gully conditioning factors of each subset is Q = n/K.
(ii) In case of the classifier Ai, let Bi,j be the jth, where j = 1, 2, 3, . . . and K is the subset of gully

conditioning factors. Xi,j is the gully conditioning factor of Bi,j from X. Bi,j is randomly selected
from the Xi,j with the 75% size by bootstrap algorithm. Then, Xi,j’ would be transformed to
achieve coefficient ai,1

(1), ai,1
(2), . . . , ai,l

(Qi), the size of ai,1′ is Q × 1.
(iii) Arrange a sparse rotation matrix Ri with the obtained coefficients.
(iv) The confidence of each class is calculated by the average combination method in the given test

sample χ,

µk(η) =
1
L

∑L

i=1
γi,k(ηRa

i ), k= 1, 2, 3, . . . , c (3)

where γi,k(ηRi
a) is the probability produced by the classifier Ai to the hypothesis that η belongs to

the class k.

2.4.2. Alternating Decision Tree

The alternating decision tree (ADTree) model is an ensemble model that consists of a boosting
algorithm and a decision tree [67]. It is a generalization of a decision tree in which each node is
replaced by a splitter node and a prediction node [68,69]. The base rule mapping from an instance to
real number involves a precondition c1, a base condition c2, and two real numbers a and b. If c1 ∩ c2,
the prediction is a, and the prediction is b when c1 ∩

−c2; − means negation. The values of a and b are
determined by Equations (4) and (5), respectively.

a =
1
2

ln
W+(c1 ∩ c2)

W−(c1 ∩ c2)
(4)
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b =
1
2

ln
W+(c1 ∩

−c2)

W−(c1 ∩
−c2)

(5)

where W(p) is the total weight of training instance. The best c1 and c2 values are obtained by minimizing
the Zt(c1, c2), which is defined as Equation (6).

Zt(c1, c2) = 2
√

W+(c1 ∩ c2)W−(c1 ∩ c2) +
√

W+(c1 ∩
−c2)W−(c1 ∩

−c2) + W(−c2) (6)

Suppose that R is a set of base rules. Then, a new rule can be defined as Rt+1 = Rt + rt, rt(x), which
shows two prediction values (a and b) at every layer of the tree. x is a set of instances. The classification
of instances is the sign of the sum of all predicted values in Rt+1:

Class(x) = sign(
T∑

t=1

rt(x)) (7)

The algorithm first finds the best constant prediction for the whole data set [70]. Cross validation
is often used for selection [71].

2.4.3. Bagging

Bootstrap aggregation or bagging (BAG) was introduced by Breiman in 1996 [72]. The bootstrap
technique randomly selects and replaces samples to generate multiple samples to form a training
dataset. Every subset generated is used to build a decision tree, and they are later aggregated in
the final model. The accuracy of classification is improved by reducing the variance of classification
error [73,74]. In recent years, BAG has been widely applied in landslide susceptibility research and has
performed well [75–77].

2.4.4. Logistic Regression

Logistic regression (LR) is one of the most popular multivariate statistical analysis methods [78–80].
It can make a multivariate regression correlation between a dependent variable and several independent
variables [81,82]. The advantage of LR is that the variables can be continuous, discontinuous, or a
combination of the two [83,84]. In this study, the main purpose of using an LR model is to determine
the relationships between landslide occurrence and gully conditioning factors, calculated using
Equation (8).

P =
1

1 + e−Z (8)

where P is the probability of gully occurrence and ranges from 0 to 1. Z is a linear sum of constants,
and its range is (−∞, +∞). The calculation equation of Z can be defined as Equation (9).

Z = α+ β1x1 + β2x2 + β3x3 + . . .+ βnxn (9)

where α is a constant, βi (i = 1, 2, 3, . . . n) is the coefficient of the model, and xi (i = 1, 2, 3, . . . n) is the
independent variable.

2.4.5. Frequency Ratio

The ratio between the frequency of occurrences and non-occurrences at a location within a given
causative factor class is called the FR [19]. Larger ratios suggest that those factor classes are more
important determinants of the occurrence (in this case, gully-erosion proneness or susceptibility.
As there are numerous pertinent factors at play in each location (or area defined by a pixel in
our digital map), the potential for gully erosion can be computed as the sum of all ratios for the
predisposing factor classes [19]. FR is empirical. It is, in fact, not a statistical method; it is not based on
statistical distributions.
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2.4.6. Random Forest (RAF)

RAF uses multiple trees to classify locations based on a single conditioning factor [85]. The RAF
algorithm continuously replaces the factors affecting each pixel space, thereby creating numerous
decision trees. A combination of all decision trees in a study area provide the information to support
decision making [85]. An RAF contains 3 user-defined parameters: (1) the number of variables used to
construct each decision tree, which indicates the power of each independent tree; (2) the number of
trees included in the RF; and (3) the minimum number of nodes within the trees. The prediction power
of RAFs increase as the strength of independent trees increases and as the correlation between them
decreases. Sixty-six percent of the data (the testing data) are used to grow a tree, and the result is called
a bootstrap. A randomly introduced predictor variable splits a node in the tree’s construction during
the growing process. The remaining third of the data is used to evaluate (or validate) the fitted tree.
The average of all predicted values produced during several iterations of the algorithm creates the final
modeled prediction. In this model, two factors—the mean decrease accuracy and the mean decrease
Gini index—are used to prioritize the effective factors. Comparing the mean decrease accuracy to
the mean decrease Gini index determines the relative importance of the effective factors, especially
the relationships between environmental factors. RAF analyses were carried out in R 3.3.1 using the
“Randomforest” package [85].

2.5. Multicollinearity Assessment

In GESM, testing for collinearity among the effective factors in gullying is very important,
because the collinearity reduces the accuracy of the GESM [86–89]. The variance inflation factor
(VIF) and Tolerance (TOL) are very commonly used indicators for checking multicollinearity among
parameters [90,91]. TOL values less than 0.1 or 0.2 and VIF values greater than 5 or 10 indicate
collinearity between the parameters [17,19,86,89,92]. In the present study, the multicollinearity test of
gully erosion conditioning factors (GECFs) was done using Equations (10) and (11) in SPSS software:

Tolerance = 1−R2 J (10)

VIF = [
1

Tolerence
] (11)

where R2J is the regression coefficient for determining independent variable j.

2.6. Methodology

As described above, an inventory of gullies was created, and the gully-erosion conditioning data
were compiled in a GIS to provide input for the modeling process (Figure 5). The gully sites were
divided into two datasets: 70% were used for training, and 30% were used for validation of the models.
An assessment of multicollinearity among the conditioning factors was performed. The relative
weights of the GECFs were determined using an RAF model, and an analysis of the spatial relationships
between GECFs and gullies was conducted with FR. GESMs were created using each of the four models:
ADTree, RF-ADTree, Bagging-ADTree, and LR. Finally, the models were evaluated and validated
using the receiver operating characteristic (ROC) curves and by calculating the area under the ROC
curve (AUC) for each model [93–95]. The AUC values are between 0 and 1, which can be interpreted
following these categories: 0.6–0.7 have poor, 0.6–0.7 medium, 0.7–0.8 good, 0.8–0.9 very good, and
0.9–1 excellent accuracy [9,17,19]. The four models used were objectively compared to determine the
most effective approach.
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3. Results

3.1. Multicollinearity Assessment

A multicollinearity analysis of the GECFs was performed (Table 1). The analysis revealed that
TOL and VIF values for all factors are >0.1 and <5, respectively, indicating that the variables are not
significantly correlated and that they can be used in further analyses.

3.2. Spatial Relationship between Gully Locations and Conditioning Factors by Applying FR Model

Analyses of the spatial relationships between gully locations and GECFs (Table 2) showed that
classes of conditioning factors with FR values greater than 1 are susceptible to gully erosion [17].
For instance, among topographical factors, locations up to 1000 m. a.s.l. are the most susceptible to
gully erosion—the highest value of FR is for sites with elevations from 797 to 931 m a.s.l. Locations
above 1000 m a.s.l. have low susceptibility, and elevations above 1509 m a.s.l. have the lowest
susceptibility and lowest FR values (FR = 0.000). All gullies in the study area occur on slopes below 15◦.
The highest FR values are found in slopes < 5◦ (1.080) and from 10 to 15◦ (1.119). There are no gullies on
slopes > 15◦. This is in accordance with the plan-curvature results. Flat areas have the highest FR value
(1.391) and concave slopes have gullies (0.967). Most gullies occur on slopes exposed to the east (1.941),
southeast (1.344), and northeast (1.184), whereas while northwest-, west-, and southwest aspects have
more gullies (NW (0.183), W (0.429), and SW (0.536)), there are very few gullies on north-facing slopes
(0.679). Based on convergence index, sites in the class of ≤38.8 (FR = 1.737) possess the most important
cause of gully occurrence in the study area.
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Table 1. Multi-collinearity analysis of gully erosion conditioning factors.

Factors
Collinearity Statistics

TOL a VIF b

Aspect 0.904 1.123
Lithology 0.759 1.318

Slope 0.612 1.525
Normalized Difference Vegetation Index 0.596 1.674

Slope length 0.577 1.734
Convergence Index 0.559 1.780

Terrain Ruggedness Index 0.523 2.132
Distance to road 0.497 2.231

Soil type 0.431 2.312
Land use/land cover 0.423 2.383
Stream Power Index 0.419 2. 443

Elevation 0.415 2.504
Drainage density 0.411 2.561

Plan curvature 0.369 2.716
Topographic Wetness Index 0.357 2.903
Topographic Position Index 0.344 2.984

Rainfall 0.321 3.098
a TOL is tolerance. b VIF is variance inflation factor.

According to LS factor, areas with the lowest slope length have the highest susceptibility to gully
occurrence, so that class of <15.2 m, with FR = 1.244, showed the strongest relationship to gullying in
the study area.

Generally, TPI values > 0 indicate ridges, 0—flat areas (or constant slopes), and <0—valleys. This
is confirmed with the statistical relationships between gully locations and TPI values in the study area.
Most of the study area is flat and classes of TPI < 1.96 are those with the gully locations. This is in
accordance with TRI values that show terrain heterogeneity. Higher TRI values show increased local
relief heterogeneity. In contrast, lower TRI values indicate more level surfaces (e.g., planar surfaces or
various depositional landforms). The results showed that gullies occur in areas belonging to classes of
TRI values < 7.84, and the most susceptible are areas with TRI < 1.47. Despite the occurrence of gullies,
the terrain is quite homogenous; most of the study area is flat. TWI reveals the areas with drainage
depressions where water is likely to accumulate. Thus, the areas with high values of TWI should be
more susceptible to gully formation, which is in accordance with the results that showed that higher
TWI values (>11.8) have a higher occurrence of gullies in the study area. SPI values indicate potential
flow-erosion at a point in the topographic surface. Most of the gullies occur in areas where SPI values
are <14.9 (FR = 4.66).

Distance-to-stream and drainage density are important factors conditioning gully occurrence [17].
Gullies occur mainly in the areas close to streams (<100 m) [13]. In addition, most of the gullies occur
in areas receiving 68 to 85 mm of precipitation annually [16] (Table 2).

In lithological units, class of B (phyllite, slate and meta-sandstone, and Jurassic dacite to andesite
lava flows) showed the strongest correlation with gully occurrence in the study area.

According to NDVI, class of 0.043 to 0.132 had the highest FR (1.34) and therefore the strongest
relationship to gully formation. Moreover, most of the gullies occur in areas of kavir and poor
rangeland, which had FR values of 1.961 and 0.672, respectively. Gully erosion occurs mainly in areas
with entisols/aridisols (Table 3).

Roads may intercept overland flow and promote gully formation. Most of the gullies occur near
roads (<1000 m) [16]; the strongest relationship is <500 m (FR = 6.43).
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Table 2. Analysis of spatial relationship between conditioning factors and gully locations using
frequency ration model.

Factors Classes
Pixels in Domain Gullies

FR a
No % No %

Elevation (m)

<797 1,050,197 43.44 30 34.88 0.803
797–931 481,498 19.91 34 39.53 1.985

931–1081 354,322 14.65 9 10.47 0.714
1081–1251 334,954 13.85 9 10.47 0.755
1251–1509 157,674 6.52 4 4.65 0.713

>1509 39,161 1.62 0 0.00 0.000

Slope (◦)

<5 2,031,134 84.01 78 90.70 1.080
5–10 220,796 9.13 5 5.81 0.637
10–15 75,358 3.12 3 3.49 1.119
15–20 35,508 1.47 0 0.00 0.000
>20 55,006 2.28 0 0.00 0.000

Aspect

F 114,082 4.72 4 4.65 0.986
N 165,633 6.85 4 4.65 0.679

NE 213,654 8.84 9 10.47 1.184
E 362,097 14.98 25 29.07 1.941

SE 460,076 19.03 22 25.58 1.344
S 437,541 18.10 12 13.95 0.771

SW 314,526 13.01 6 6.98 0.536
W 196,799 8.14 3 3.49 0.429

NW 153,398 6.34 1 1.16 0.183

Plan curvature (100/m)
Concave 755,889 31.26 26 30.23 0.967

flat 909,452 37.61 45 52.33 1.391
convex 752,464 31.12 15 17.44 0.560

Convergence index
(100/m)

<-38.8 242,500 10.04 15 17.44 1.737
−38.8–−12.1 552,768 22.89 24 27.91 1.219
−12.1–11.3 804,611 33.31 22 25.58 0.768
11.3–38.8 561,527 23.25 17 19.77 0.850

>38.8 253,921 10.51 8 9.30 0.885

LS b (m)

<15.2 1,423,717 58.88 63 73.26 1.244
15.2–44.8 217,038 8.98 7 8.14 0.907
44.8–80.1 293,604 12.14 7 8.14 0.670

80.1–121.7 293,446 12.14 4 4.65 0.383
>121.7 190,001 7.86 5 5.81 0.740

SPI c

<8.3 722,773 29.89 23 26.74 0.895
8.3–9.9 868,697 35.93 23 26.74 0.744
9.9–12 524,225 21.68 18 20.93 0.965

12–14.9 223,684 9.25 9 10.47 1.131
>14.9 78,423 3.24 13 15.12 4.660

TPI d

<−7.11 30,179 1.25 3 3.49 2.795
−7.11–−1.38 266,501 11.02 12 13.95 1.266
−1.38–1.96 1,935,233 80.04 70 81.40 1.017
1.96–9.12 159,122 6.58 1 1.16 0.177

>9.12 26,771 1.11 0 0.00 0.000

TRI e

<1.47 1,774,798 73.41 67 77.91 1.061
1.4–3.92 444,246 18.37 14 16.28 0.886

3.92–7.84 135,731 5.61 5 5.81 1.036
7.84–13.74 49,383 2.04 0 0.00 0.000

>13.74 13,648 0.56 0 0.00 0.000
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Table 2. Cont.

Factors Classes
Pixels in Domain Gullies

FR a
No % No %

TWI f

<6.1 896,631 37.08 23 26.74 0.721
6.1–8.4 964,824 39.91 28 32.56 0.816

8.4–11.8 428,795 17.73 16 18.60 1.049
>11.8 127,552 5.28 19 22.09 4.188

Distance to stream (m)

<100 595,385 24.63 46 53.49 2.172
100–200 446,060 18.45 15 17.44 0.945
200–300 395,428 16.35 9 10.47 0.640
300–400 266,585 11.03 7 8.14 0.738

>400 714,344 29.55 9 10.47 0.354

Drainage density
(km/km2)

<0.94 623,893 25.80 14 16.28 0.631
0.94–1.28 966,283 39.97 20 23.26 0.582
1.28–1.75 632,567 26.16 26 30.23 1.156

>1.75 195,059 8.07 26 30.23 3.747

Rainfall (mm)

<68.3 490,619 20.29 6 6.98 0.344
68.3–85.7 974,984 40.33 55 63.95 1.586
85.7–106 830,826 34.36 25 29.07 0.846
106–133 77,808 3.22 0 0.00 0.000

>133 43,565 1.80 0 0.00 0.000

Distance to road (m)

<500 139,853 5.78 32 37.21 6.433
500–1000 132,330 5.47 9 10.47 1.912
1000–1500 127,256 5.26 4 4.65 0.884
1500–2000 123,104 5.09 0 0.00 0.000

>2000 1,895,259 78.39 41 47.67 0.608

NDVI g
<0.043 1,220,601 50.49 29 33.72 0.668

0.043–0.132 1,196,024 49.47 57 66.28 1.340
>0.132 860 0.04 0 0.00 0.000

Lithology

A 50,8381 21.05 10 11.63 0.552
B 22,537 0.93 2 2.33 2.492
C 31,795 1.32 0 0.00 0.000
D 339,429 14.05 21 24.42 1.737
E 183,945 7.62 13 15.12 1.985
F 1,328,922 55.03 40 46.51 0.845

LU/LC h

Agriculture 2,353 0.10 0 0.00 0.000
Bareland 20,180 0.84 0 0.00 0.000

Kavir 629,914 26.09 44 51.16 1.961
Poorrange 1,419,509 58.79 34 39.53 0.672

Rock 239,538 9.92 5 5.81 0.586
Saltlake 97,389 4.03 3 3.49 0.865
Saltland 4,703 0.19 0 0.00 0.000
Wetland 1,010 0.04 0 0.00 0.000

Soil type

Bad Lands 131,650 5.45 0 0.00 0.000
Rock

Outcrops/Entisols452,055 18.72 14 16.28 0.870

Rocky Lands 95,729 3.96 0 0.00 0.000
Salt Flats 392,583 16.26 7 8.14 0.501
Aridisols 387 0.02 0 0.00 0.000

Entisols/Aridisols1,342,192 55.59 65 75.58 1.360
a FR is a frequency ratio value. b LS is slope length. c SPI is Stream Power Index. d TPI is Topographic Position
Index. e TRI is Terrain Ruggedness Index. f TWI is Topographic Wetness Index. g NDVI is Normalized Difference
Vegetation Index. h LU/LC is land use/land cover.
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Table 3. Area and percentage of each susceptibility classes.

Models
Classes

ADTree Bagging-ADTree RF-ADTree LR

Area (km2) % Area (km2) % Area (km2) % Area (km2) %

Very Low 789.91 36.30 662.24 30.43 493.82 22.69 480.29 22.07
Low 411.20 18.90 499.29 22.95 655.34 30.12 547.92 25.18

Moderate 533.53 24.52 486.18 22.34 483.52 22.22 499.18 22.94
High 340.54 15.65 335.57 15.42 318.31 14.63 373.20 17.15

Very High 100.85 4.63 192.74 8.86 225.04 10.34 275.43 12.66

3.3. The Relative Importance of GECFs

RAF modeling revealed the importance of GECFs (Figure 6). Distance-to-road (16.95) was the most
important factor in gully occurrence in the study area. The other factors, in the order of importance
were drainage density (14), distance-to-stream (13.29), LU/LC (10.58), annual rainfall (9.1), TWI (6.91),
NDVI (6.6), elevation (6), SPI (5.2), TPI (4.67), CI (2.87), lithology (2.76), soil type (2.57), slope (1.4), plan
curvature (1.4), TRI (0.75), aspect (0.18), and LS (0.034).
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3.4. Gully Erosion Susceptibility Mapping Using Machine Learning Models

Gully erosion susceptibility mapping using four machine-learning models provided four
predictions of gully formation zones (Table 3 and Figure 7a–d). According to all four models
used in the study, most of the study area is classified as having very low and low susceptibility to gully
erosion (ADTree—55.2% (1201.1 km2), Bagging-ADTree—53.38% (1161.4 km2), RF-ADTree—52.81%
(1149.1 km2), and LR—47.25% (1028.1 km2)). ADTree classified the largest total area of very low
susceptibility (36.30%) and the smallest total area of very high susceptibility (4.63%). The other models
classified 30.43% (Bad-ADTree), 22.69% (RF-ADTree), and 22.07% (LR) as very low susceptibility, and
8.86% (Bad-ADTree), 10.34% (RF-ADTree), and 12.66% (LR) as having very high susceptibility. Among
the models, LR classified the largest portion of the study area as highly susceptible (12.66%) and the
smallest portion as having very low susceptibility (22.07%).
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3.5. Validation of Results

The results were validated using AUC values both in SRC (success rate curve) and PRC (prediction
rate curve) (Table 4, Figure 8a,b). Generally, the models tested achieved excellent accuracy. The success
rate curves, a degree-of-fit measure (i.e., comparison of the susceptibility maps with training dataset),
indicated that bagging-ADTree (0.964) was most accurate, and LR least accurate (0.867). The AUC
values computed for prediction rate curves, indicating the predictive power of the susceptibility maps,
confirmed that Bagging-ADTree was most accurate (0.978) and LR least (0.870).

Table 4. Validation of results.

Criteria Model AUC a Standard Error 95% Confidence Interval

SRC b

ADTree 0.926 0.0361 0.693 to 0.822
RF-ADTree 0.952 0.0332 0.747 to 0.867

Bagging-ADTree 0.964 0.0318 0.763 to 0.879
LR 0.867 0.0356 0.695 to 0.824

PRC c

ADTree 0.965 0.0412 0.764 to 0.929
RF-ADTree 0.971 0.0373 0.791 to 0.945

Bagging-ADTree 0.978 0.0334 0.818 to 0.960
LR 0.870 0.0549 0.656 to 0.854

a AUC is the area under the ROC (the receiver operating characteristic) curve. b SRC is success rate curve. c PRC is
prediction rate curve.



Water 2020, 12, 16 16 of 25

Water 2020, 12, x FOR PEER REVIEW 16 of 26 

 

  
Figure 7. Gully erosion susceptibility map using (a) Alternating decision tree (ADTree), (b) Rotation 
Forest (RF)-ADTree, (c) Bagging-ADTree, (d) Logistic regression. 

3.5. Validation of Results 

The results were validated using AUC values both in SRC (success rate curve) and PRC 
(prediction rate curve) (Table 4, Figure 8a,b). Generally, the models tested achieved excellent 
accuracy. The success rate curves, a degree-of-fit measure (i.e., comparison of the susceptibility 
maps with training dataset), indicated that bagging-ADTree (0.964) was most accurate, and LR least 
accurate (0.867). The AUC values computed for prediction rate curves, indicating the predictive 
power of the susceptibility maps, confirmed that Bagging-ADTree was most accurate (0.978) and 
LR least (0.870). 

 
Figure 8. Validation of results using (a) area under the curve of success rate curve and (b) prediction 
rate curve. 

  

Figure 8. Validation of results using (a) area under the curve of success rate curve and (b) prediction
rate curve.

4. Discussion

Different sources were used to prepare the input dataset. Because many factors used in GESM
were extracted from a digital elevation model (DEM), the quality of the DEM significantly influences
the accuracy of the results [96,97]. The Advanced Land Observing Satellite (ALOS) DEM with 12.5 m
spatial resolution was used as it has been shown to provide better accuracy than both the Shuttle Radar
Topography Mission (SRTM) and Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER) and DEMs [98].

In this study, we developed and explored a new ensemble intelligence approach using bagging and
RF as a meta-classifier and with ADTree as a base classifier, to spatially predict gully head-cut erosion
in the Chah Mousi watershed. We produced GESMs based on a modeling procedure including training
and validation datasets, and 18 conditioning factors (elevation, slope angle, aspect, plan curvature, CI,
LS, SPI, TPI, TRI, TWI, distance to stream, drainage density, rainfall, distance to road, NDVI, lithology,
land use/land cover, and soil type). These factors were checked for collinearity with statistical metrics,
including TOL and VIF. The results reveal that all GECFs influenced gully erosion occurrence.

Based on FR analysis, the relationship between the factors and gully locations were
assessed. Conditioning-factor classes with FR values >1 indicated areas with greater gully-erosion
susceptibility [82]. Elevation plays an important role in vegetation and precipitation type and, therefore,
controls the spatial distribution and gully erosion processes [99]. Elevations in the study region below
1000 m a.s.l. are more susceptible to gully erosion. Thus, the higher occurrence of gully head cut
erosion in the lowland areas agrees with Dickson et al. [100]. However, Arabamiri et al. [19] determined
that elevations below 829 m were most prone to gullying. In terms of slope angle and curvature, the
FR analysis showed that slopes of less than 5◦ (including flat areas) were most likely to be sites of
gully occurrence. Because lower slope angles have greater soil depth, intensive rainfall impaction and
greater runoff from upslope will decrease soil strength resulting in the development and extension of
the gully channel [9]. Curvature causes accumulation of runoff and enhances the velocity and volume
of flow, so this variable positively correlates to locations of gully erosion. The slope aspect that controls
several climate conditions, such as the intensity of precipitation, moisture, evapotranspiration, and
vegetation cover [101], indirectly influences gully erosion. Among the slope-aspect classes, east- and
southeast-facing slopes are the most highly correlated to gully erosion. These two slope aspect classes
get more solar radiation in the northern hemisphere and, as a result, they experience more evaporation,
higher soil porosity (total pore space), lower soil strength, and lower vegetation density. This is in
accordance with Zabihi et al. [9], who reported that southward slope aspects are more susceptible
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to gully erosion. CI values below −39.6 100/m were most predictive of gully formation: the lower
the CI value, the greater is the potential for gully erosion. Arabameri et al. [17] concluded, based on
the WoE method, that CI values between 0 and 10 signify locations that are more susceptible to gully
occurrence in their study area. LS less than 15 m indicate a more likely formation of gullies and reflects
that gullies are more likely formed in flat areas with lower slope angles. This confirms the findings of
Gayen et al. [102], but conflicts with the results of Zabihi et al. [9], who shows a direct relationship
between LS and gully erosion locations. Zabihi et al. also implied that the higher the LS, the higher the
probability of gully erosion occurrence due to increasing runoff velocity and a decreasing detachment
and transport threshold of soil particles [103,104].

The most susceptible classes for the other GECFs were SPI between >14.9, TPI less than−7, TRI less
than 1.4, and TWI more than 11.8. These results are confirmed by the findings of Arabameri et al. [17]
who reported that, for example, the greater the TWI factor, the greater is the potential for gully
occurrence. High values of TWI increase the filtration rate and provide the conditions for piping and
roof collapse, resulting in the development of gully tunnels and, eventually, the appearance of gullies
on the surface [105].

Moreover, the nearer sites are to a river, the higher the susceptibility to gully erosion. In this
study, locations at distances less than 100 m from a stream were more likely to see gully formation.
Some researchers have confirmed these results [9,13,16,42]. The sheer force of flow can overcome and
decrease the strength of soil along the sides of gully forms and lead to the development of gullies of
greater dimensions.

Areas with drainage densities exceeding 1.75 km/km2 were most correlated to gully erosion.
The role of this factor can be made clearer when other factors are considered. For example, a location
with a lower slope angle and higher drainage density has a higher TWI, and if the soil at that location
was loose and erodible, gully erosion is easier to achieve. In the study area, the lower classes of annual
precipitation amounts (between 68.3 and 85.7 mm) were most susceptible to gully incidence. This
suggests that though rainfall has a positive role in gully formation, it is not the most important factor.
In other words, lower rainfall values are positively related to gullying.

Distances from roads are important to gully erosion and, like distances from rivers, the nearer
the site, the higher the potential for gully erosion. Distances of less than 500 m from a road were
positively correlated to gully locations, which underscores the importance of the roles of development
and disturbance of ground surfaces in promoting landscape degradation.

Results of the NDVI factor show that vegetation plays a very important role in protecting soil
against erosion, so that, with increasing vegetation, the sensitivity of an area to gully erosion decreases.
Vegetation cover greatly reduces the erosion of runoff through the increase in infiltration and protection
of soil through roots [106]. The findings agree with those of Arabameri et al. [13], Arabameri et al. [19],
and Chaplot et al. [107] stating that low values of NDVI have a positive association with gully erosion
and that it is easier for a gully to develop in areas with lower NDVI values. Generally, barren lands and
sparsely vegetated areas are more susceptible to erosion than forests, where vegetation cover strongly
reduces the erosive action of surface runoff.

Because gully erosion depends on the lithological properties of materials at Earth’s surface,
lithology is a vital factor in gullying [104]. As for lithology, Quaternary lithotypes have a high
susceptibility to gully erosion. The result is in agreement with findings reported by Arabameri et al. [13],
who found that Quaternary lithotypes have a strong effect on gully occurrences. In terms of land use,
which plays a key role in geomorphological and hydrological processes by controlling overland flow
runoff generation and sediment dynamics [108], the areas of kavir are most susceptible to gully erosion.
In these regions, the complete lack of vegetation leaves the soil exposed, and it is easily eroded by
precipitation. These results are in line with [13]. The entisol/aridisol soils are the most susceptible soils
to gully erosion occurring in the study area, which is in accordance with [19].

In terms of the FR values, the most important GECFs in the study area were the distance to
nearest road and drainage density. This is confirmed by the RAF algorithm analysis, which was used
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to rank the importance of the GECFs for the spatial prediction of gullies in the study area. This result
is consistent with [17,109,110]. Roads are impervious surfaces, and they disrupt natural drainage
systems due to improper culverts, concentration of surface runoffs, and by altering the hydrological
functions of hillslopes, which significantly contribute to overland flow and allow rapid run-off, easily
eroding bare soil and causing gullying [111,112]. An example of the effect of roads on gullying is
shown in Figure 9. Distance to a road is the most important factor. It is followed in importance by
drainage density, distance to stream, land use, rainfall, NDVI, elevation, SPI, TPI, CI, lithology, soil
type, plan curvature, TRI, aspect, and LS. Though other factors affect gully erosion, the above are the
most meaningful in the study area.
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A novel ensemble intelligence approach, bagging-ADTree, and other ML algorithms—ADTree,
RF-ADTree and LR—were used to create gully erosion susceptibility maps. The goodness-of-fit and the
performance of the models were checked by AUROC of success and prediction rate curves. The results
illustrate that bagging ADTree and RF-ADTree outperformed ADTree and LR. These results are in
line with [42,113,114]. The new model accurately identified the areas that are susceptible to gully
erosion based on the past patterns of formation, but it also provides excellent predictions of future
development. The RF and bagging as a meta-classifier can decrease over-fitting and noise problems in
the training dataset. Some researchers have confirmed the prediction power of RF in applications to
some environmental problems [42,115–117].

For example, Tien Bui et al. [21] predicted gully locations in a semi-arid watershed of Iran using
ADTtree and its ensembles using RF meta-classifier. They concluded that the RF model could well
enhance the prediction power of ADTree as a base classifier. However, the RF-ADTree ensemble model
outperformed some benchmark models, including SVM based on the polynomial and RBF kernels,
LR, naïve Bayes, and ADTtree. Additionally, Shirzadi et al. [42] used four meta-classifiers, namely,
multiboost, bagging, RF, and random subspace (RS), for the spatial prediction of shallow landslides in
Bijar City, Kurdistan province, Iran. They used ADTree as a base classifier for the modeling process.
The four ensemble models were combined with the ADTree under two scenarios of different sample
sizes and raster resolutions. They reported that the RS model was more capable for sample sizes of
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60%/40% and 70%/30% with a raster resolution of 10 m. According to the results, the new proposed
ensemble model can spatially predict gully erosion occurrences with reasonably good accuracy.

5. Conclusions

Soil erosion is an important environmental challenge to ecosystem’s condition and function.
Land degradation and decreasing land productivity are a result of on-site and off-site erosion
in a gully-prone area. However, detection, prediction, and management of gully-prone areas
using protective measures and mitigation techniques are important efforts. Some quantitative and
qualitative methods and techniques have been developed and explored for modeling and preparing
the susceptibility assessments. However, due to differences in their probability distribution functions,
their performances are also different. For example, some of them do not fit the data that are available.
All models present advantages and disadvantages, so one of the most important aspects of the
modeling strategy is selecting the appropriate model. Machine-learning models are more often used
because of their ability to overcome over-fitting and noise challenges during the modeling process and
because they have higher goodness-of-fits and perform better compared to other conventional models.
Moreover, among the machine-learning classifiers, ensemble models are more powerful than single
classifiers. They randomly divide a training dataset into subsets and perform a single classifier, which
provides an output with the lowest error and the highest performance rather than the single classifier.
This process overcomes the weakness of the single classifier and achieves a more powerful classifier.
In response to the advantage of ensemble classifiers, a novel ensemble intelligence approach, namely
bagging-ADTree, was performed and gully erosion maps were obtained. Some other machine-learning
algorithms (including ADTree, Bagging-ADTree, and LR) were used for comparison and validation of
the results of the new model. The random forest model is used to determine the relative importance of
conditioning factors. The results indicate that distance-to-road and drainage density are very important
to gully occurrence in the study area. The validation indicated that although the models achieved high
goodness-of-fit scores and were powerfully predictive, the ensemble model was better than others
at spatially predicting gully erosion and produced a more accurate gully-susceptibility map of the
study area. Based on these results, we can recommend the new model, bagging-ADTree, for gully
modeling in other zones of potential gully erosion susceptibility, but offer one caution: there may be
other conditioning factors responsible for gully erosion in other areas. Finally, the results from a case
study of the Chah Mousi watershed show that selecting suitable predisposing factors and combining
machine-learning ensemble models with GISs can be used to efficiently predict an area’s susceptibility
to gully formation with high accuracy. Therefore, the gully-erosion susceptibility map generated by
the method can aid decision makers, planners, and engineers in their quests to identify and develop
the most effective protective measures to sustainably prevent and mitigate gully-erosion damage.
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