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Abstract: Internal erosion involves migration and loss of soil particles due to seepage. The process of
fluid–solid interaction is a complex multiphase, coupled nonlinear dynamic problem. In this study,
we used Particle Flow Code (PFC3D, three-dimensional PFC) software to model solid particles, and we
applied computational fluid dynamics (CFD) and the coarse mesh element method to solve the local
Navier–Stokes equations. An information-exchange process for the PFC3D and CFD calculations was
used to achieve fluid–solid coupling. We developed a numerical model for internal erosion of the soil
and conducted relevant experiments to verify the usability of the numerical model. The mechanism
of internal erosion was observed by analyzing the evolution of model particle migration, contact
force, porosity, particle velocity, and mass-loss measurement. Moreover, we provide some ideas for
improving the calculation efficiency of the model. This model can be used to predict the initiation
hydraulic gradient and skeleton-deformation hydraulic gradient, which can be used for the design of
internal erosion control.
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1. Introduction

Internal erosion is the formation of pipes in the soil under seepage conditions. The mechanism
of internal erosion can be classified as concentrated leak erosion, backward erosion, contact erosion,
and suffusion [1]. When soil particles are gap-graded, fine particles in the soil move and loosen under
seepage force, and seepage failure occurs due to suffusion of the soil. In this paper, what we refer to
as internal erosion is primarily suffusion. Dikes and unpartitioned homogeneous dams are highly
susceptible to internal erosion. Piping is estimated to account for 43% of dam failures. In addition, 54%
of the dams built after 1950 failed because of pipe formation [2–4].

The internal erosion of the soil is difficult to study and analyze, as it generally occurs underground.
Furthermore, it is influenced by many factors, such as particle size gradation [5,6], consolidation
degree, porosity, and hydraulic gradient. Internal erosion has always been a major focus area in the
study of hydraulics. Scholars have developed various methods for exploring the factors that influence
internal erosion. In early studies, Bligh [7] and Lane [8] obtained a series of empirical formulas through
statistical analysis of a large number of engineering examples, which provided a direction for internal
erosion research. Terzaghi [9] established a mathematical model of piping erosion that analyzes the
force balance from the vertical direction, and also established a formula for calculating the critical
hydraulic gradient of the soil infiltration failure. With the continuing development in science and
technology, research techniques make the course of piping erosion visualization. Rosenbrand [10] used
the method of tracing to further explain the mechanism of piping erosion by studying the relationship
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between the movement of soil particles and the process of piping erosion. Moffat et al. [11] used
the method of laboratory testing to record the change of hydraulic gradient and axial displacement
of samples and qualitatively explained the spacetime evolution process of the internal instability of
the samples. Sibille et al. [12], Hunter [13], and Tomlinson and Vaid [14] used glass beads, broken
glass, and other transparent materials, instead of sand, to simulate the occurrence of internal erosion.
The researchers investigated the influence of certain factors internal erosion, such as particle size
gradation, confining pressure, consolidation degree, filter layer thickness, hydraulic gradient, and
gradient growth rate. They observed the dispersion and migration of particles during the erosion
process and the formation process of leakage piping.

The methods described above were used to study a series of factors that influence internal erosion,
thereby contributing to the fundamental understanding of the mechanism of internal erosion. However,
these research methods lack quantitative analysis of fluid–solid interactions and cannot explain the
microscopic mechanical behavior of particles. As a result of advancements in computer technology, the
numerical simulation research method can now be employed to address this limitation and produce
high precision. Some scholars have used the finite element method (FEM) [15,16] and the finite
difference method (FDM) [17] to numerically simulate internal erosion. However, these methods were
primarily used to analyze the characteristics of the flow field during the piping process. These research
methods do not reflect the soil migration movements and complex constitutive relationships of soil
particles, owing to the limitations of the calculation methods. To solve this problem, people have
developed the discrete element method (DEM) and the material point method (MPM).

MPM is a new method based on FEM [18], with higher calculation efficiency and accuracy. It is
often used to simulate problems involving excessive deformation and fracture of materials, such as
landslides [19,20]. DEM was developed based on the molecular dynamics method, which assumes
that the material consists of discrete particles; it is used to study discontinuous media mechanics
problems [21]. The DEM can solve the equations of the complex interaction between particles and
the flow-deformation characteristics of discrete particles [22]. Compared with MPM, DEM is more
suitable for studying micro-mechanical of internal erosion. Therefore, in this study, we used the DEM
to simulate the large deformation of internal erosion.

Particle Flow Code (PFC) software is commonly used to analyze the discrete element region,
which is mainly used to simulate the motion and interaction of finite-size particles. PFC assumes that
the particles are rigid bodies with mass and can be translated and rotated. The particles interact in pairs
of contact forces through internal inertial forces and moments. In addition, the contact force interacts
by updating the internal forces and moments. The motion of the particles obeys the laws of Newtonian
motion, and the mutual contact of the particles obeys the law of interaction. PFC continuously updates
the internal forces and displacements of particles according to these laws [23]. A computational fluid
dynamics (CFD) module is included in the PFC program, to provide a rough grid fluid frame for
simulating fluid–solid interaction forces. In summary, PFC can accurately describe the migration,
sedimentation, and clogging of particles in internal erosion, fully reflecting the mechanical motion of
the particles [24].

The occurrence of internal erosion is the result of interaction between fluid and solid particles;
thus, the numerical model should take into consideration fluid–solid coupling. In this study, we
developed a fluid–solid coupling model of internal erosion by coupling DEM and CFD. The model
considers the characteristics of the soil and the complex flow conditions of the fluid. We also conducted
experiments to verify the numerical simulation results. We divided the internal erosion process into
five stages: particle consolidation stage, loss stage of fine particles, loosening stage of skeleton particles,
volume expansion stage, and overall ascending stage of soil. We also analyzed the evolution of particle
displacement and contact at each stage. Unlike other studies on numerical simulation of internal
erosion, this study focused on a series of particle velocities at different locations, with different particle
sizes, and this study is the first to quantify the initiation hydraulic gradient and skeleton-deformation
hydraulic gradient. This research provides theoretical guidance for engineering design.
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2. Methodology

The PFC software package includes two-dimensional (PFC2D) and three-dimensional (PFC3D)
programs. It is a discrete element code framework that can be redeveloped and compiled for maximum
versatility and flexibility. It is based on molecular dynamics development. The model consists of a
series of spheres or clumps that simulate different media by giving the spheres or clumps different
properties and contact patterns. This simulation method is not limited by deformation, as the model
comprises a series of discontinuous spheres or clumps. It can effectively simulate discontinuous
phenomena such as cracking and separation of the medium. To more intuitively study the mesoscopic
mechanism of internal erosion, this study used PFC3D to establish an internal erosion model.

DEM–CFD was originally proposed by Tsuji et al. [25] and has been fully developed and widely
used in the study of multiphase flow problems such as gas–solid [26,27] and liquid–solid [28,29]
problems. This method solves the fluid problem by discretizing the continuous fluid into units and
solving the equation of motion of the fluid. This study used the CFD module of PFC for fluid-structure
coupling. We used FiPy [30] (National Institute of Standards and Technology, Gaithersburg, MD, USA)
as CFD solver. The FiPy solver is a partial differential equation solver based on the finite volume
method; it is extensible, powerful, and freely available for use. We connected the FiPy to CFD module
such that the PFC and CFD can complete the exchange of computational information.

2.1. Particle Component

The translational and rotational motions of the particles in PFC3D follow Newton’s second law,
which are used to determine the speed and position of each calculation step of the particle [31].
The equations are as follows:

mp
dvp

dt
= f g

p +
∑

c
f c
p + f f

p (1)

Ip
dωp

dt
=

∑
c

Mp (2)

where mp is the mass of the particle p; vp and ωp are the translation and rotation speed vectors of

particle, p, respectively; Ip is the moment of inertia of particle, p; f g
p and f f

p denote the gravitational
force and fluid force acting on particle p, respectively; f c

p is the contact force acting on particle, p; and
Mp is the moment acting on particle, p.

The interaction between particles utilizes a linear contact model established in [32]. The linear
contact model decomposes the contact force into a linear component and a damping component.
The linear component simulates the linear elasticity and friction characteristics between the materials,
whereas the damping component simulates the viscous characteristics of the material [33], as shown
in Figure 1. In the Figure 1, kn and ks are the normal and shear stiffness of the linear component,
respectively, βn and βs are the normal and shear critical damping ratios of the dashpot component,
respectively, µ is the friction coefficient, and gs = d − (r1 + r2), where gs is the surface gap.

The simulated material used in this study is non-cohesive sand; thus, the damping part of the
model was not considered. We decomposed the contact force between the particle surfaces into the
normal force and the shear force (the same is true for the contact between the particles and the wall);
therefore, the contact force between the particles is calculated as follows:

f c = −Fn·nc + Fs (3)

where Fn and Fs are the normal and shear forces at the contact surface (Fn > 0 is tension), respectively,
and nc is the normal direction of the contact plane.

The linear part of the linear model uses a linear spring, with a constant normal stiffness kn

and shear stiffness ks, to describe the constitutive mechanical behavior of the interparticle contact.
The formulas for calculating Fn and Fs are as follows:
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Fn =

{
kngs , gs < 0
0, otherwise

(4)

Fs =

 Fc
s,
∣∣∣∣∣∣Fc

s

∣∣∣∣∣∣≤ Fµs
Fµs

(
Fc

s
||Fc

s||

)
, otherwise

(5)

Fc
s = (Fc

s)0 − ks∆δs (6)

Fµs = −µFn (7)

where Fc
s is the calculated shear force, (Fc

s)0 is the initial shear force, ∆δs is the relative shear-displacement
increment, and Fµs is the force of friction and the maximum shear force at the contact. The linear
stiffnesses, kn and ks, and the friction coefficient, µ, of two contact faces are inherent characteristics of
the spring.
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For example, the normal stiffness and shear stiffness between two contact surfaces are calculated
as follows:

1
kn

=
1
ka

n
+

1
kb

n
(8)

1
ks

=
1
ka

s
+

1
kb

s
(9)

where a and b denote the properties of surfaces a and b that are in contact with each other, respectively.
The friction coefficient between faces a and b uses the minimum friction coefficient between the two
contact faces: µ = min

(
µa,µb

)
.

The deformability of homogeneous and isotropic materials is generally described using the
Young’s modulus (E) and the Poisson’s ratio (v); thus, DEM uses the effective modulus (E∗) and
the normal-to-shear stiffness ratio (κ∗ = kn/ks) to describe the material deformation capability.
The parameters E∗ and κ∗ are linearly related to E and v, respectively [23]. The effective modulus is
calculated using the following formula:

E∗ =
kn(r1 + r2)

π[min(r1, r2)]
2 (10)

This method can automatically consider the size effect of the particles and adjust the normal
and shear stiffness in real time, based on variations in the particle size, making the calculation result
more accurate.
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2.2. Fluid Component

The fluid calculation component uses the coarse mesh method, where the fluid domain is divided
into fluid cells of equal volume. Each fluid cell contains a series of PFC particles, as shown in Figure 2.
We used the fluid solver (FiPy) to solve the fluid-flow equation for each fluid element, and we calculated
the parameters, such as the velocity and the pressure gradient, of the fluid domain. This study uses the
incompressible Navier–Stokes (N–S) equations to obtain the solution. For porous media seepage, the
fluid can only flow through the pores, and there is no flow on the part occupied by the solid particles.
For convenience during calculation, we used nu f (n is the porosity of the fluid element and u f is the
macroscopic velocity vector of the fluid element) instead of the seepage flow velocity in the porous
medium. The fluid control equation is given as follows:

∂(nu f )
∂t +∇

(
nu f

)
= 0

ρ f

(
∂(nu f )
∂t + v·∇

(
nu f

))
= −n∇p + µ∇2

(
nu f

)
+ fr

(11)

where ρ f is the fluid density, ∇p is the element pressure gradient, µ is the dynamic viscosity of the
fluid, fr is the particle resistance exerted on the fluid, and ∇ represents the nabla operator.

The fluid equation uses the porosity term to indicate the presence of particles. There are two
methods for calculating the porosity of a fluid cell in PFC, namely, the central method and the
polyhedral method [23]. The central method considers that, when the center of the particle is in a
fluid element, the particle is completely contained in the fluid element. The polyhedral method uses
a cube to characterize a particle whose length, width, and height are equal to the particle diameter.
The cell porosity is calculated by determining the overlap volume of the fluid element and the cube.
Compared with the central method, calculations performed using the polyhedral method are slower;
however, when the particles move between fluid elements, the porosity transition calculated using the
polyhedral method changes smoothly. Thus, in this study, we used the polyhedral method to calculate
the cell porosity.
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We used the element average volume force to calculate the resistance of the particles to the fluid
element. We calculated the resistance of the fluid element by summing the fluid drag forces acting on
the particles in the fluid element and dividing by the volume of the fluid element:

fr =

∑
j f i

d
Vi

(12)

where the sum is over all the particles in a given fluid element, Vi is the volume of that element, and fd
is the drag force of fluid acting on a single particle.

The fluid forces experienced by the particles include the fluid-to-particle drag force fd, the fluid
gradient force fg, and the buoyancy fb.

f f = fd + fg + fb. (13)

The drag force of the fluid on the particles is related to the fluid conditions of the element in which
the particles are located. Sometimes a particle is located in multiple fluid cells. In this case, the fluid
drag force is calculated based on the proportion of particles in the fluid element. The fluid drag force
acts on the centroid of the particle regardless of the bending moment. Di Felice [34] showed that the
fluid drag force experienced by particles is related to the concentration of the surrounding particles,
which is a function of the porosity. In [34], fd was defined as follows:

fd = f0n−x (14)

where f0 is the fluid drag force on a single particle (in the absence of other particles, fd = f0) and n is
the porosity of the fluid element where the particle is located. The term n−x represents the empirical
coefficient of local porosity and is suitable for both high- and low-porosity conditions.

The fluid drag force can be expressed as follows:

f0 =
[1
2

cdρ fπr2
∣∣∣us − u f

∣∣∣(us − u f
)]

(15)

where Cd is the coefficient of fluid drag force, us is the particle’s velocity vector, and r is the radius of
the particle.

The coefficient of fluid drag force, Cd, is related to the Reynolds number of the particle, and it is
calculated as follows:

Cd =

0.63 +
4.8√
Rep

 (16)

where Rep represents the Reynolds number of the particle. The Reynolds number is a dimensionless
parameter, representing the motion characteristics of particles in the fluid, and it is defined as follows:

Rep =
2rρ f

∣∣∣us − u f
∣∣∣

µ f
. (17)

The variable, x, in the porosity correction term, n−x, is defined as follows:

x = 3.7− 0.65exp

−
(
1.5− lgRep

)2

2

. (18)

The fluid gradient force is calculated as follows:

fg = −
4
3
πr3
∇P (19)
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The buoyancy of a particle is defined as follows:

fb =
4
3
πρ f r3g (20)

2.3. Coupling Process

During the coupling process, PFC software was used to solve the equations of the particle motion,
and CFD was used to solve the equations of the fluid motion. PFC updates the velocity and position of
the particles by measuring the contact between the particles, and Newton’s second law was applied to
calculate the force and displacement of the particles. After activating the CFD module, the average
volume force of the fluid element and the average velocity of the particles were calculated, and the
momentum exchange term was used to solve the fluid motion. The coupling mode and information
exchange process are shown in Figure 3. Exchange of information between the two modules needs to
be explicitly completed in the PFC data file. First, we used PFC to establish a solid particle model, and
then we used the CFD module to establish a fluid grid and set the fluid parameters. PFC was used
to read the fluid element information, solve the equation of motion, calculate the element porosity
and the average volume force of the fluid elements, and send this information to the CFD module.
The CFD module then solves the N–S equation, calculates the fluid element velocity and pressure, and
returns them to the PFC. The above process is repeated until the termination condition is met.
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3. Modeling

To verify the applicability of the above numerical model, we compared the results obtained by
using the numerical model with those of the experimental model. We established experimental and
numerical models, as described below.
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3.1. Experimental Model

As shown in Figure 4, the internal erosion tests were set up in a cylindrical plexiglass barrel with
a diameter of 0.1 m and a height of 0.3 m. The bottom of the plexiglass barrel has a water inlet, and
the top of the plexiglass barrel was connected to the water outlet. The water inlet was connected to
a flowmeter. The left side of the plexiglass barrel was connected to piezometric tubes. A layer of
pebbles with a thickness of approximately 0.04 m was placed under the plexiglass barrel as a buffer
zone, so that water could flow into the experimental sample area evenly. For the experimental samples,
we used 5–10 mm of coarse sand as the skeleton particles, and 0.5–1.0 mm of standard sand as the
filler particles. The skeleton particles and the filler particles were arranged in the ratio of 4:1 by mass.
The sample porosity was approximately 0.23.
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Figure 4. Diagram of the experimental model.

The experimental process is as follows: (1) Place the sand sample into the glass bucket evenly and
compact the sand sample layer by layer; (2) add water to the sample and set it aside for 24 h, to ensure
that it saturates under natural drainage conditions; (3) adjust the height of the water tank, to ensure
that the experimental water head increases in stages; (4) record the readings on the piezometric tube
and flowmeter under each head. When the sample is stable, quickly place the sample into the nuclear
magnetic resonance (NMR) device, to measure the porosity, as shown in Figure 5; (5) repeat the third
step continuously, until the sample is destroyed.

Under the same test conditions, we performed seepage experiments on multiple groups of
samples, to avoid accidental errors in the experimental results. The duration of each test was 240 min.
The experimental results are shown in Figure 6. At the beginning, the experimental sample was stable,
and no obvious particle movement was observed, as shown in Figure 6a. The experimental water head
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increased, and some fine particles were transported by water flow. However, most of the fine particles
were still trapped under the skeleton particles, as shown in Figure 6b. The experimental water head
continued to increase, and many fine particles burst out of the gap, as shown in Figure 6c. With the
increase in the water head, the skeletal particles loosened, and the sample moved upward, as a whole,
as shown in Figure 6d,e.
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3.2. Numerical Model

We developed a numerical model based on the experimental model. We did not establish a
numerical model that is 1:1 with the experimental model, due to the limitations of the computing power.
For example, a sand sample with a size of 0.1 m × 0.1 m × 0.2 m contains approximately 1 million
particles. Presently, the computer capacity for this calculation is still insufficient. Thus, to make the
analysis feasible and effective, the number of model particles should be reduced. We simplified the
numerical model in terms of both the model size and the particle size. We developed a numerical
model with a diameter of 40 mm and a height of 80 mm, which is approximately 6.4% of the test model.
In PFC, maximum to minimum particle size (dmax/dmin) ratios has a great influence on the calculation
efficiency. The larger maximum-to-minimum particle-size ratio, the slower the calculation speed [35].
Thus, we generally control the particle size ratio to within 10. In this study, the particle size ratio for the
experimental model was too large. To obtain a reasonable calculation efficiency, we used the median
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value of the particle size range of the control particles and the filler particles as the representative
particle size. Thus, we used 7.5 mm for coarse particles and 0.75 mm for fine particles.

We first generated the sample container. We used three fixed and impenetrable walls as the
container for the sample. The top and bottom of the container consisted of two square walls, with
a cylindrical wall on the side. In the PFC model, the sand was modeled as a complete sphere, and
the model considered the friction between the particles but did not consider the effect of the shape of
the particles. Numerical simulation typically employs the Young’s modulus to study the mechanical
behavior of sand. The Young’s modulus for natural gravel is approximately 70–170 MPa. In PFC, we
used the effective modulus, which is proportional to the Young’s modulus; thus, the effective modulus
used in this study is 100 MPa. The true coefficient of friction of sand is typically 0.5–0.7 [36], but after
the addition of fluid, the sliding friction of the particles decreased significantly [37]; thus, the friction
coefficient used in this study is 0.5.

Next, we filled the inside of the container with particles. Similar to the experimental model,
the mass percentage of coarse and fine particles was 4:1. Assuming that the density of the gravel is
uniform, the coarse and fine particles’ volume percentage is also 4:1. We generated a sample model
based on particle grading, setting the initial porosity to 0.3 (the initial model ball particles overlap and
the porosity will decrease after the particles bounce, so we set the initial porosity to be larger), whereas
the coefficient of friction was set to 0.5. We limited the amount of overlap to 0.1, using the control
function as the particles of the initial model have a large overlap. We then eliminated the imbalance
between the particles by a cyclic calculation, to generate a stable model that contains 41,031 particles, as
shown in Figure 7. In numerical simulation, we needed to monitor the evolution of the model state and
the parameters, to determine the variation law of the microscopic features and the parameters of the
model. Thus, we established three equal-volume measurement regions for monitoring and recording
the porosity of the model. We set the measurement region to a sphere. The radius of the spherical
measurement region is 16 mm, and the center of the three measurement regions is on the central axis of
the cylindrical model, as shown in Figure 8. We numbered the three spherical measurement regions
from top to bottom, with the red area numbered as 1, the green area numbered as 2, and the blue area
numbered as 3.
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We developed a fluid mesh based on this particle model. We used a series of equal-sized
hexahedral grid elements to describe the fluid region, as shown in Figure 9. At the same time, we
removed the top wall of the particle model. The grid element size is 8 mm × 8 mm × 8 mm, and
the number of grid elements is 540. We set the fluid to move from bottom to top and also set the
fluid-pressure boundary conditions. The fluid outlet pressure is zero, and the inlet head of the fluid
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increases with the calculation time. The fluid side boundary is an impermeable boundary condition,
and hence there is no radial seepage.
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The position of the particles was calculated based on the time increment, as the PFC predicts the
displacement of the particles according to Newton’s second law. The stable step size of the PFC is
very small, generally 100 ns; thus, it is difficult to make the calculation time consistent with the actual
experimental time. To improve calculation efficiency, we reduced the computation time by increasing
the pressure gradient. Zheng et al. [29] concluded that the higher hydraulic gradient contributes to the
evolution rates of both volumetric contraction and void ratio. It also has been reported that increasing
the pressure gradient does not affect the stability of the model because the fluid motion is calculated by
using the N–S equation [38]. Therefore, we put forward the assumption that an increase in the hydraulic
gradient can accelerate the material behavior of the sample. To test this hypothesis, we compared the
evolution in porosity and seepage velocity of the same model under different hydraulic gradients.

We built a numerical model with fewer particles for testing, which is based on the prototype
numerical model. The test numerical model is a cylinder with a diameter of 0.02 m and a height of
0.04 m. It contains 4609 particles and has an initial porosity of 0.35. The size of the fluid element is
5 mm × 5 mm × 5 mm, and the test numerical model contains 300 elements. The other parameters of
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the test numerical model are the same as the prototype numerical model (refer to Table 1). Two scenarios
with different hydraulic gradients of the test model are simulated (i.e., I = 0.4, calculation time = 0.5 s,
and i = 4.0, calculation time = 0.05 s). The results are shown in Figures 10 and 11.

Table 1. Model parameter details.

Computation Modules Parameter Types (Units) Values

Particle model

Particle diameter (mm) 0.75–7.5
Particle density (kg/m3) 2650

Coefficient of friction 0.5
Particle volume overlap ratio 0.25

Initial porosity 0.3
Effective modulus (Pa) 1.0 × 109

Normal-to-shear stiffness ratio 1.25

Fluid model
Fluid density (kg/m3) 1000

Dynamic viscosity (Pa·s) 0.001

Particle–fluid interaction
Timestep of DEM (s) 2.0 × 10−7

Timestep of CFD (s) 2.0 × 10−5

Coupling interval (s) 2.0 × 10−5
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After increasing the hydraulic gradient, the porosity of the test model did not change much, as
shown in Figure 10. During the test, we randomly selected 3 fluid elements and recorded the evolution
of the seepage velocity of the three fluid elements under different hydraulic gradients, as shown in
Figure 11. Increased hydraulic gradient increased seepage velocity but did not affect the trend of
seepage velocity. Therefore, our hypothesis is feasible.

In this study, we calculated the hydraulic gradient as 10 times compared with the experimental
model. Thus, we set the initial inlet hydraulic gradient to 1.0 and increased stepwise at a rate of 10 s−1,
as shown in Figure 12. The time step calculated by the particle model is taken as 200 ns, and the time
step of the fluid model calculation is taken as 20 µs. Thus, for every 100 steps of the particle model
calculation, the fluid model was calculated in one step and information was exchanged once. Other
parameters of the model are listed in Table 1.
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4. Results Analysis

4.1. Model Verification

To verify the performance of the developed numerical model, we analyzed and compared the
experimental results and numerical results. In the experiment, when the hydraulic gradient was
0.38, the surface of the sands model suddenly appeared to have a large area of sand boil, and the water
pressure measured by a piezometer suddenly dropped. This phenomenon indicates that the sands model
underwent seepage failure. Therefore, we define 0.38 as the critical hydraulic gradient of the experimental
model, expressed as iecr = 0.38 (for ease of differentiation, we used ie to represent the hydraulic gradient
of the experimental model, and in to represent the hydraulic gradient of the numerical model).

Figure 13 shows the evolution of the outlet water velocity with the hydraulic gradient of the
experimental and numerical models. In the experimental model, it can be observed that the velocity
increases linearly with the hydraulic gradient before iecr = 0.38, which is consistent with Darcy’s law
of flow. When iecr > 0.38, the velocity of the experimental model shows a sudden increasing trend.
The velocity changes from linear to nonlinear with the change in the hydraulic gradient, which verifies
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the state change from laminar to turbulent flow when seepage failure occurs in the sands model.
The velocity-change trend of the numerical model is essentially the same as that of the experimental
model. The velocity change of the numerical model is also stepwise, as its hydraulic gradient is
stepwise. The difference is that the velocity of the numerical model exhibits nonlinear growth after
in = 4.0 (t = 0.3–0.4 s), hence we define the critical hydraulic gradient of the numerical model as 4.0:
incr = 4.0.
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numerical model.

In the experimental model, we monitored and recorded the porosity at the middle of the sample.
In the numerical model, we also recorded the change in the average value of the porosity of several
fluid elements located in the middle of the sample, based on geometric similarity. Figure 14 shows
the difference in the porosity of the experimental and numerical models under different hydraulic
gradients; the result of the experimental model roughly correlates with that of the numerical model.
The porosity of the two models remains unchanged under a low hydraulic gradient. When ie = 0.3
or in = 3.0 (t = 0.2–0.3 s), the porosity begins to increase slowly due to loss of fine particles, whereas
the porosity begins to change significantly at approximately iecr = 0.38 or incr = 4.0. The porosity of
the experimental model tends to be stable at ie = 0.5. However, the porosity of the numerical model
continues to increase.

From Figures 13 and 14, we can conclude that, when in ≤ 6.0 (t = 0.0–0.6 s), the numerical
simulation results can reproduce the trend of the mesoscopic parameters of the piping well. The change
in porosity is important for the evolution of fluid velocity, and a larger porosity results in a larger fluid
velocity. When in ≥ 6.0 (t = 0.6–0.8 s), the results of the numerical simulation are significantly different
from the experimental results. We attribute the difference to two aspects.

The first is the effect of size effects. The numerical model is approximately 6.4% of the experimental
prototype and the number of particles in the numerical model is small. After the occurrence of seepage
failure in the model, the percentage of particle loss in the numerical model is much larger than the
experimental model. The porosity of the numerical model increased rapidly. The seepage velocity is
related to the porosity, so the seepage flow velocity also changes greatly. Seepage failure has a greater
impact on the numerical model, and the second is the effect of the choice that we multiply the hydraulic
gradient by a factor 10 compared to experimental conditions. Internal erosion is a process from linear
to nonlinear. When seepage failure occurs, the relationship between velocity and hydraulic gradient
changes to nonlinear. Therefore, the velocity change of the numerical model is larger than the test
velocity. The particles in numerical model moved faster, and the porosity also changed greatly.
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4.2. Particle Migration and Changes in Contact Force

The calculation step of this model requires 200 ns, and a total of four million steps were calculated.
The simulation results demonstrate the occurrence and development of internal erosion. Figures 15
and 16 show the variation of particle displacement and contact force of the model under different
hydraulic gradients. We categorized the process into five stages.
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4.2.1. Particle-Consolidation Stage

This stage occurs when the hydraulic gradient in = 1.0. At the beginning of the calculation,
fluid force and gravity were simultaneously applied to the particles, the hydraulic gradient increased
from 0 to 1.0, and the particles started moving under the action of gravity and fluid force. At this
time, the gravity of the particles is greater than the fluid force, and the sample model is consolidated
and sedimented. As shown in Figure 17, the average porosity of the model calculated based on the
measurement region is continuously decreasing during the calculation time of 0 s to 0.1 s (in = 1.0),
indicating that the model is consolidated under the hydraulic gradient of 1.0. Figure 18 shows the
contact force of the model in the calculation time of 0.0 s to 0.1 s; the increase in the number of model
contacts can be clearly observed. The longer cylinders represent contact between the skeleton particles,
and between the skeleton particles and the wall, whereas the relatively shorter cylinders represent
contact between the filler particles, and between the filler particles and the wall. In the process of
particle consolidation, the fine particles settle under the action of the external force from the point of
contact bonds, and the mechanical structure between the skeleton particles is almost never unchanged.
From the color change of the contact bonds, the contact force between the skeleton particles slightly
increased. This is due to the consolidation of the fine particles, which increases the pressure on the
skeletal particles, but the consolidation of the particles does not affect the main mechanical structure
of the model. At this time, the contact force between the particles starts increasing, and the force is
uniformly distributed on all the particles when it is transmitted between the skeleton particles. As the
depth of the model increases, the contact force between the skeleton particles also gradually increases.

4.2.2. Loss Stage of Fine Particles

This stage mainly occurs when in = 2.0 and in = 3.0. As the hydraulic gradient gradually
increases, the fluid force of the fine particles gradually increases and exceeds gravity. Next, the fine
particles begin to move upward. As shown in Figure 17, when the hydraulic gradient increases to
2.0 (t = 0.1–0.2 s), loss of fine particles begins at the outlet of the model, and the average porosity of
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the model rises slowly. The hydraulic gradient at this time does not have a large effect on the model.
When the hydraulic gradient increases to 3.0 (t = 0.2–0.3 s), the porosity of the model increases, and a
large number of fine particles are lost in the model outlet, as shown in Figure 15. As the filler particles
have been lost, the contact force between the particles has changed. The number of contacts between
the particles and magnitude of contacts in the model are significantly reduced, as shown in Figure 16.
The loss of fine particles at this stage is an important prerequisite for the occurrence of seepage failure
of the soil, marking the beginning of the formation of a leakage channel.
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4.2.3. Loosening Stage of Skeleton Particles

This is also the stage in which internal erosion begins to occur, which starts when in = 4.0.
The increase in the hydraulic gradient causes the external force of the skeleton particles to tend to zero,
and then the skeleton particles begin to loosen. The hydraulic gradient at this time is known as the
critical hydraulic gradient. With the increase in the hydraulic gradient and increase in the loss of fine
particles in the previous stage, the porosity of the model increases, and the fluid velocity increases
gradually. The fluid force of the skeleton particles becomes gradually greater than gravity. At this
time, the skeleton particles at the outlet of the model have been loosened and begin to move upward.
As shown in Figure 15, the model structure has been destroyed, and a seepage channel first forms
at the outlet of the model, that is, seepage failure begins. As shown in Figure 16, the contact force
structure between the particles at the exit is significantly damaged.
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4.2.4. Volume-Expansion Stage

With the gradual loss of particles, erosion continues to propagate downward, and the skeleton
particles move slowly toward the outlet. Next, the overall porosity of the model increases, and
the model volume begins to expand. This stage occurs when in = 5.0 and in = 6.0 (t = 0.4–0.6 s).
The number of contacts between the particles is reduced, and the mechanical structure is further
destroyed. The contact force between the particles increases slightly owing to the increase in the
hydraulic gradient, and the fluid force of the particles increases and is evenly distributed on the
particles; thus, the pressure of the particles increases, which manifests as an increase in the contact force.

4.2.5. Overall-Ascending Stage of Soil

As shown in Figures 15 and 16, when in = 7.0 and in = 8.0, the bottom layer of the model particles
is under the action of gravity of all the particles in the upper layer. As the upper layer particles move
gradually, the pressure on the bottom layer gradually decreases. Further, as the hydraulic gradient
increases, the bottom layer particles begin to move upward. At this stage, the number of contacts
between the model particles continues to decrease, and the contact force increases as the hydraulic
gradient increases.

4.3. Evolution of Porosity

The evolution of porosity is closely related to the movement of particles during the internal
erosion process. We have established three measurement regions, from top to bottom (Figure 8), and
recorded the evolution of porosity, as shown in Figure 19. Measurement region 1 is close to the model
outlet, and loss of fine particles occurs (stage 2). Thus, the porosity of measurement region 1 changes
first. When t = 0.3 s (in = 4.0), the porosity growth rate of measurement region 1 increases, and internal
erosion begins to occur. When t = 0.4 s (in = 5.0), the porosity of measurement regions 2 and 3 begins
to increase. The model is then in the volume expansion stage, and internal erosion has moved into the
lower part of the model. The porosity of measurement region 3 changes the most. As measurement
region 3 is at the bottom of the model, the particles continuously move from measurement region
3 to measurement region 2. The number of particles in measurement region 3 gradually decreases,
and, finally, the porosity increases to 1.0, as the number of particles in this region decreases to zero.
The porosity of measurement region 2 changes minimally, indicating that the number of particles in this
region is essentially constant. Although the particles in this region gradually move to measurement
region 1, the region also continuously receives particles from measurement region 3. When the model
is in the volume expansion stage (stage 4, t = 0.4–0.6 s), the porosity of measurement region 2 increases
slightly. When the erosion develops to the overall ascending stage (t = 0.7–0.8 s), the porosity of
measurement region 2 begins to increase substantially. At this stage, the number of particles received
in measurement region 2 is much smaller than the number of particles lost. At this point, the porosity
of measurement region 1 begins to decrease. Many particles infiltrate into measurement region 1 due to
the overall upward movement of the model. Further, the number of particles received in measurement
region 1 exceeds the number of particles lost; thus, the porosity of measurement region 1 increases.
The evolution of porosity directly reflects the change in particle loss at different locations of the model.

4.4. Evolution of Particle Velocity and Mass-Loss Measurement

We divided the model evenly into three layers and defined these as the top, the middle, and
the bottom layers. Two coarse particles and two fine particles were randomly selected in each layer.
We then recorded the velocities of the 12 particles. Figures 20 and 21 show the velocity changes of the
coarse and fine particles in different layers.

The velocity of particles in the top layer changes first, and then it begins to increase significantly
around the critical hydraulic gradient of 4.0. The velocity of the middle layer particles starts to increase
slowly near the critical hydraulic gradient of 4.0, and it increases significantly during the overall
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ascending stage. The particle velocity of the bottom layer begins to change significantly during the
overall ascending stage. Finally, the velocity of the middle and bottom skeleton particles is stable
at approximately 0.18 m/s, and the speed of the fine particles fluctuates at approximately 0.2 m/s.
As shown in Figure 20, the top skeleton particles, C1 and C2, decrease in velocity after 0.6 s, at which
time the two skeleton particles may be clogged. Furthermore, after 0.7 s, the velocity rises, and clogging
is eliminated. The skeletal particles are slightly affected by fluctuation in water flow, and the velocity
increases smoothly. The filler particles’ weight is low, and it is significantly affected by fluctuation in
water flow. The filling particles’ velocity fluctuates significantly.
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At t < 0.3 s (in < 4.0), the fluid velocity is small, and the velocity of the skeleton particles is always
zero. At t = 0.3 s (in = 4.0), some of the skeleton particles start moving. The velocity of the top skeleton
particles (C1 and C2) changes first. At the beginning, the velocity of the skeleton particles (C1 and C2)
changes minimally, and it fluctuates at 0.025 m/s. At this time, seepage failure occurs, and the model
outlet initially forms a leakage channel. The velocity of the top skeletal particles begins to increase
significantly at t = 0.4 s (in = 5.0), and it continues to increase with the hydraulic gradient, until
the particles are flushed out of the model. The velocity of the middle skeleton particles (C3 and C4)
increases slowly from zero after t = 0.4 s (in = 5.0), and it increased after t = 0.5 s (in = 6.0), indicating
that internal erosion has moved to the middle of the model. The velocity of C5 starts fluctuating slightly
at t = 0.4 s (in = 5.0), and the C6 particle velocity is zero. At t = 0.6 s (in = 7.0), the velocity of C5 and
C6 suddenly increases, and the degree of erosion increases. At t = 0.7 s (in = 8.0), the velocity of the
middle and bottom layer particles is approximately the same, and it fluctuates at 0.2 m/s. The model is
in the overall ascending stage.

The rate of change of the velocity of the fine particles is approximately the same as that of the
coarse particles. However, the initiation hydraulic gradient of fine particles is lower than that for coarse
particles such that the fine particles are more likely to move. The velocity of the fine particles starts
fluctuating slightly at t = 0.1 s (in = 2.0). When the model is stable, the velocity of the fine particles is
very small, but its fluctuation is severe. At this time, the soil structure has not been destroyed, and the
fine particles are confined in the fixed soil structure and violently jump in the void. As the hydraulic
gradient increases, the soil structure gradually loses stability, and the fine particles are eventually
moved out of the soil structure.
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Chang et al. [39] once defined two critical hydraulic gradients, namely the initiation hydraulic
gradient and the skeleton-deformation hydraulic gradient. The initiation hydraulic gradient represents
the hydraulic gradient where internal erosion begins, whereas skeleton-deformation hydraulic gradient
represents the hydraulic gradient in which the soil structure begins to deform and seepage failure
occurs. We can conclude that the numerical model’s initiation hydraulic gradient is 2.0, and the
skeleton-deformation hydraulic gradient is 4.0.
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Figure 22 is mass-loss measurement of the numerical model. When t = 0–0.1 s (in = 1.0), the
particles on the surface of the model are taken away by the water flow, and the mass loss at this time is
small, less than 1%. When t = 0.1–0.3 s (2.0 ≤ in < 3.0), the hydraulic gradient reaches the initiation
hydraulic gradient of the model. The fine particles start to move, and the mass loss increases and
gradually stabilizes to 4% over time. When t > 0.3 s (in ≥ 4.0), the hydraulic gradient reaches the
skeleton-deformation hydraulic gradient. The skeleton particles start to move under the action of the
fluid. A large number of particles is lost, and the mass loss also increases rapidly. These two critical
hydraulic gradients, the initiation hydraulic gradient and the skeleton-deformation hydraulic gradient,
have important effects on mass loss.
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5. Conclusions

In this study, we proposed and established a numerical model to investigate the fluid–solid
coupling effect of internal erosion and carried out related experiments. The experimental results
and the model results were quantitatively compared to verify the usability of the numerical model.
We described the mechanism of the occurrence and development of internal erosion and divided the
process of internal erosion into five stages by analyzing the particle migration, contact force, porosity,
and particle velocity evolution of the model.

The following conclusions are dawn from the study.

(1) The essence of internal erosion is the gradual loss of soil particles. Piping erosion first destroys
the surface layer of soil, and then, as the soil particles are continuously moved away by water
flow, the erosion gradually develops into the deep layer of the soil, eventually causing the soil to
undergo seepage failure.

(2) An increase in the hydraulic gradient is an important cause of instability of the mechanical
structure of the soil. Loss of particles under a low hydraulic gradient does not affect the
magnitude and structure of the contact force of the model. However, as the hydraulic gradient
increases, the contact force between particles decreases, the mechanical connectivity between
particles decreases, and the mechanical stability decreases, eventually resulting in instability of
the mechanical structure of the model.

(3) The evolution of porosity is closely related to the migration of particles. The evolution of porosity
at different locations can reflect the migration of soil particles.

(4) The initiation hydraulic gradient of the particles is dependent on location. The deeper the particle
position, the larger the initiation hydraulic gradient. The initiation hydraulic gradient is also dependent
on the size of the particles. The smaller the particles, the smaller the initiation hydraulic gradient.
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(5) The initiation hydraulic gradient and the skeleton-deformation hydraulic gradient determine
whether the particles will move and have a decisive effect on mass loss.

(6) DEM–CFD coupled numerical simulation can visually show the evolution of particle migration
and contact force under different hydraulic gradients. It is an advanced simulation technology that
provides a research platform for studying the mesoscopic mechanism of soil seepage deformation.
Numerical simulation has become an increasingly useful tool for studying the mesoscopic
mechanism of internal erosion.

This study helps people better understand the microscopic mechanism of internal erosion and
provides further theoretical guidance on the prevention and control of internal erosion. However, due
to the limitation of the DEM calculation, we cannot perform calculations based on real physical time.
How to specify the equivalence in physical time between the numerical model and the experiment will
be the focus of our future research.

Multiscale modeling is still difficult to achieve. Further, the application of DEM in practical
engineering projects is relatively difficult to achieve at present, due to the limitation of its calculation
method. It is recommended that future research should investigate how to establish the scale
relationship between the model and the actual project.
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