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Abstract: In this study, Random SubSpace-based classification and regression tree (RSCART) was
introduced for landslide susceptibility modeling, and CART model and logistic regression (LR) model
were used as benchmark models. 263 landslide locations in the study area were randomly divided into
two parts (70/30) for training and validation of models. 14 landslide influencing factors were selected,
such as slope angle, elevation, aspect, sediment transport index (STI), topographical wetness index
(TWI), stream power index (SPI), profile curvature, plan curvature, distance to rivers, distance to
road, soil, normalized difference vegetation index (NDVI), land use, and lithology. Finally, the hybrid
RSCART model and two benchmark models were applied for landslide susceptibility modeling and
the receiver operating characteristic curve method is used to evaluate the performance of the model.
The susceptibility is quantitatively compared based on each pixel to reveal the system spatial pattern
between susceptibility maps. At the same time, area under ROC curve (AUC) and landslide density
analysis were used to estimate the prediction ability of landslide susceptibility map. The results
showed that the RSCART model is the optimal model with the highest AUC values of 0.852 and
0.827, followed by LR and CART models. The results also illustrate that the hybrid model generally
improves the prediction ability of a single landslide susceptibility model.

Keywords: landslide susceptibility; hybrid models; random subspace; classification and
regression tree

1. Introduction

Landslides are large-scale movements of rocks, mud, and gravel from the top to the bottom of the
mountain [1]. According to statistics, five percent of the world’s natural disasters were landslides from
1994 to 2013 [2]. Landslides pose serious risks to human life, environment, resources, and property.
Therefore, for the sake of decreasing the hazards caused by landslides, landslide susceptibility
evaluation is becoming a common topic.

Landslide susceptibility refers to the probability of landslide occurring in an area on account of
local geological environmental factors [3,4]. Geographic information system (GIS) has been diffusely
applied for evaluating landslide susceptibility in recent decades, and many methods have been
proposed. These methods mainly include deterministic methods, traditional statistical methods,
and machine learning technologies [4,5].

In deterministic models, the stability of the slope is in the form of a calculated safety factor, which is
suitable for small watersheds [6,7]. Statistical models, such as evidential belief function (EBF) [8,9],
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weights of evidence [10–12], frequency ratio [13–17], logistic regression [18–21], linear multivariate
regression, multivariate adaptive regression spline [22–24], and statistical index [25,26] have been
widely used. However, these traditional statistical methods do not provide satisfactory evaluation of
the correlation between landslide influencing factors [4,27].

Therefore, machine learning technologies have drawn extensive attention, and many kinds of
machine learning methods have been developed and used, such as classification and regression
trees [28,29], adaptive neuro-fuzzy inference systems [30,31], fuzzy logic [32,33], alternating decision
trees [34–36], support vector machine [37–39], artificial neural networks [40,41], and random
forest [4,42–45]. In particular, hybrid models are increasingly used, such as the rotation forest-based
decision trees [46,47], frequency ratio-based ANFIS model [48], bagging-based reduced error pruning
trees [49], and multiboost-based support vector machines [50].

Spatial prediction of landslide is not only the first important step, but also one of the most difficult
tasks [31,51]. Many modeling methods have been used in the construction of landslide susceptibility
maps in the past, but the accuracy of these models has not been accepted by all researchers [52].
Youssef et al. used CART model to study landslide susceptibility in Wadi Tayyah Basin. The result of
post-cart model is not optimal [53]. However, when Felicísimo et al. studied the landslide susceptibility,
CART shows a high predictive ability [54]. Hong et al. studied the landslide susceptibility in Wuning
area of China after modeling the hybrid model of free subspace and support vector machine. The mixed
model RSSVM model also achieved optimal performance (AUC = 0.857) [55]. Therefore, the hybrid
models are often considered to be more precise to single models [55].

The Loess Plateau is one of the most vulnerable regions in China. The special geological
environment of the area has led to the development of environmental geological problems. Zichang
County is in the hinterland of the Loess Plateau. Due to the large area coverage of the Quaternary
loess, various geological problems induced by geological processes became more apparent. Therefore,
the main purpose of this study is to apply and analyze the hybrid integration method of Random
Subspace (RS) and CART, namely RSCART, in landslide susceptibility assessment for the Zichang
County. Also, the EBF model was used to evaluate the correlation between landslides and influencing
factors, and the single CART model and well known LR model were selected as benchmark models.
Finally, the ROC curve and AUC values were used for comparing the performance of models.

2. Description of the Study Area

The study area selected for this study is Zichang County in Shaanxi Province, China (Figure 1).
The length of the County is 72 km from east to west, 55.7 km from north to south, and the total area is
2450 km2. It is in east longitude 109◦11′22”~110◦01′22” E, latitude 36◦30′59”~37◦30′00” N. The altitude
ranges from 933 m to 1574 m above sea level. Topographically, the slope less than 10◦ accounts for
about 10.44% of the total area, the slope of 10–20◦ is about 26.09%, 20–30◦ is about 35.14%, 30–40◦ is
about 23.9%, and 40–50◦ is about 4.41%. The slope greater than 50◦ is only 0.02%. From the perspective
of geomorphology, Zichang County belongs to the Loess Plateau gully region in northern Shaanxi
Province. The complex geomorphology types in the area were formed after the loess was eroded
and cut by the Xiuyan River, the Luanhe River, and other tributaries. The loess from the Middle
Pleistocene to the Late Pleistocene formed a lot of valleys and river systems after the Loess Plateau
uplift. The penetration of the Yellow River led to the formation of many loess ridges, loess hills, and
gullies in the area. According to the landform genesis, the area is divided into loess landforms and
river landforms.
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3. Methodology

The methodology of this study is shown in Figure 2. There are mainly four steps in the current
study: (1) data preparation including preparation of a landslide inventory map and landslide
conditioning factors, (2) multicollinearity analysis and consideration of the correlation between
landslide locations and conditioning factors, (3) three models are used for landslide susceptibility
model (RSCART,CART,LR), and (4) validation of landslide susceptibility maps produced by the
ROC curve.

3.1. Data Preparation

The landslides inventory includes the location of past and recent landslides [56]. It also allows
people to understand the type and timing of landslides [57]. This study constructed a landslide
inventory including 263 landslide locations by consulting aerial photos and collecting historical
landslide events, of which most of the landslides were slides (201), the others included 62 falls [58].
According to an analysis in the GIS environment, the largest landslide was more than 1 × 107 m3,
and the smallest landslide was nearly 120 m3. Rainfall and human engineering activities, such as
urban and rural construction, road engineering construction and water conservancy engineering, are
the main triggering factors of landslides. To establish and verify the landslide model, the landslides
were randomly divided into two parts: (1) 70% were used to construct the training dataset; (2) the
remaining 30% were used to generate validation dataset.

Based on literature review and data availability [42,56,59,60], 14 landslide influencing factors
were used in this study. Slope angle, elevation, aspect, sediment transport index (STI), topographical
wetness index (TWI), stream power index (SPI), profile curvature, plan curvature, distance to rivers,
distance to roads, soil, NDVI, land use, and lithology were considered.
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Figure 2. Flowchart of the study.

Slope angle, elevation and slope aspect are often used in landslide susceptibility mapping [61–65].
In this study, slope angles were divided into six classes: <10◦, 10–20◦, 20–30◦, 30–40◦, 40–50◦, >50◦

(Figure 3a, Table 1). The elevation of the study area was reclassified into seven categories with
an interval of 100 m, such as <1000 m, 1000–1100 m, 1100–1200 m, 1200–1300 m, 1300–1400 m,
1400–1500 m, and >1500 m (Figure 3b, Table 1). Slope aspect was divided into nine types as follows:
flat, north, northeast, east, southeast, south, southwest, west, and northwest (Figure 3c, Table 1).
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Table 1. Correlation between landslides and influencing factors using EBF model.

Factors Class No. of Pixels No. of Landslide Bel

Slope angle

<10 278,839 0 0.000
10–20 696,966 56 0.244
20–30 938,802 68 0.220
30–40 638,483 48 0.228
40–50 117,745 12 0.309
>50 527 0 0.000

Elevation (m)

933–1000 30,442 4 0.197
1000–1100 357,423 41 0.172
1100–1200 753,794 61 0.121
1200–1300 829,706 54 0.098
1300–1400 546,264 17 0.047
1400–1500 148,806 6 0.060
1500–1574 4927 1 0.305

Aspect

F (−1) 1237 0 0.000
N (0–22.5; 337.5–360) 247,049 14 0.103

NE (22.5–67.5) 351,476 12 0.062
E (67.5–112.5) 436,578 32 0.133

SE (112.5–157.5) 300,883 25 0.151
S (157.5–202.5) 270,755 27 0.181

SW (202.5–247.5) 341,265 31 0.165
W (247.5–292.5) 412,506 33 0.145

NW (292.5–337.5) 309,613 10 0.059

STI

(0–10) 1,289,473 81 0.147
(10–20) 827,143 62 0.176
(20–30) 299,541 28 0.219
(30–40) 112,670 6 0.125

>40 142,535 7 0.115

TWI

(1.11–2) 1,504,887 102 0.319
(2–3) 885,873 73 0.388
(3–4) 196,513 7 0.168
(4–5) 75,716 2 0.124
>5 8373 0 0.000

SPI

(0–10) 867,208 37 0.113
(10–20) 526,106 46 0.232
(20–30) 362,454 32 0.234
(30–40) 218,983 19 0.230

>40 696,611 50 0.190

Profile
curvature

(−7.29)–(−1.65) 215,910 13 0.182
(−1.65)–(−0.46) 643,747 29 0.136
(−0.46)–(0.58) 1,050,656 77 0.222
(0.58)–(1.97) 567,015 54 0.288
(1.97)–(9.45) 194,034 11 0.172

Plan curvature

(−9.24)–(−1.79) 143,702 5 0.106
(−1.79)–(−0.54) 480,381 29 0.185

(−0.54)-0.38 1,124,169 83 0.226
0.38–1.44 703,523 47 0.204
1.44–7.56 219,587 20 0.279

Distance to
rivers (m)

0–200 765,053 127 0.590
200–400 678,212 27 0.141
400–600 597,921 17 0.101
600–800 417,041 6 0.051

>800 213,135 7 0.117
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Table 1. Cont.

Factors Class No. of Pixels No. of Landslide Bel

Distance to
roads (m)

0–100 406,132 51 0.313
100–200 304,978 32 0.262
200–300 303,291 22 0.181
300–400 238,548 12 0.126

>400 1,418,413 67 0.118

Soil

Cultivated loessal soils 2,288,420 141 0.158
Alluvial soils 316,038 28 0.228
Red clay soils 62,809 15 0.614

Water 4095 0 0.000

NDVI

(−0.15–0.01) 372,914 26 0.207
(0.01–0.04) 452,559 21 0.138
(0.04–0.07) 599,799 31 0.154
(0.07–0.09) 733,152 65 0.264
(0.09–0.31) 512,938 41 0.238

Land use

Farmland 987,416 47 0.142
Forestland 505,630 37 0.219
Grassland 1,167,441 99 0.254

Water bodies 2665 0 0.000
Residential areas 7769 1 0.385

Others 441 0 0.000

Lithology

Group 1 2,008,004 111 0.133
Group 2 330,841 40 0.292
Group 3 25,061 1 0.096
Group 4 178,708 23 0.310
Group 5 128,748 9 0.169

STI reflects the erosion force of surface water flow on the ground [66]. It can be expressed by
Equation (1) [67,68]:

STI =
(
α

22.13

)0.6
×

(
sin β

0.0896

)1.3

(1)

where α is the specific watershed area, and β is the slope. In this study, STI values were classified into
five classes, such as <10, 10–20, 20–30, 30–40, and >40 (Figure 3d, Table 1).

TWI affects slope material by affecting soil moisture and groundwater flow. It can be represented
by Equation (2) as follows [68]:

TWI = ln(α/ tan β) (2)

where α is the area drained per unit contour length at a point, and β is the slope. In the study area,
the TWI was also divided into five categories: 1–2, 2–3, 3–4, 4–5, and >5 (Figure 3e, Table 1).

The SPI is an important hydrologic factor, which shows the process of potential flow erosion [68].
It can be represented by Equation (3) as follows [68]:

SPI = α× tan β (3)

where α is the specific watershed area, and β is the slope. In the study area, the SPI was also divided
into five categories: 1–2, 2–3, 3–4, 4–5 and >5 (Figure 3f, Table 1).

Profile curvature and plane curvature are important topographic factors. Profile curvature is
defined as the curvature at any point is perpendicular to the slope [69]. Profile curvature is divided
into five types: (−7.92)–(−1.65), (−1.65)–(−0.46), (−0.46)–0.58, 0.58–1.97, 1.97–9.45 (Figure 2g, Table 1).
Plan curvature is described as the curvature of the contour formed by the intersection with the plane [70].
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Plan curvature was divided into five categories: (−9.24)–(−1.79), (−1.79)–(−0.54), (−0.46)–0.38, 0.38–1.44,
1.44–7.56 (Figure 3h, Table 1).

The distance to rivers and distance to roads are important factors in landslide susceptibility
modeling [71,72]. The river causes the bedrock to produce enough topographic change through erosion.
This process makes the slope more prone to block failure [73]. Distance to rivers was divided into
five classes with an interval of 200 m (Figure 3i, Table 1). The natural conditions of the slope were
destroyed during the construction of transportation facilities, and oil and gas development, and other
human engineering activities [74]. In the present study, distance to roads was grouped into five buffing
zones using an interval of 100 m (Figure 3j, Table 1).

With the increase of soil depth, the runoff velocity decreases. The unstable nature of shallow is
more likely to lead to landslides [75]. There are four types of soil, such as: cultivated loessal soils,
alluvial soils, red clay soils and water (Figure 3k, Table 1).

NDVI can quantitatively estimate vegetation growth and biomass by measuring surface
reflectance [76]. The NDVI value is calculated based on the following formula:

NDVI = (IR−R)/(IR + R) (4)

where IR is the infrared band, and R is the red band. The NDVI value was reclassified into five
categories: −0.15–0.11, 0.01–0.04, 0.04–0.07, 0.07–0.09, 0.09–0.31 (Figure 3l, Table 1).

Land use is affected by environmental changes and plays an important role in slope stability.
In this paper, land use is divided into six categories, including farmland, forestland, grasslands,
water bodies, residential areas and others (Figure 3m, Table 1).

Lithological units greatly influence the landslide occurrence [77]. The lithologic units were divided
into five groups (Figure 3n, Table 1): the first group is quaternary (loess, silt), the second group is
tertiary (mudstone, conglomerate), the third group is cretaceous (arkose), the fourth group is Jurassic
(shale, sandstone, mudstone, conglomerate), and the fifth group is Triassic (mudstone, sandstone,
conglomerate).

Finally, all the 14 landslide influencing factors were converted to the same resolution of 30 m× 30 m.

3.2. Evidential Belief Function (EBF)

The EBF is an evidence algorithm which is a mathematical method based on bivariate statistics [78].
The EBF is a flexible model, because it not only accepts uncertainty but also absorbs the belief of
many sources. The EBF model is made up of four mathematical functions: the degree of belief (Bel),
the degree of disbelief (Dis), the degree of uncertainty (Unc), and the degree of plausibility (Pls).
0 to 1 is the range of these functions [79]. This study uses Bel values to represent the correlation between
landslides and factors, and Bel values can be represented by the following expression:

Bel =
Bel1 + Bel2 + . . .+ Beln

1−
∑n

i−1 Beli−1Beli − Beli−1Beli
(5)

where Beli is the extent of belief of ith influencing factor.

3.3. Classification and Regression Tree (CART)

The CART is an effective method because it has attested to be a technique for dealing with difficult
classification problems [80]. CART is a decision tree proposed by Breiman [81]. The data is processed
in a recursive form by the CART model [82]. In this process, the value of internal node features is “yes”
and “no”. Categorical and continuous dependent variables (regression) are predicted by classification
and regression trees.

If the dependent variable is a category scale, CART will generate a classification tree, and if the
dependent variable is a continuous data, CART will generate a regression tree [83]. The classification
tree using CART can be constructed in four main steps: (1) building tree, (2) stopping tree building,
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(3) pruning tree, and (4) selecting optimal tree [84]. The information that needs to be processed is
represented by CART in an intuitive way, and the metrics between the predictive variables do not
affect the model results [53].

CART has many advantages as a classifier that it is not only a method suitable for numeric data
types, but also generates an invariant for the transformation of independent variables. In addition,
CART does not have to pick a variable first [85].

3.4. Random Subspace (RS)

The RS was proposed by Ho in 1998, which is defined as a classical integration algorithm [86].
The RS can establish the training subset, which is randomly selected from the original training
set [87–92]. Also, the RS can modify the training data set in the feature space. RS is also a very effective
integration algorithm because it can solve the data sets with redundant features and over-fitting
problems. The RS enables the training data to maintain the highest accuracy. However, it cannot be
ignored is that the growth of training data increases the complicacy of accuracy [93].

The main goal of RS is to collect the feature set of the high-dimensional feature space into the
low-dimensional subspace, and then construct a classifier to classify the class based on the subspace.
The final result is obtained by the majority voting rule [94]. More specifically, let the n-dimensional
vector Xin be the n features (landslide influencing factors) of the training sample Xi. In RS, randomly
select r < n features from the n-dimensional data set of the original space X to obtain the random
subspace of r dimension. The modified training data set Xe contains the r-dimensional training
object Xe

i . Finally, the classifier is constructed in the RS Xe and the majority voting rule is adopted,
as follows [91]:

α(x) = argmaxy∈{0,1}

∑
a
δsgn(Ca(x)), y (6)

where y ∈ (0, 1) is a decision of the classifier, δij is the Kronecker symbol, Ca(x) are the generated
classifiers (a = 1,2, . . . , A) [91].

3.5. Logistic Regression (LR)

Logistic regression can analyze a series of problems whose results are affected by one or more
factors. The factors influencing the results are called independent variables, which can be continuous,
discrete, or a combination of the two types. Logistic regression coefficients can figure out the influence
of independent variables on landslide occurrence [95,96]. LR is defined as the follows:

A = β0 + β1Y1 + β2Y2 + . . .+ βnYn (7)

where A is the linear combination, β0 is the intercept, β1, β2, . . . βn are the coefficients of logistic
regression, and Y1, Y2, . . . Yn are the independent variables [97]. Using Equation (3), the landslide
probability P is expressed as:

P =
exp(A)

1− exp(A)
(8)

4. Results

4.1. Correlation Analysis of Influencing Factors

In the present study, Bel value was used to represent the correlation between landslide and
various landslide influencing factors. The results (Table 1) showed that Bel value in the south is the
highest (0.181), followed by Bel value in the southwest (0.165), and Bel value in the southeast (0.151).
At an altitude of more than 1500 m (0.305) greater regional influence landslide occurred right. The
results indicate that slopes between 40–50 have a greater impact on the occurrence of landslides
(Bel = 0.309). In terms of plan curvature, Bel value is the highest for the class of 1.44–7.56 (0.279).
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In terms of profile curvature, the class of 0.58–1.97 has the highest value (0.288), so it has a greater
impact on the landslide occurrence. TWI value between 2 and 3 has the highest Bel value, which is
0.388. Areas within 200 m to rivers are more prone to landslides (Bel = 0.590) because rivers provide
wetter soil for landslides. Similarly, areas within 100 m to the road networks have a greater impact
on landslides occurrence (Bel = 0.313). This is because the soil near the road becomes more loosely
structured during human activity. For the NDVI, the area between 0.07 and 0.09 has a higher impact on
landslide occurrence. Residential areas have higher impact on landslide events (Bel = 0.385). In terms
of lithology, Bel value of the fourth group is 0.31, indicating that Jurassic rocks were more sensitive to
landslide occurrences. The area covered by red clay has a greater impact on landslide occurrence (Bel
= 0.614). The highest Bel values of SPI and STI are 0.234 and 0.219, respectively, and the corresponding
ranges are 20–30 and 30–40, respectively. The regions within these ranges have a greater impact on the
landslide occurrence.

The multicollinearity test of landslide influencing factors is very important in landslide
susceptibility mapping. The two most widely used indices in multicollinearity analysis are tolerance
and variance inflation factors (VIF). If the tolerance value is <0.1 or the VIF value is >10, it indicates
that there is serious multicollinearity among landslide influencing factors [98–100]. Tolerance and
VIF values of 14 landslide influencing factors show that the distance to the river has the smallest
tolerance value of 0.715 (>0.1), and the largest VIF value is 1.399 (<10) (Table 2). Therefore, there is no
multicollinearity among the 14 landslide influencing factors.

Table 2. Multicollinearity analysis.

Factors
Collinearity Statistics

Tolerance VIF

Slope angle 0.873 1.145
Elevation 0.878 1.139

Aspect 0.865 1.156
STI 0.881 1.135
TWI 0.830 1.205
SPI 0.848 1.180

Profile curvature 0.821 1.219
Plan curvature 0.926 1.080

Distance to rivers 0.715 1.399
Distance to roads 0.869 1.150

Soil 0.954 1.048
NDVI 0.830 1.205

Land use 0.954 1.048
Lithology 0.830 1.205

At the same time, this study also evaluated the importance of 14 landslide influencing factors using
the 10-fold cross-validation correlation attribute evaluation method (CAE) in Weka software [101].
The evaluation results are sorted in descending order according to the average merit (Table 3).
The results show that all factors have a positive effect on the landslide and can be further analyzed.
The distance to rivers has the highest average merit among all influencing factors (AM = 0.378), followed
by slope angle(AM = 0.213), lithology (AM = 0.181), distance to roads (AM = 0.173), and elevation
(AM = 0.172), TWI (AM = 0.171), SPI (AM = 0.154), aspect (AM = 0.143), soil (AM = 0.143), profile
curvature (AM = 0.138), NDVI (AM = 0.103), land use (AM = 0.098), plan curvature (0.042) and
STI (0.04).
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Table 3. Selection of conditioning factors.

Landslide Conditioning Factor Average Merit (AM) Standard Deviation (SD)

Distance to rivers 0.378 ±0.015
Slope angle 0.213 ± 0.008
Lithology 0.181 ± 0.012

Distance to roads 0.173 ±0.014
Elevation 0.172 ± 0.016

TWI 0.171 ± 0.014
SPI 0.154 ± 0.015

Aspect 0.143 ± 0.012
Soil 0.143 ± 0.013

Profile curvature 0.138 ± 0.019
NDVI 0.103 ± 0.024

Land use 0.098 ± 0.013
Plan curvature 0.042 ± 0.012

STI 0.04 ± 0.015

4.2. Application of Hybrid and Benchmark Model

RS integration can not only use random subspace to construct and aggregate the basic classifier,
but also make the basic classifier easier to train than in the smaller subspaces. Therefore, the performance
of the base classifier in the RS may be better than the original feature space, and the feature-to-instance
ratio is significantly improved. The RSCART model is constructed by using Weka software [102]
through optimization and classification steps. In the optimization step, RS is trained to obtain the
sub-data set, which is randomly divided by the original data set. The training data set is divided by the
iterative method. In the classification step, combined with the CART algorithm, the optimal training
data set obtained in the previous step is used for spatial prediction of landslide [28]. In the process
of RSCART model construction, the optimal number of iterations was 28, the optimal number of
execution slots was 1. Finally, the landslide susceptibility map is developed by using the RSCART
model and reclassified into five classes using the natural break method [103,104]. The very high class
occupies a very small area of 9.27%. The moderate, very low, low, and high areas are accounting for
30.56%, 13.31%, 27.22% and 19.63%, respectively (Figures 4a and 5).

Z = (10.866∗Slope anglebel

)
+ (5.226∗Elevationbel)

+
(
6.428∗Slopeaspectbel

)
+ (0.708 ∗ STIbel)

+(4.833∗TWIbel) + (5.437∗SPIbel)

+(4.139∗Profilecurvaturebel) + (1.150∗Plancurvaturebel)

+(2.855 ∗Distancetoriversbel) + (1.645 ∗Distancetoroadsbel)

+(2.285 ∗ Soilbel) + (2.390 ∗NDVIbel)

+(1.137 ∗ Landusebel) + (1.449 ∗ Lithologybel) − 10.521

(9)

According to Equation (8), logistic regression coefficients of all landslide influencing factors are
positive (Table 4), which indicate that all influencing factors are positively correlated with the landslide
occurrence. Finally, the landslide susceptibility map was divided into five categories according to the
natural break method. It can be seen that the area percentage with low susceptibility is the largest
(29.42%), followed by moderate, very low and high (22.13%, 22%, and 14.38%, respectively). The area
proportion of very high is the smallest (12.06%) (Figures 4c and 5)
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Table 4. Coefficients of LR model.

Landslide Influencing Factor Coefficients

Slope angle 10.866
Elevation 5.226

Aspect 6.428
STI 0.708
TWI 4.833
SPI 5.437

Profile curvature 4.139
Plan curvature 1.150

Distance to rivers 2.855
Distance to roads 1.645

Soil 2.285
NDVI 2.390

Land use 1.137
Lithology 1.449
Intercept −10.521

4.3. Validation and Comparison of Models

The landslide susceptibility map should have the ability to verify with existing landslide data
and predict future landslides [105]. Therefore, in this study, the ROC curve and the AUC are used to
assess the prediction capability of models [106–108]. The best models tend to have the highest AUC
among the models studied [4,109]. ROC curves and AUC values of the training dataset of the three
models are shown in Figure 6. The RSCART model has the highest AUC value (0.852), followed by LR
model (0.797) and CART model (0.793). The ROC curves and AUC values of the validation dataset are
shown in Figure 7. The prediction accuracy of RSCART model (AUC = 0.827) is higher than that of
the LR model (AUC = 0.758) and CART model (AUC = 0.749). Therefore, the comparison of AUC
values indicates that the RSCART model is the best of the three models. In addition, the landslide
susceptibility map can be verified by calculating the landslide density. LD is defined as the ratio
of the percentage of landslide points in each susceptibility classification to the percentage in each
susceptibility classification [110]. The landslide density calculation results of the three models are
shown in Table 5. RSCART model, CART model, and LR model had the highest values in the very high
category, which were 4.264, 3.156 and 3.845, respectively. Then, high (1.743, 2.004, 1.692), moderate
(0.634, 0.670, 0825), low (0.223, 0.212, 0.310) and very low (0.057, 0.041, 0.086).Water 2020, 12, x FOR PEER REVIEW 14 of 29 
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Table 5. Landslide density analysis on landslide susceptibility maps.

Class
RSCART Model CART Model LR Model

% Landslides LD % Landslides LD % Landslides LD

Very Low 0.760 0.057 0.004 0.041 0.019 0.086
Low 6.084 0.223 0.065 0.212 0.091 0.310

Moderate 19.392 0.634 0.209 0.670 0.183 0.825
High 34.221 1.743 0.335 2.004 0.243 1.692

Very High 39.544 4.264 0.388 3.156 0.464 3.845

4.4. Comparison of Landslide Susceptibility Maps

This study also quantitatively compares the susceptibility values on each pixel to reveal the
systematic spatial pattern of the differences between susceptibility maps, following the methodology
proposed by [111]. The RSCART model was selected as the benchmark because it has a higher AUC
value than the other two models. The susceptibility map of the baseline model is used in a GIS system
to pair with the remaining models and subtract their values to define their differences (Figure 8).
The values of the comparison map are divided into three levels: “underestimation”, “approximation”
and “overestimation”. The values of both comparison maps are broken at −0.2 and 0.2. The percentage
of each grade in the total area is shown in Table 6. At the same time, to explore the key factors influencing
the susceptibility difference, overestimation and underestimation statistics were performed for each
category of each impact factor (Tables 7 and 8). For each class, we calculate “A” as a percentage of the
total area of each class. “B” is the ratio of the underestimated (overestimated) pixels found in this class
to the total underestimated (overestimated) pixels, “B–A”, as the difference ratio between the two maps,
can be used to identify key class of underestimation (overestimation) anomaly clustering. According to
the “B–A” value defined for each class, the class with the highest degree of imbalance was identified
(Table 8). To be able to clearly illustrate the relationship between the most imbalanced classification
and the underestimated or overestimated area, the visual inspection is required. Underestimations of
“RSCART-LR” driven by slope angle (40◦–50◦) (Figure 9a), overestimations of “RSCART-LR” driven by
slope angle (<10◦) (Figure 10a), Underestimations of “RSCART-CART” driven by distance to rivers
(0–200 m) (Figure 9d) and overestimations of “RSCART-LR” driven by slope angle (<10◦) (Figure 10d).
As shown in Figure 9a, almost all the underestimated pixels are in the classification with slope of
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40–50, and the percentage is 98.55%. In Figure 10a, 99.35% of the overestimation pixels are in the slope
of 0◦–10◦. In Figure 9d, all underestimation pixels are clustered in a distance to rivers of 0–200 m.
In Figure 10d, 76.87% of the overestimation pixels are in the classification with a slope less than 10◦.
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Table 6. Classification of comparison maps.

Comparison Value Classification Percentage

RSCART-LR −0.27–0.386
Underestimation −0.27–(−0.2) 0.003
Approximation −0.2–0.2 0.940
Overestimation 0.2–0.386 0.057

RSCART-CART −0.31–0.42
Underestimation −0.31–(−0.2) 0.008
Approximation −0.2–0.2 0.948
Overestimation 0.2–0.42 0.044

Table 7. Statistics on underestimation pixels and overestimation pixels of RSCART-LR.

Factors Class A (%) Underestimation
RSCART-LRB (%)

B-A
(%)

Overestimation
RSCART-LRB (%) B-A (%)

Slope angle

<10 10.44 0.00 −10.44 99.35 88.91
10–20 26.09 1.44 −24.65 0.00 −26.09
20–30 35.14 0.00 −35.14 0.38 −34.76
30–40 23.90 0.01 −23.89 0.05 −23.85
40–50 4.41 98.55 94.14 0.00 −4.41
>50 0.02 0.00 −0.02 0.22 0.20

Elevation
(m)

933–1000 1.14 1.69 0.55 8.45 7.31
1000–1100 13.38 23.76 10.38 33.85 20.47
1100–1200 28.22 32.57 4.35 27.21 −1.01
1200–1300 31.06 39.37 8.31 19.09 −11.97
1300–1400 20.45 2.45 −18.00 8.33 −12.12
1400–1500 5.57 0.11 −5.46 2.70 −2.87
1500–1574 0.18 0.05 −0.14 0.39 0.20
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Table 7. Cont.

Factors Class A (%) Underestimation
RSCART-LRB (%)

B-A
(%)

Overestimation
RSCART-LRB (%) B-A (%)

Aspect

F 0.05 0.00 −0.05 0.00 −0.05
N 9.25 7.52 −1.73 10.07 0.82

NE 13.16 11.01 −2.15 8.06 −5.09
E 16.34 22.56 6.22 13.25 −3.09

SE 11.26 7.45 −3.82 14.65 3.39
S 10.14 6.03 −4.10 19.69 9.55

SW 12.77 9.48 −3.29 15.88 3.10
W 15.44 20.99 5.55 12.62 −2.83

NW 11.59 14.96 3.37 5.78 −5.81

STI

(0–10) 48.27 0.77 −47.50 85.09 36.82
(10–20) 30.96 59.22 28.25 7.74 −23.22
(20–30) 11.21 33.37 22.16 3.64 −7.57
(30–40) 4.22 5.23 1.01 1.80 −2.42

>40 5.34 1.41 −3.92 1.73 −3.61

TWI

(1.11–2) 56.33 93.66 37.33 0.41 −55.93
(2–3) 33.16 6.34 −26.82 61.88 28.72
(3–4) 7.36 0.00 −7.36 21.60 14.24
(4–5) 2.83 0.00 −2.83 14.79 11.96
>5 0.31 0.00 −0.31 1.32 1.01

SPI

(0–10) 32.46 0.01 −32.45 61.60 29.13
(10–20) 19.69 22.99 3.29 9.28 −10.41
(20–30) 13.57 0.65 −12.92 4.81 −8.76
(30–40) 8.20 39.35 31.15 3.14 −5.06

>40 26.08 37.01 10.93 21.17 −4.91

Profile
curvature

(−7.29)–(−1.65) 8.08 22.85 14.77 2.80 −5.28
(−1.65)–(−0.46) 24.10 11.86 −12.24 10.60 −13.50
(−0.46)–(0.58) 39.33 22.82 −16.51 57.65 18.32
(0.58)–(1.97) 21.23 29.05 7.82 25.00 3.78
(1.97)–(9.45) 7.26 13.42 6.16 3.94 −3.33

Plan
curvature

(−9.24)−(–1.79) 5.38 1.33 −4.05 3.75 −1.63
(−1.79)–(−0.54) 17.98 18.25 0.26 12.85 −5.13

(−0.54)−0.38 42.08 40.14 −1.94 62.01 19.93
0.38–1.44 26.34 22.84 −3.49 17.30 −9.03
1.44–7.56 8.22 17.44 9.22 4.09 −4.13

Distance to
rivers (m)

0–200 28.64 99.94 71.30 73.01 44.37
200–400 25.39 0.01 −25.38 11.65 −13.74
400–600 22.38 0.00 −22.38 7.16 −15.22
600–800 15.61 0.00 −15.61 4.90 −10.72

>800 7.98 0.05 −7.93 3.28 −4.69

Distance to
roads (m)

0–100 15.20 0.98 −14.23 46.89 31.69
100–200 11.42 3.96 −7.46 15.81 4.40
200–300 11.35 7.14 −4.21 8.45 −2.91
300–400 8.93 9.43 0.50 4.36 −4.57

>400 53.10 78.49 25.39 24.49 −28.61

Soil

Cultivated
loessal soils 85.66 87.94 2.28 59.88 −25.79

Alluvial soils 11.83 11.31 −0.52 36.29 24.46
Red clay soils 2.35 0.71 −1.64 3.61 1.26

Water 0.15 0.04 −0.12 0.22 0.07

NDVI

(−0.15–0.01) 13.96 22.88 8.92 11.12 −2.84
(0.01–0.04) 16.94 12.85 −4.09 12.55 −4.39
(0.04–0.07) 22.45 15.18 −7.28 26.68 4.23
(0.07–0.09) 27.44 32.28 4.83 35.72 8.28
(0.09–0.31) 19.20 16.82 −2.38 13.94 −5.27
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Table 7. Cont.

Factors Class A (%) Underestimation
RSCART-LRB (%)

B-A
(%)

Overestimation
RSCART-LRB (%) B-A (%)

Land use

Farmland 36.96 16.63 −20.34 35.67 −1.29
Forestland 18.93 19.87 0.94 16.81 −2.12
Grassland 43.70 63.37 19.67 44.74 1.04

Water bodies 0.10 0.09 −0.01 0.36 0.26
Residential

areas 0.29 0.05 −0.24 2.36 2.07

Others 0.02 0.00 −0.02 0.05 0.04

Lithology

Group 1 75.17 68.36 −6.81 42.36 −32.81
Group 2 12.38 17.25 4.86 16.10 3.72
Group 3 0.94 4.90 3.96 0.80 −0.14
Group 4 6.69 3.19 −3.50 16.22 9.53
Group 5 4.82 6.30 1.48 24.52 19.70

Table 8. Statistics on underestimation pixels and overestimation pixels of RSCART-CART.

Factors Class A (%)
Underestimation
RSCART-CART B

(%)

B-A
(%)

Overestimation
RSCART-CART B

(%)
B-A (%)

Slope angle

<10 10.44 0.00 −10.44 76.87 66.43
10–20 26.09 34.83 8.74 6.94 −19.15
20–30 35.14 11.04 −24.11 14.28 −20.87
30–40 23.90 8.30 −15.60 1.63 −22.27
40–50 4.41 45.83 41.42 0.00 −4.41
>50 0.02 0.00 −0.02 0.29 0.27

Elevation (m)

933–1000 1.14 5.45 4.31 1.26 0.12
1000–1100 13.38 42.21 28.83 9.86 −3.52
1100–1200 28.22 22.95 −5.27 23.76 −4.45
1200–1300 31.06 24.88 −6.18 26.64 −4.42
1300–1400 20.45 4.37 −16.08 27.01 6.56
1400–1500 5.57 0.15 −5.42 10.78 5.21
1500–1574 0.18 0.00 −0.18 0.68 0.50

Aspect

F 0.05 0.00 −0.05 0.00 −0.04
N 9.25 8.15 −1.10 8.63 −0.62

NE 13.16 4.51 −8.65 12.34 −0.82
E 16.34 13.65 −2.69 14.35 −1.99

SE 11.26 10.49 −0.78 14.01 2.75
S 10.14 15.24 5.11 14.73 4.60

SW 12.77 14.38 1.60 14.09 1.32
W 15.44 27.72 12.28 13.04 −2.40

NW 11.59 5.86 −5.73 8.80 −2.79

STI

(0–10) 48.27 26.71 −21.56 86.04 37.77
(10–20) 30.96 46.44 15.48 6.85 −24.11
(20–30) 11.21 17.54 6.33 3.42 −7.79
(30–40) 4.22 6.27 2.05 1.50 −2.71

>40 5.34 3.04 −2.29 2.18 −3.15

TWI

(1.11–2) 56.33 49.57 −6.77 20.92 −35.41
(2–3) 33.16 49.94 16.78 56.19 23.02
(3–4) 7.36 0.46 −6.90 12.35 4.99
(4–5) 2.83 0.04 −2.80 8.99 6.16
>5 0.31 0.00 −0.31 1.55 1.24

SPI

(0–10) 32.46 2.30 −30.16 73.36 40.90
(10–20) 19.69 28.85 9.15 5.97 −13.73
(20–30) 13.57 13.85 0.28 2.93 −10.64
(30–40) 8.20 25.32 17.12 1.78 −6.41
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Table 8. Cont.

Factors Class A (%)
Underestimation
RSCART-CART B

(%)

B-A
(%)

Overestimation
RSCART-CART B

(%)
B-A (%)

>40 26.08 29.68 3.61 15.96 −10.12

Profile curvature

(−7.29)–(−1.65) 8.08 8.85 0.76 7.63 −0.46
(−1.65)–(−0.46) 24.10 4.55 −19.55 32.30 8.20
(−0.46)–(0.58) 39.33 24.42 −14.91 41.48 2.15
(0.58)–(1.97) 21.23 53.71 32.48 14.45 −6.78
(1.97)–(9.45) 7.26 8.47 1.21 4.14 −3.12

Plancurvature

(−9.24)–(−1.79) 5.38 4.15 −1.23 3.26 −2.12
(−1.79)–(−0.54) 17.98 21.91 3.93 11.23 −6.75

(−0.54)–0.38 42.08 50.18 8.10 43.99 1.91
0.38–1.44 26.34 18.79 −7.54 31.82 5.48
1.44–7.56 8.22 4.96 −3.26 9.70 1.48

Distance to
rivers (m)

0–200 28.64 100.00 71.36 19.01 −9.63
200–400 25.39 0.00 −25.39 26.60 1.21
400–600 22.38 0.00 −22.38 21.30 −1.08
600–800 15.61 0.00 −15.61 23.98 8.37

>800 7.98 0.00 −7.98 9.11 1.13

Distance to
roads (m)

0–100 15.20 0.14 −15.06 44.63 29.43
100–200 11.42 1.11 −10.31 13.67 2.26
200–300 11.35 6.50 −4.85 8.83 −2.52
300–400 8.93 10.64 1.71 5.58 −3.35

>400 53.10 81.61 28.52 27.29 −25.81

Soil

Cultivated loessal soils 85.66 75.02 −10.64 82.11 −3.56
Alluvial soils 11.83 14.70 2.87 14.95 3.12
Red clay soils 2.35 10.27 7.92 2.61 0.26

Water 0.15 0.00 −0.15 0.32 0.17

NDVI

(−0.15–0.01) 13.96 14.62 0.66 8.82 −5.14
(0.01–0.04) 16.94 30.21 13.27 6.53 −10.41
(0.04–0.07) 22.45 34.02 11.57 14.70 −7.75
(0.07–0.09) 27.44 12.11 −15.33 43.89 16.44
(0.09–0.31) 19.20 9.04 −10.16 26.05 6.85

Land use

Farmland 36.96 33.24 −3.72 41.50 4.53
Forestland 18.93 21.84 2.91 15.58 −3.34
Grassland 43.70 44.23 0.53 41.66 −2.04

Water bodies 0.10 0.60 0.50 0.10 0.00
Residential areas 0.29 0.08 −0.21 1.13 0.84

Others 0.02 0.00 −0.02 0.03 0.01

Lithology

Group 1 75.17 78.27 3.11 66.03 −9.13
Group 2 12.38 3.55 −8.83 15.56 3.17
Group 3 0.94 5.21 4.27 0.26 −0.68
Group 4 6.69 0.38 −6.31 15.20 8.51
Group 5 4.82 12.58 7.76 2.95 −1.87
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5. Discussion

The selection of landslide influencing factors will affect the quality of landslide susceptibility
analysis [112,113]. In this study, 14 landslide influencing factors were selected. The EBF model is
used to analyze the correlation between the subclasses of landslide influencing factors and landslide,
and to reclassify the landslide influence factors. Then, through the multicollinearity analysis, it was
found that there was no multicollinearity among all landslide influencing factors (Table 2), and all
factors contributed to the model. Finally, the results of the CAE model’s importance analysis and Bel
values were used to analyze the various landslide influencing factors. According to the results of the
importance analysis, the distance to rivers (AM = 0.378) is the most important landslide influencing
factor in the study area. The results of the Bel value are similar to those found in previous studies,
with a higher probability of landslides near the river area [114]. Different geomorphic parts of the
river cause different external forces and stress distributions on the slope, so the failure modes of
the slope are also different. The distance to roads (AM = 0.173, Bel = 0.313) has similar results.
The closer we get to the road, the higher the probability of a landslide [115]. This is easy to understand
because road construction can destabilize the slope by breaking the support of the slope foot [116].
As for the slope (AM = 0.213), the possibility of landslides will increase with the increase of the
slope, because the gravity load and stress of the material forming the slope will increase [117]. It can
be seen from the Bel value that landslides are most likely to occur in areas with a slope of 40–50.
Different types of lithology (AM = 0.181) will result in different slope strengths [118]. According to
the Bel value, it can be seen that shale, sandstone, mudstone, and conglomerate have a certain effect
on the occurrence of landslides. Elevation (AM = 0.172) has always been a key factor in landslide
susceptibility mapping [119,120]. The weathering and shear strength of rocks at different elevations
are also different [119,120]. According to the Bel value, it can be concluded that the possibility of
landslides of 1500 m–1574 m in the study area is higher. Therefore, it can be judged that landslides
are more likely to occur in higher research areas. TWI (AM = 0.171) and SPI (AM = 0.154) are usually
indispensable constraints in landslide susceptibility modeling [110,121,122]. Aspect (AM = 0.143,
Bel = 0.181) in the south are more likely to cause landslides. This may be due to the more intense solar
radiation when the slope is facing south, which may result in different weathering degree. Previous
studies have shown that the susceptibility of different types of soil (AM = 0.143) to landslides is also
different [101]. According to the Bel value, red clay is the key factor leading to landslides in the study
area. The shear strength of red clay soils during rainwater infiltration is reduced, making slopes more
prone to landslides [123]. Profile curvature (AM = 0.138) can affect the stress distribution of the slope,
and the variations in curvature may be useful to identify depletion and accumulation zones [124].
NDVI (AM = 0.103) is an important influencing factor for landslides. Many studies have shown that
plants play an active role in the occurrence of landslides because their root systems can increase soil
strength and reduce water infiltration [125–127]. In addition, for those factors whose AM value is less
than 1, many scholars have studied their relationship with the occurrence of landslides, and these
factors should not be ignored when mapping landslide susceptibility [128–130].

From the results we can observe that the number of overestimation and underestimation is
limited (the highest proportion is 0.057). However, it has a great influence on the value of AUC.
This is because overestimation and underestimation are not randomly distributed, but there are some
spatial patterns [111]. From Figure 2 we can see that the overestimations of the two comparisons
have some similarities in spatial distribution. From Table 9 we can find that in the two comparisons,
the overestimation has almost the same class of imbalance factors. Slopes less than 10 are classified
as the most unbalanced class. From Figure 10, we can find that the classification with a slope of less
than 10 has a high degree of overlap with the spatial distribution of the river. Areas with a slope of
less than 10 are all closer to the river. For the “RSCART-LR” comparison map, Alluvial soils is also an
unbalanced class. In Figure 10c, we can find that the spatial distribution of alluvial soil also overlaps
with the river. This is because alluvial soil develops. The classification with the distance to the road
less than 100 is also the overestimated imbalanced class of the two comparison maps (Figure 10b,f),
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and it has a high spatial overlap with the overestimated pixels. The class with a slope of 40–50 is the
most unbalanced class in the “RSCART-LR” comparison, which contains 98.55% of the underestimated
pixels (Figure 9a). At the same time, “RSCART-LR” was also significantly affected by the distance
to the river less than 200 (“B-A” = 71.3%) (Figure 9b). In the comparison of “RSCART-CART”, the
classification with the river distance less than 200 included all the underestimated pixels (Figure 9d)
and was also driven by the slope classification of 40–50 (“B-A” = 41.42%). From Figure 9, we can
see that the overlap of the spatial distribution of the underestimated pixels with a distance from the
river less than 200 is extremely high. The remaining imbalance classes do not significantly dominate
the underestimated spatial distribution. In summary, the integrated model RSCART can better use
the landform information related to the river and the information closer to the road than the other
two models. However, it is easy to ignore the influence of the river itself and the high slope on the
susceptibility to landslides.

Table 9. Most imbalanced classes driving the spatial distribution of underestimations
and overestimation.

Comparison Maps Imbalanced Classes

Underestimation
RSCART-LR slope, 40–50; STI, 10–20; TWI,1.11–2; SPI, 30–40;

distance to rivers, 0–200; distance to roads, >400

RSCART-CART slope, 40–50; elevation, 1000–1100; profile, 0.58–1.97;
distance to rivers, 0–200; distance to roads, >400

Overestimation
RSCART-LR slope, <10; STI, 0–10; TWI, 2–3; SPI, 0–10;

distance to roads, 0–100; soil, group2;
RSCART-CART slope, <10; STI, 0–10; SPI, 0–10; distance to roads, 0–100

Some studies have proved that LR model is an excellent model for landslide susceptibility research.
Polykretis and Chalkias shows that the performance of LR model is better than that of weight of
evidence and artificial neural networks in landslide susceptibility mapping in drainage basin of
Selinous River [131]. Oh et al. conclude that the LR model has the highest prediction and training
accuracy compared with EBF and support vector machine (SVM) in the region surrounding Yongin,
South Korea [132]. According to the results of Luc Yen district by Pham et al., the performance of CART
model is better than that of LR model [28]. The results also show that the performance of CART model
is lower than that of LR model. In addition, some studies have shown that RS is an excellent ensemble
algorithm. Hong et al. indicate that the integrated model RSSVM has the optimal performance [55].
In this study, training (goodness of fit) and validation (prediction accuracy) data sets were used to
compare the proposed integration model with the benchmark model. The goodness of fit results
of the landslide model show that RSCART (AUC = 0.852) is superior to CART (AUC = 0.793) and
LR (AUC = 0.797). The validation results show that RSCART model has better prediction accuracy
than CART (AUC = 0.749) and LR (AUC = 0.758) models. The RSCART model has the advantages
of RS integration and CART classifier. When integrated with the RS model, the performance of the
CART model, whose performance is lower than the benchmark LR model, is improved significantly.
This is because RS integration constructs the benchmark model by using the random subspace, and
the performance of the base classifier in the random subspace is optimized. Therefore, the RSCART
model based on machine learning hybrid method is more effective than the single basic model.
In addition, the landslide susceptibility figure can be verified by calculating the landslide density
(Table 5). In general, higher LD values are associated with higher landslide susceptibility levels. As can
be seen from the result of LD, the results of the three models are consistent. The LD value of the very
high type is the highest, followed by high, moderate, low, and very low. Therefore, the three base
maps of landslide susceptibility are reliable, and the optimal model RSCART also has the highest
LD value. Therefore, the model used in this study to generate the landslide susceptibility map has
reference significance for the study area. In addition, the selection of factors and the construction of
models are also of reference values for similar studies.
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6. Conclusions

In this study, the combined CART with RS and two benchmark models (LR and CART) were used
to draw three landslide susceptibility maps for Zichang County. The correlation between influencing
factors and landslide was evaluated using multicollinearity analysis and EBF method. The AUC
value was used to test the performance of the three models. The validating results show that the
RSCART model has the highest performance, followed by the LR model and CART model. Finally,
this paper also uses a method to quantitatively compare the susceptibility values of each pixel to
reveal the systematic spatial pattern of the differences between susceptibility maps. In conclusion,
the landslide susceptibility maps compiled in this study are useful for land use and decision-making in
landslide-prone areas. In addition, this study also proves the superiority of hybrid model in landslide
susceptibility modeling.
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