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Abstract

:

In this study, Random SubSpace-based classification and regression tree (RSCART) was introduced for landslide susceptibility modeling, and CART model and logistic regression (LR) model were used as benchmark models. 263 landslide locations in the study area were randomly divided into two parts (70/30) for training and validation of models. 14 landslide influencing factors were selected, such as slope angle, elevation, aspect, sediment transport index (STI), topographical wetness index (TWI), stream power index (SPI), profile curvature, plan curvature, distance to rivers, distance to road, soil, normalized difference vegetation index (NDVI), land use, and lithology. Finally, the hybrid RSCART model and two benchmark models were applied for landslide susceptibility modeling and the receiver operating characteristic curve method is used to evaluate the performance of the model. The susceptibility is quantitatively compared based on each pixel to reveal the system spatial pattern between susceptibility maps. At the same time, area under ROC curve (AUC) and landslide density analysis were used to estimate the prediction ability of landslide susceptibility map. The results showed that the RSCART model is the optimal model with the highest AUC values of 0.852 and 0.827, followed by LR and CART models. The results also illustrate that the hybrid model generally improves the prediction ability of a single landslide susceptibility model.






Keywords:


landslide susceptibility; hybrid models; random subspace; classification and regression tree












1. Introduction


Landslides are large-scale movements of rocks, mud, and gravel from the top to the bottom of the mountain [1]. According to statistics, five percent of the world’s natural disasters were landslides from 1994 to 2013 [2]. Landslides pose serious risks to human life, environment, resources, and property. Therefore, for the sake of decreasing the hazards caused by landslides, landslide susceptibility evaluation is becoming a common topic.



Landslide susceptibility refers to the probability of landslide occurring in an area on account of local geological environmental factors [3,4]. Geographic information system (GIS) has been diffusely applied for evaluating landslide susceptibility in recent decades, and many methods have been proposed. These methods mainly include deterministic methods, traditional statistical methods, and machine learning technologies [4,5].



In deterministic models, the stability of the slope is in the form of a calculated safety factor, which is suitable for small watersheds [6,7]. Statistical models, such as evidential belief function (EBF) [8,9], weights of evidence [10,11,12], frequency ratio [13,14,15,16,17], logistic regression [18,19,20,21], linear multivariate regression, multivariate adaptive regression spline [22,23,24], and statistical index [25,26] have been widely used. However, these traditional statistical methods do not provide satisfactory evaluation of the correlation between landslide influencing factors [4,27].



Therefore, machine learning technologies have drawn extensive attention, and many kinds of machine learning methods have been developed and used, such as classification and regression trees [28,29], adaptive neuro-fuzzy inference systems [30,31], fuzzy logic [32,33], alternating decision trees [34,35,36], support vector machine [37,38,39], artificial neural networks [40,41], and random forest [4,42,43,44,45]. In particular, hybrid models are increasingly used, such as the rotation forest-based decision trees [46,47], frequency ratio-based ANFIS model [48], bagging-based reduced error pruning trees [49], and multiboost-based support vector machines [50].



Spatial prediction of landslide is not only the first important step, but also one of the most difficult tasks [31,51]. Many modeling methods have been used in the construction of landslide susceptibility maps in the past, but the accuracy of these models has not been accepted by all researchers [52]. Youssef et al. used CART model to study landslide susceptibility in Wadi Tayyah Basin. The result of post-cart model is not optimal [53]. However, when Felicísimo et al. studied the landslide susceptibility, CART shows a high predictive ability [54]. Hong et al. studied the landslide susceptibility in Wuning area of China after modeling the hybrid model of free subspace and support vector machine. The mixed model RSSVM model also achieved optimal performance (AUC = 0.857) [55]. Therefore, the hybrid models are often considered to be more precise to single models [55].



The Loess Plateau is one of the most vulnerable regions in China. The special geological environment of the area has led to the development of environmental geological problems. Zichang County is in the hinterland of the Loess Plateau. Due to the large area coverage of the Quaternary loess, various geological problems induced by geological processes became more apparent. Therefore, the main purpose of this study is to apply and analyze the hybrid integration method of Random Subspace (RS) and CART, namely RSCART, in landslide susceptibility assessment for the Zichang County. Also, the EBF model was used to evaluate the correlation between landslides and influencing factors, and the single CART model and well known LR model were selected as benchmark models. Finally, the ROC curve and AUC values were used for comparing the performance of models.




2. Description of the Study Area


The study area selected for this study is Zichang County in Shaanxi Province, China (Figure 1). The length of the County is 72 km from east to west, 55.7 km from north to south, and the total area is 2450 km2. It is in east longitude 109°11′22″~110°01′22″ E, latitude 36°30′59″~37°30′00″ N. The altitude ranges from 933 m to 1574 m above sea level. Topographically, the slope less than 10° accounts for about 10.44% of the total area, the slope of 10–20° is about 26.09%, 20–30° is about 35.14%, 30–40° is about 23.9%, and 40–50° is about 4.41%. The slope greater than 50° is only 0.02%. From the perspective of geomorphology, Zichang County belongs to the Loess Plateau gully region in northern Shaanxi Province. The complex geomorphology types in the area were formed after the loess was eroded and cut by the Xiuyan River, the Luanhe River, and other tributaries. The loess from the Middle Pleistocene to the Late Pleistocene formed a lot of valleys and river systems after the Loess Plateau uplift. The penetration of the Yellow River led to the formation of many loess ridges, loess hills, and gullies in the area. According to the landform genesis, the area is divided into loess landforms and river landforms.




3. Methodology


The methodology of this study is shown in Figure 2. There are mainly four steps in the current study: (1) data preparation including preparation of a landslide inventory map and landslide conditioning factors, (2) multicollinearity analysis and consideration of the correlation between landslide locations and conditioning factors, (3) three models are used for landslide susceptibility model (RSCART,CART,LR), and (4) validation of landslide susceptibility maps produced by the ROC curve.



3.1. Data Preparation


The landslides inventory includes the location of past and recent landslides [56]. It also allows people to understand the type and timing of landslides [57]. This study constructed a landslide inventory including 263 landslide locations by consulting aerial photos and collecting historical landslide events, of which most of the landslides were slides (201), the others included 62 falls [58]. According to an analysis in the GIS environment, the largest landslide was more than 1 × 107 m3, and the smallest landslide was nearly 120 m3. Rainfall and human engineering activities, such as urban and rural construction, road engineering construction and water conservancy engineering, are the main triggering factors of landslides. To establish and verify the landslide model, the landslides were randomly divided into two parts: (1) 70% were used to construct the training dataset; (2) the remaining 30% were used to generate validation dataset.



Based on literature review and data availability [42,56,59,60], 14 landslide influencing factors were used in this study. Slope angle, elevation, aspect, sediment transport index (STI), topographical wetness index (TWI), stream power index (SPI), profile curvature, plan curvature, distance to rivers, distance to roads, soil, NDVI, land use, and lithology were considered.



Slope angle, elevation and slope aspect are often used in landslide susceptibility mapping [61,62,63,64,65]. In this study, slope angles were divided into six classes: <10°, 10–20°, 20–30°, 30–40°, 40–50°, >50° (Figure 3a, Table 1). The elevation of the study area was reclassified into seven categories with an interval of 100 m, such as <1000 m, 1000–1100 m, 1100–1200 m, 1200–1300 m, 1300–1400 m, 1400–1500 m, and >1500 m (Figure 3b, Table 1). Slope aspect was divided into nine types as follows: flat, north, northeast, east, southeast, south, southwest, west, and northwest (Figure 3c, Table 1).



STI reflects the erosion force of surface water flow on the ground [66]. It can be expressed by Equation (1) [67,68]:


  STI =    (   α  22.13    )    0.6   ×    (    sin β   0.0896    )    1.3    



(1)




where α is the specific watershed area, and β is the slope. In this study, STI values were classified into five classes, such as <10, 10–20, 20–30, 30–40, and >40 (Figure 3d, Table 1).



TWI affects slope material by affecting soil moisture and groundwater flow. It can be represented by Equation (2) as follows [68]:


  TWI = ln  (  α / tan β  )   



(2)




where α is the area drained per unit contour length at a point, and β is the slope. In the study area, the TWI was also divided into five categories: 1–2, 2–3, 3–4, 4–5, and >5 (Figure 3e, Table 1).



The SPI is an important hydrologic factor, which shows the process of potential flow erosion [68]. It can be represented by Equation (3) as follows [68]:


  SPI = α × tan β  



(3)




where α is the specific watershed area, and β is the slope. In the study area, the SPI was also divided into five categories: 1–2, 2–3, 3–4, 4–5 and >5 (Figure 3f, Table 1).



Profile curvature and plane curvature are important topographic factors. Profile curvature is defined as the curvature at any point is perpendicular to the slope [69]. Profile curvature is divided into five types: (−7.92)–(−1.65), (−1.65)–(−0.46), (−0.46)–0.58, 0.58–1.97, 1.97–9.45 (Figure 2g, Table 1). Plan curvature is described as the curvature of the contour formed by the intersection with the plane [70]. Plan curvature was divided into five categories: (−9.24)–(−1.79), (−1.79)–(−0.54), (−0.46)–0.38, 0.38–1.44, 1.44–7.56 (Figure 3h, Table 1).



The distance to rivers and distance to roads are important factors in landslide susceptibility modeling [71,72]. The river causes the bedrock to produce enough topographic change through erosion. This process makes the slope more prone to block failure [73]. Distance to rivers was divided into five classes with an interval of 200 m (Figure 3i, Table 1). The natural conditions of the slope were destroyed during the construction of transportation facilities, and oil and gas development, and other human engineering activities [74]. In the present study, distance to roads was grouped into five buffing zones using an interval of 100 m (Figure 3j, Table 1).



With the increase of soil depth, the runoff velocity decreases. The unstable nature of shallow is more likely to lead to landslides [75]. There are four types of soil, such as: cultivated loessal soils, alluvial soils, red clay soils and water (Figure 3k, Table 1).



NDVI can quantitatively estimate vegetation growth and biomass by measuring surface reflectance [76]. The NDVI value is calculated based on the following formula:


  N D V I =  (  I R − R  )  /  (  I R + R  )   



(4)




where IR is the infrared band, and R is the red band. The NDVI value was reclassified into five categories: −0.15–0.11, 0.01–0.04, 0.04–0.07, 0.07–0.09, 0.09–0.31 (Figure 3l, Table 1).



Land use is affected by environmental changes and plays an important role in slope stability. In this paper, land use is divided into six categories, including farmland, forestland, grasslands, water bodies, residential areas and others (Figure 3m, Table 1).



Lithological units greatly influence the landslide occurrence [77]. The lithologic units were divided into five groups (Figure 3n, Table 1): the first group is quaternary (loess, silt), the second group is tertiary (mudstone, conglomerate), the third group is cretaceous (arkose), the fourth group is Jurassic (shale, sandstone, mudstone, conglomerate), and the fifth group is Triassic (mudstone, sandstone, conglomerate).



Finally, all the 14 landslide influencing factors were converted to the same resolution of 30 m × 30 m.




3.2. Evidential Belief Function (EBF)


The EBF is an evidence algorithm which is a mathematical method based on bivariate statistics [78]. The EBF is a flexible model, because it not only accepts uncertainty but also absorbs the belief of many sources. The EBF model is made up of four mathematical functions: the degree of belief (Bel), the degree of disbelief (Dis), the degree of uncertainty (Unc), and the degree of plausibility (Pls). 0 to 1 is the range of these functions [79]. This study uses Bel values to represent the correlation between landslides and factors, and Bel values can be represented by the following expression:


  B e l =   B e  l 1  + B e  l 2  + … + B e  l n    1 −   ∑   i − 1  n  B e  l  i − 1   B e  l i  − B e  l  i − 1   B e  l i     



(5)




where Beli is the extent of belief of ith influencing factor.




3.3. Classification and Regression Tree (CART)


The CART is an effective method because it has attested to be a technique for dealing with difficult classification problems [80]. CART is a decision tree proposed by Breiman [81]. The data is processed in a recursive form by the CART model [82]. In this process, the value of internal node features is “yes” and “no”. Categorical and continuous dependent variables (regression) are predicted by classification and regression trees.



If the dependent variable is a category scale, CART will generate a classification tree, and if the dependent variable is a continuous data, CART will generate a regression tree [83]. The classification tree using CART can be constructed in four main steps: (1) building tree, (2) stopping tree building, (3) pruning tree, and (4) selecting optimal tree [84]. The information that needs to be processed is represented by CART in an intuitive way, and the metrics between the predictive variables do not affect the model results [53].



CART has many advantages as a classifier that it is not only a method suitable for numeric data types, but also generates an invariant for the transformation of independent variables. In addition, CART does not have to pick a variable first [85].




3.4. Random Subspace (RS)


The RS was proposed by Ho in 1998, which is defined as a classical integration algorithm [86]. The RS can establish the training subset, which is randomly selected from the original training set [87,88,89,90,91,92]. Also, the RS can modify the training data set in the feature space. RS is also a very effective integration algorithm because it can solve the data sets with redundant features and over-fitting problems. The RS enables the training data to maintain the highest accuracy. However, it cannot be ignored is that the growth of training data increases the complicacy of accuracy [93].



The main goal of RS is to collect the feature set of the high-dimensional feature space into the low-dimensional subspace, and then construct a classifier to classify the class based on the subspace. The final result is obtained by the majority voting rule [94]. More specifically, let the n-dimensional vector Xin be the n features (landslide influencing factors) of the training sample Xi. In RS, randomly select r < n features from the n-dimensional data set of the original space X to obtain the random subspace of r dimension. The modified training data set Xe contains the r-dimensional training object    X i e   . Finally, the classifier is constructed in the RS Xe and the majority voting rule is adopted, as follows [91]:


  α ( x ) = arg   max   y ∈ { 0 , 1 }     ∑ a    δ  sgn     (  C a  ( x ) ) , y  



(6)




where   y ∈ ( 0 , 1 )   is a decision of the classifier,    δ  ij     is the Kronecker symbol, Ca(x) are the generated classifiers (a = 1,2, …, A) [91].




3.5. Logistic Regression (LR)


Logistic regression can analyze a series of problems whose results are affected by one or more factors. The factors influencing the results are called independent variables, which can be continuous, discrete, or a combination of the two types. Logistic regression coefficients can figure out the influence of independent variables on landslide occurrence [95,96]. LR is defined as the follows:


  A =  β 0  +  β 1   Y 1  +  β 2   Y 2  + … +  β n   Y n   



(7)




where A is the linear combination, β0 is the intercept, β1, β2, …βn are the coefficients of logistic regression, and Y1, Y2, …Yn are the independent variables [97]. Using Equation (3), the landslide probability P is expressed as:


  P =   exp ( A )   1 − exp ( A )    



(8)









4. Results


4.1. Correlation Analysis of Influencing Factors


In the present study, Bel value was used to represent the correlation between landslide and various landslide influencing factors. The results (Table 1) showed that Bel value in the south is the highest (0.181), followed by Bel value in the southwest (0.165), and Bel value in the southeast (0.151). At an altitude of more than 1500 m (0.305) greater regional influence landslide occurred right. The results indicate that slopes between 40–50 have a greater impact on the occurrence of landslides (Bel = 0.309). In terms of plan curvature, Bel value is the highest for the class of 1.44–7.56 (0.279). In terms of profile curvature, the class of 0.58–1.97 has the highest value (0.288), so it has a greater impact on the landslide occurrence. TWI value between 2 and 3 has the highest Bel value, which is 0.388. Areas within 200 m to rivers are more prone to landslides (Bel = 0.590) because rivers provide wetter soil for landslides. Similarly, areas within 100 m to the road networks have a greater impact on landslides occurrence (Bel = 0.313). This is because the soil near the road becomes more loosely structured during human activity. For the NDVI, the area between 0.07 and 0.09 has a higher impact on landslide occurrence. Residential areas have higher impact on landslide events (Bel = 0.385). In terms of lithology, Bel value of the fourth group is 0.31, indicating that Jurassic rocks were more sensitive to landslide occurrences. The area covered by red clay has a greater impact on landslide occurrence (Bel = 0.614). The highest Bel values of SPI and STI are 0.234 and 0.219, respectively, and the corresponding ranges are 20–30 and 30–40, respectively. The regions within these ranges have a greater impact on the landslide occurrence.



The multicollinearity test of landslide influencing factors is very important in landslide susceptibility mapping. The two most widely used indices in multicollinearity analysis are tolerance and variance inflation factors (VIF). If the tolerance value is <0.1 or the VIF value is >10, it indicates that there is serious multicollinearity among landslide influencing factors [98,99,100]. Tolerance and VIF values of 14 landslide influencing factors show that the distance to the river has the smallest tolerance value of 0.715 (>0.1), and the largest VIF value is 1.399 (<10) (Table 2). Therefore, there is no multicollinearity among the 14 landslide influencing factors.



At the same time, this study also evaluated the importance of 14 landslide influencing factors using the 10-fold cross-validation correlation attribute evaluation method (CAE) in Weka software [101]. The evaluation results are sorted in descending order according to the average merit (Table 3). The results show that all factors have a positive effect on the landslide and can be further analyzed. The distance to rivers has the highest average merit among all influencing factors (AM = 0.378), followed by slope angle(AM = 0.213), lithology (AM = 0.181), distance to roads (AM = 0.173), and elevation (AM = 0.172), TWI (AM = 0.171), SPI (AM = 0.154), aspect (AM = 0.143), soil (AM = 0.143), profile curvature (AM = 0.138), NDVI (AM = 0.103), land use (AM = 0.098), plan curvature (0.042) and STI (0.04).




4.2. Application of Hybrid and Benchmark Model


RS integration can not only use random subspace to construct and aggregate the basic classifier, but also make the basic classifier easier to train than in the smaller subspaces. Therefore, the performance of the base classifier in the RS may be better than the original feature space, and the feature-to-instance ratio is significantly improved. The RSCART model is constructed by using Weka software [102] through optimization and classification steps. In the optimization step, RS is trained to obtain the sub-data set, which is randomly divided by the original data set. The training data set is divided by the iterative method. In the classification step, combined with the CART algorithm, the optimal training data set obtained in the previous step is used for spatial prediction of landslide [28]. In the process of RSCART model construction, the optimal number of iterations was 28, the optimal number of execution slots was 1. Finally, the landslide susceptibility map is developed by using the RSCART model and reclassified into five classes using the natural break method [103,104]. The very high class occupies a very small area of 9.27%. The moderate, very low, low, and high areas are accounting for 30.56%, 13.31%, 27.22% and 19.63%, respectively (Figure 4a and Figure 5).


    Z = ( 10.866  ∗ Slope      angle   b e l   ) +  (  5.226    ∗ Elevation    b e l    )       +  (  6.428  ∗ Slope    aspect   b e l    )  +  (  0.708 ∗  STI  b e l    )       +  (  4.833    ∗ TWI    b e l    )  +  (  5.437    ∗ SPI    b e l    )       +  (  4.139  ∗ Profile    curvature   b e l    )  +  (  1.150  ∗ Plan    curvature   b e l    )       + ( 2.855 ∗ Distance to  rivers  b e l   ) + ( 1.645 ∗ Distance to  roads  b e l   )      + ( 2.285 ∗  Soil  b e l   ) + ( 2.390 ∗ N D V  I  b e l   )      + ( 1.137 ∗  Landuse  b e l   ) + ( 1.449 ∗  Lithology  b e l   ) − 10.521    



(9)







According to Equation (8), logistic regression coefficients of all landslide influencing factors are positive (Table 4), which indicate that all influencing factors are positively correlated with the landslide occurrence. Finally, the landslide susceptibility map was divided into five categories according to the natural break method. It can be seen that the area percentage with low susceptibility is the largest (29.42%), followed by moderate, very low and high (22.13%, 22%, and 14.38%, respectively). The area proportion of very high is the smallest (12.06%) (Figure 4c and Figure 5)




4.3. Validation and Comparison of Models


The landslide susceptibility map should have the ability to verify with existing landslide data and predict future landslides [105]. Therefore, in this study, the ROC curve and the AUC are used to assess the prediction capability of models [106,107,108]. The best models tend to have the highest AUC among the models studied [4,109]. ROC curves and AUC values of the training dataset of the three models are shown in Figure 6. The RSCART model has the highest AUC value (0.852), followed by LR model (0.797) and CART model (0.793). The ROC curves and AUC values of the validation dataset are shown in Figure 7. The prediction accuracy of RSCART model (AUC = 0.827) is higher than that of the LR model (AUC = 0.758) and CART model (AUC = 0.749). Therefore, the comparison of AUC values indicates that the RSCART model is the best of the three models. In addition, the landslide susceptibility map can be verified by calculating the landslide density. LD is defined as the ratio of the percentage of landslide points in each susceptibility classification to the percentage in each susceptibility classification [110]. The landslide density calculation results of the three models are shown in Table 5. RSCART model, CART model, and LR model had the highest values in the very high category, which were 4.264, 3.156 and 3.845, respectively. Then, high (1.743, 2.004, 1.692), moderate (0.634, 0.670, 0825), low (0.223, 0.212, 0.310) and very low (0.057, 0.041, 0.086).




4.4. Comparison of Landslide Susceptibility Maps


This study also quantitatively compares the susceptibility values on each pixel to reveal the systematic spatial pattern of the differences between susceptibility maps, following the methodology proposed by [111]. The RSCART model was selected as the benchmark because it has a higher AUC value than the other two models. The susceptibility map of the baseline model is used in a GIS system to pair with the remaining models and subtract their values to define their differences (Figure 8). The values of the comparison map are divided into three levels: “underestimation”, “approximation” and “overestimation”. The values of both comparison maps are broken at −0.2 and 0.2. The percentage of each grade in the total area is shown in Table 6. At the same time, to explore the key factors influencing the susceptibility difference, overestimation and underestimation statistics were performed for each category of each impact factor (Table 7 and Table 8). For each class, we calculate “A” as a percentage of the total area of each class. “B” is the ratio of the underestimated (overestimated) pixels found in this class to the total underestimated (overestimated) pixels, “B–A”, as the difference ratio between the two maps, can be used to identify key class of underestimation (overestimation) anomaly clustering. According to the “B–A” value defined for each class, the class with the highest degree of imbalance was identified (Table 8). To be able to clearly illustrate the relationship between the most imbalanced classification and the underestimated or overestimated area, the visual inspection is required. Underestimations of “RSCART-LR” driven by slope angle (40°–50°) (Figure 9a), overestimations of “RSCART-LR” driven by slope angle (<10°) (Figure 10a), Underestimations of “RSCART-CART” driven by distance to rivers (0–200 m) (Figure 9d) and overestimations of “RSCART-LR” driven by slope angle (<10°) (Figure 10d). As shown in Figure 9a, almost all the underestimated pixels are in the classification with slope of 40–50, and the percentage is 98.55%. In Figure 10a, 99.35% of the overestimation pixels are in the slope of 0°–10°. In Figure 9d, all underestimation pixels are clustered in a distance to rivers of 0–200 m. In Figure 10d, 76.87% of the overestimation pixels are in the classification with a slope less than 10°.





5. Discussion


The selection of landslide influencing factors will affect the quality of landslide susceptibility analysis [112,113]. In this study, 14 landslide influencing factors were selected. The EBF model is used to analyze the correlation between the subclasses of landslide influencing factors and landslide, and to reclassify the landslide influence factors. Then, through the multicollinearity analysis, it was found that there was no multicollinearity among all landslide influencing factors (Table 2), and all factors contributed to the model. Finally, the results of the CAE model’s importance analysis and Bel values were used to analyze the various landslide influencing factors. According to the results of the importance analysis, the distance to rivers (AM = 0.378) is the most important landslide influencing factor in the study area. The results of the Bel value are similar to those found in previous studies, with a higher probability of landslides near the river area [114]. Different geomorphic parts of the river cause different external forces and stress distributions on the slope, so the failure modes of the slope are also different. The distance to roads (AM = 0.173, Bel = 0.313) has similar results. The closer we get to the road, the higher the probability of a landslide [115]. This is easy to understand because road construction can destabilize the slope by breaking the support of the slope foot [116]. As for the slope (AM = 0.213), the possibility of landslides will increase with the increase of the slope, because the gravity load and stress of the material forming the slope will increase [117]. It can be seen from the Bel value that landslides are most likely to occur in areas with a slope of 40–50. Different types of lithology (AM = 0.181) will result in different slope strengths [118]. According to the Bel value, it can be seen that shale, sandstone, mudstone, and conglomerate have a certain effect on the occurrence of landslides. Elevation (AM = 0.172) has always been a key factor in landslide susceptibility mapping [119,120]. The weathering and shear strength of rocks at different elevations are also different [119,120]. According to the Bel value, it can be concluded that the possibility of landslides of 1500 m–1574 m in the study area is higher. Therefore, it can be judged that landslides are more likely to occur in higher research areas. TWI (AM = 0.171) and SPI (AM = 0.154) are usually indispensable constraints in landslide susceptibility modeling [110,121,122]. Aspect (AM = 0.143, Bel = 0.181) in the south are more likely to cause landslides. This may be due to the more intense solar radiation when the slope is facing south, which may result in different weathering degree. Previous studies have shown that the susceptibility of different types of soil (AM = 0.143) to landslides is also different [101]. According to the Bel value, red clay is the key factor leading to landslides in the study area. The shear strength of red clay soils during rainwater infiltration is reduced, making slopes more prone to landslides [123]. Profile curvature (AM = 0.138) can affect the stress distribution of the slope, and the variations in curvature may be useful to identify depletion and accumulation zones [124]. NDVI (AM = 0.103) is an important influencing factor for landslides. Many studies have shown that plants play an active role in the occurrence of landslides because their root systems can increase soil strength and reduce water infiltration [125,126,127]. In addition, for those factors whose AM value is less than 1, many scholars have studied their relationship with the occurrence of landslides, and these factors should not be ignored when mapping landslide susceptibility [128,129,130].



From the results we can observe that the number of overestimation and underestimation is limited (the highest proportion is 0.057). However, it has a great influence on the value of AUC. This is because overestimation and underestimation are not randomly distributed, but there are some spatial patterns [111]. From Figure 2 we can see that the overestimations of the two comparisons have some similarities in spatial distribution. From Table 9 we can find that in the two comparisons, the overestimation has almost the same class of imbalance factors. Slopes less than 10 are classified as the most unbalanced class. From Figure 10, we can find that the classification with a slope of less than 10 has a high degree of overlap with the spatial distribution of the river. Areas with a slope of less than 10 are all closer to the river. For the “RSCART-LR” comparison map, Alluvial soils is also an unbalanced class. In Figure 10c, we can find that the spatial distribution of alluvial soil also overlaps with the river. This is because alluvial soil develops. The classification with the distance to the road less than 100 is also the overestimated imbalanced class of the two comparison maps (Figure 10b,f), and it has a high spatial overlap with the overestimated pixels. The class with a slope of 40–50 is the most unbalanced class in the “RSCART-LR” comparison, which contains 98.55% of the underestimated pixels (Figure 9a). At the same time, “RSCART-LR” was also significantly affected by the distance to the river less than 200 (“B-A” = 71.3%) (Figure 9b). In the comparison of “RSCART-CART”, the classification with the river distance less than 200 included all the underestimated pixels (Figure 9d) and was also driven by the slope classification of 40–50 (“B-A” = 41.42%). From Figure 9, we can see that the overlap of the spatial distribution of the underestimated pixels with a distance from the river less than 200 is extremely high. The remaining imbalance classes do not significantly dominate the underestimated spatial distribution. In summary, the integrated model RSCART can better use the landform information related to the river and the information closer to the road than the other two models. However, it is easy to ignore the influence of the river itself and the high slope on the susceptibility to landslides.



Some studies have proved that LR model is an excellent model for landslide susceptibility research. Polykretis and Chalkias shows that the performance of LR model is better than that of weight of evidence and artificial neural networks in landslide susceptibility mapping in drainage basin of Selinous River [131]. Oh et al. conclude that the LR model has the highest prediction and training accuracy compared with EBF and support vector machine (SVM) in the region surrounding Yongin, South Korea [132]. According to the results of Luc Yen district by Pham et al., the performance of CART model is better than that of LR model [28]. The results also show that the performance of CART model is lower than that of LR model. In addition, some studies have shown that RS is an excellent ensemble algorithm. Hong et al. indicate that the integrated model RSSVM has the optimal performance [55]. In this study, training (goodness of fit) and validation (prediction accuracy) data sets were used to compare the proposed integration model with the benchmark model. The goodness of fit results of the landslide model show that RSCART (AUC = 0.852) is superior to CART (AUC = 0.793) and LR (AUC = 0.797). The validation results show that RSCART model has better prediction accuracy than CART (AUC = 0.749) and LR (AUC = 0.758) models. The RSCART model has the advantages of RS integration and CART classifier. When integrated with the RS model, the performance of the CART model, whose performance is lower than the benchmark LR model, is improved significantly. This is because RS integration constructs the benchmark model by using the random subspace, and the performance of the base classifier in the random subspace is optimized. Therefore, the RSCART model based on machine learning hybrid method is more effective than the single basic model. In addition, the landslide susceptibility figure can be verified by calculating the landslide density (Table 5). In general, higher LD values are associated with higher landslide susceptibility levels. As can be seen from the result of LD, the results of the three models are consistent. The LD value of the very high type is the highest, followed by high, moderate, low, and very low. Therefore, the three base maps of landslide susceptibility are reliable, and the optimal model RSCART also has the highest LD value. Therefore, the model used in this study to generate the landslide susceptibility map has reference significance for the study area. In addition, the selection of factors and the construction of models are also of reference values for similar studies.




6. Conclusions


In this study, the combined CART with RS and two benchmark models (LR and CART) were used to draw three landslide susceptibility maps for Zichang County. The correlation between influencing factors and landslide was evaluated using multicollinearity analysis and EBF method. The AUC value was used to test the performance of the three models. The validating results show that the RSCART model has the highest performance, followed by the LR model and CART model. Finally, this paper also uses a method to quantitatively compare the susceptibility values of each pixel to reveal the systematic spatial pattern of the differences between susceptibility maps. In conclusion, the landslide susceptibility maps compiled in this study are useful for land use and decision-making in landslide-prone areas. In addition, this study also proves the superiority of hybrid model in landslide susceptibility modeling.
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Figure 1. Study area. 
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Figure 2. Flowchart of the study. 
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Figure 3. Thematic maps of the study area. 
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Figure 4. Landslide susceptibility maps: (a) RSCART model; (b) CART model; (c) LR model. 
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Figure 5. Percentages of landslide susceptibility classes. 
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Figure 6. ROC curves using training dataset. 
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Figure 7. ROC curves using validation dataset. 
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Figure 8. Comparison maps: (a) RSCART-LR; (b) RSCART-CART. 
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Figure 9. Spatial location of underestimations, in relationship with the imbalanced classes. 
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Figure 10. Spatial location of overestimations, in relationship with the imbalanced classes. 
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Table 1. Correlation between landslides and influencing factors using EBF model.
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Factors

	
Class

	
No. of Pixels

	
No. of Landslide

	
Bel






	
Slope angle

	
<10

	
278,839

	
0

	
0.000




	
10–20

	
696,966

	
56

	
0.244




	
20–30

	
938,802

	
68

	
0.220




	
30–40

	
638,483

	
48

	
0.228




	
40–50

	
117,745

	
12

	
0.309




	
>50

	
527

	
0

	
0.000




	
Elevation (m)

	
933–1000

	
30,442

	
4

	
0.197




	
1000–1100

	
357,423

	
41

	
0.172




	
1100–1200

	
753,794

	
61

	
0.121




	
1200–1300

	
829,706

	
54

	
0.098




	
1300–1400

	
546,264

	
17

	
0.047




	
1400–1500

	
148,806

	
6

	
0.060




	
1500–1574

	
4927

	
1

	
0.305




	
Aspect

	
F (−1)

	
1237

	
0

	
0.000




	
N (0–22.5; 337.5–360)

	
247,049

	
14

	
0.103




	
NE (22.5–67.5)

	
351,476

	
12

	
0.062




	
E (67.5–112.5)

	
436,578

	
32

	
0.133




	
SE (112.5–157.5)

	
300,883

	
25

	
0.151




	
S (157.5–202.5)

	
270,755

	
27

	
0.181




	
SW (202.5–247.5)

	
341,265

	
31

	
0.165




	
W (247.5–292.5)

	
412,506

	
33

	
0.145




	
NW (292.5–337.5)

	
309,613

	
10

	
0.059




	
STI

	
(0–10)

	
1,289,473

	
81

	
0.147




	
(10–20)

	
827,143

	
62

	
0.176




	
(20–30)

	
299,541

	
28

	
0.219




	
(30–40)

	
112,670

	
6

	
0.125




	
>40

	
142,535

	
7

	
0.115




	
TWI

	
(1.11–2)

	
1,504,887

	
102

	
0.319




	
(2–3)

	
885,873

	
73

	
0.388




	
(3–4)

	
196,513

	
7

	
0.168




	
(4–5)

	
75,716

	
2

	
0.124




	
>5

	
8373

	
0

	
0.000




	
SPI

	
(0–10)

	
867,208

	
37

	
0.113




	
(10–20)

	
526,106

	
46

	
0.232




	
(20–30)

	
362,454

	
32

	
0.234




	
(30–40)

	
218,983

	
19

	
0.230




	
>40

	
696,611

	
50

	
0.190




	
Profile curvature

	
(−7.29)–(−1.65)

	
215,910

	
13

	
0.182




	
(−1.65)–(−0.46)

	
643,747

	
29

	
0.136




	
(−0.46)–(0.58)

	
1,050,656

	
77

	
0.222




	
(0.58)–(1.97)

	
567,015

	
54

	
0.288




	
(1.97)–(9.45)

	
194,034

	
11

	
0.172




	
Plan curvature

	
(−9.24)–(−1.79)

	
143,702

	
5

	
0.106




	
(−1.79)–(−0.54)

	
480,381

	
29

	
0.185




	
(−0.54)-0.38

	
1,124,169

	
83

	
0.226




	
0.38–1.44

	
703,523

	
47

	
0.204




	
1.44–7.56

	
219,587

	
20

	
0.279




	
Distance to rivers (m)

	
0–200

	
765,053

	
127

	
0.590




	
200–400

	
678,212

	
27

	
0.141




	
400–600

	
597,921

	
17

	
0.101




	
600–800

	
417,041

	
6

	
0.051




	
>800

	
213,135

	
7

	
0.117




	
Distance to roads (m)

	
0–100

	
406,132

	
51

	
0.313




	
100–200

	
304,978

	
32

	
0.262




	
200–300

	
303,291

	
22

	
0.181




	
300–400

	
238,548

	
12

	
0.126




	
>400

	
1,418,413

	
67

	
0.118




	
Soil

	
Cultivated loessal soils

	
2,288,420

	
141

	
0.158




	
Alluvial soils

	
316,038

	
28

	
0.228




	
Red clay soils

	
62,809

	
15

	
0.614




	
Water

	
4095

	
0

	
0.000




	
NDVI

	
(−0.15–0.01)

	
372,914

	
26

	
0.207




	
(0.01–0.04)

	
452,559

	
21

	
0.138




	
(0.04–0.07)

	
599,799

	
31

	
0.154




	
(0.07–0.09)

	
733,152

	
65

	
0.264




	
(0.09–0.31)

	
512,938

	
41

	
0.238




	
Land use

	
Farmland

	
987,416

	
47

	
0.142




	
Forestland

	
505,630

	
37

	
0.219




	
Grassland

	
1,167,441

	
99

	
0.254




	
Water bodies

	
2665

	
0

	
0.000




	
Residential areas

	
7769

	
1

	
0.385




	
Others

	
441

	
0

	
0.000




	
Lithology

	
Group 1

	
2,008,004

	
111

	
0.133




	
Group 2

	
330,841

	
40

	
0.292




	
Group 3

	
25,061

	
1

	
0.096




	
Group 4

	
178,708

	
23

	
0.310




	
Group 5

	
128,748

	
9

	
0.169
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Table 2. Multicollinearity analysis.
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Factors

	

	
Collinearity Statistics




	

	
Tolerance

	
VIF






	
Slope angle

	

	
0.873

	
1.145




	
Elevation

	

	
0.878

	
1.139




	
Aspect

	

	
0.865

	
1.156




	
STI

	

	
0.881

	
1.135




	
TWI

	

	
0.830

	
1.205




	
SPI

	

	
0.848

	
1.180




	
Profile curvature

	

	
0.821

	
1.219




	
Plan curvature

	

	
0.926

	
1.080




	
Distance to rivers

	

	
0.715

	
1.399




	
Distance to roads

	

	
0.869

	
1.150




	
Soil

	

	
0.954

	
1.048




	
NDVI

	

	
0.830

	
1.205




	
Land use

	

	
0.954

	
1.048




	
Lithology

	

	
0.830

	
1.205
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Table 3. Selection of conditioning factors.
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	Landslide Conditioning Factor
	Average Merit (AM)
	Standard Deviation (SD)





	Distance to rivers
	0.378
	±0.015



	Slope angle
	0.213
	± 0.008



	Lithology
	0.181
	± 0.012



	Distance to roads
	0.173
	±0.014



	Elevation
	0.172
	± 0.016



	TWI
	0.171
	± 0.014



	SPI
	0.154
	± 0.015



	Aspect
	0.143
	± 0.012



	Soil
	0.143
	± 0.013



	Profile curvature
	0.138
	± 0.019



	NDVI
	0.103
	± 0.024



	Land use
	0.098
	± 0.013



	Plan curvature
	0.042
	± 0.012



	STI
	0.04
	± 0.015
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Table 4. Coefficients of LR model.
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	Landslide Influencing Factor
	Coefficients





	Slope angle
	10.866



	Elevation
	5.226



	Aspect
	6.428



	STI
	0.708



	TWI
	4.833



	SPI
	5.437



	Profile curvature
	4.139



	Plan curvature
	1.150



	Distance to rivers
	2.855



	Distance to roads
	1.645



	Soil
	2.285



	NDVI
	2.390



	Land use
	1.137



	Lithology
	1.449



	Intercept
	−10.521
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Table 5. Landslide density analysis on landslide susceptibility maps.
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Class

	
RSCART Model

	
CART Model

	
LR Model




	
% Landslides

	
LD

	
% Landslides

	
LD

	
% Landslides

	
LD






	
Very Low

	
0.760

	
0.057

	
0.004

	
0.041

	
0.019

	
0.086




	
Low

	
6.084

	
0.223

	
0.065

	
0.212

	
0.091

	
0.310




	
Moderate

	
19.392

	
0.634

	
0.209

	
0.670

	
0.183

	
0.825




	
High

	
34.221

	
1.743

	
0.335

	
2.004

	
0.243

	
1.692




	
Very High

	
39.544

	
4.264

	
0.388

	
3.156

	
0.464

	
3.845











[image: Table] 





Table 6. Classification of comparison maps.
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Comparison

	
Value

	
Classification

	
Percentage






	
RSCART-LR

	
−0.27–0.386

	
Underestimation

	
−0.27–(−0.2)

	
0.003




	
Approximation

	
−0.2–0.2

	
0.940




	
Overestimation

	
0.2–0.386

	
0.057




	
RSCART-CART

	
−0.31–0.42

	
Underestimation

	
−0.31–(−0.2)

	
0.008




	
Approximation

	
−0.2–0.2

	
0.948




	
Overestimation

	
0.2–0.42

	
0.044
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Table 7. Statistics on underestimation pixels and overestimation pixels of RSCART-LR.






Table 7. Statistics on underestimation pixels and overestimation pixels of RSCART-LR.





	
Factors

	
Class

	
A (%)

	
Underestimation RSCART-LRB (%)

	
B-A (%)

	
Overestimation RSCART-LRB (%)

	
B-A (%)






	
Slope angle

	
<10

	
10.44

	
0.00

	
−10.44

	
99.35

	
88.91




	
10–20

	
26.09

	
1.44

	
−24.65

	
0.00

	
−26.09




	
20–30

	
35.14

	
0.00

	
−35.14

	
0.38

	
−34.76




	
30–40

	
23.90

	
0.01

	
−23.89

	
0.05

	
−23.85




	
40–50

	
4.41

	
98.55

	
94.14

	
0.00

	
−4.41




	
>50

	
0.02

	
0.00

	
−0.02

	
0.22

	
0.20




	
Elevation (m)

	
933–1000

	
1.14

	
1.69

	
0.55

	
8.45

	
7.31




	
1000–1100

	
13.38

	
23.76

	
10.38

	
33.85

	
20.47




	
1100–1200

	
28.22

	
32.57

	
4.35

	
27.21

	
−1.01




	
1200–1300

	
31.06

	
39.37

	
8.31

	
19.09

	
−11.97




	
1300–1400

	
20.45

	
2.45

	
−18.00

	
8.33

	
−12.12




	
1400–1500

	
5.57

	
0.11

	
−5.46

	
2.70

	
−2.87




	
1500–1574

	
0.18

	
0.05

	
−0.14

	
0.39

	
0.20




	
Aspect

	
F

	
0.05

	
0.00

	
−0.05

	
0.00

	
−0.05




	
N

	
9.25

	
7.52

	
−1.73

	
10.07

	
0.82




	
NE

	
13.16

	
11.01

	
−2.15

	
8.06

	
−5.09




	
E

	
16.34

	
22.56

	
6.22

	
13.25

	
−3.09




	
SE

	
11.26

	
7.45

	
−3.82

	
14.65

	
3.39




	
S

	
10.14

	
6.03

	
−4.10

	
19.69

	
9.55




	
SW

	
12.77

	
9.48

	
−3.29

	
15.88

	
3.10




	
W

	
15.44

	
20.99

	
5.55

	
12.62

	
−2.83




	
NW

	
11.59

	
14.96

	
3.37

	
5.78

	
−5.81




	
STI

	
(0–10)

	
48.27

	
0.77

	
−47.50

	
85.09

	
36.82




	
(10–20)

	
30.96

	
59.22

	
28.25

	
7.74

	
−23.22




	
(20–30)

	
11.21

	
33.37

	
22.16

	
3.64

	
−7.57




	
(30–40)

	
4.22

	
5.23

	
1.01

	
1.80

	
−2.42




	
>40

	
5.34

	
1.41

	
−3.92

	
1.73

	
−3.61




	
TWI

	
(1.11–2)

	
56.33

	
93.66

	
37.33

	
0.41

	
−55.93




	
(2–3)

	
33.16

	
6.34

	
−26.82

	
61.88

	
28.72




	
(3–4)

	
7.36

	
0.00

	
−7.36

	
21.60

	
14.24




	
(4–5)

	
2.83

	
0.00

	
−2.83

	
14.79

	
11.96




	
>5

	
0.31

	
0.00

	
−0.31

	
1.32

	
1.01




	
SPI

	
(0–10)

	
32.46

	
0.01

	
−32.45

	
61.60

	
29.13




	
(10–20)

	
19.69

	
22.99

	
3.29

	
9.28

	
−10.41




	
(20–30)

	
13.57

	
0.65

	
−12.92

	
4.81

	
−8.76




	
(30–40)

	
8.20

	
39.35

	
31.15

	
3.14

	
−5.06




	
>40

	
26.08

	
37.01

	
10.93

	
21.17

	
−4.91




	
Profile curvature

	
(−7.29)–(−1.65)

	
8.08

	
22.85

	
14.77

	
2.80

	
−5.28




	
(−1.65)–(−0.46)

	
24.10

	
11.86

	
−12.24

	
10.60

	
−13.50




	
(−0.46)–(0.58)

	
39.33

	
22.82

	
−16.51

	
57.65

	
18.32




	
(0.58)–(1.97)

	
21.23

	
29.05

	
7.82

	
25.00

	
3.78




	
(1.97)–(9.45)

	
7.26

	
13.42

	
6.16

	
3.94

	
−3.33




	
Plan curvature

	
(−9.24)−(–1.79)

	
5.38

	
1.33

	
−4.05

	
3.75

	
−1.63




	
(−1.79)–(−0.54)

	
17.98

	
18.25

	
0.26

	
12.85

	
−5.13




	
(−0.54)−0.38

	
42.08

	
40.14

	
−1.94

	
62.01

	
19.93




	
0.38–1.44

	
26.34

	
22.84

	
−3.49

	
17.30

	
−9.03




	
1.44–7.56

	
8.22

	
17.44

	
9.22

	
4.09

	
−4.13




	
Distance to rivers (m)

	
0–200

	
28.64

	
99.94

	
71.30

	
73.01

	
44.37




	
200–400

	
25.39

	
0.01

	
−25.38

	
11.65

	
−13.74




	
400–600

	
22.38

	
0.00

	
−22.38

	
7.16

	
−15.22




	
600–800

	
15.61

	
0.00

	
−15.61

	
4.90

	
−10.72




	
>800

	
7.98

	
0.05

	
−7.93

	
3.28

	
−4.69




	
Distance to roads (m)

	
0–100

	
15.20

	
0.98

	
−14.23

	
46.89

	
31.69




	
100–200

	
11.42

	
3.96

	
−7.46

	
15.81

	
4.40




	
200–300

	
11.35

	
7.14

	
−4.21

	
8.45

	
−2.91




	
300–400

	
8.93

	
9.43

	
0.50

	
4.36

	
−4.57




	
>400

	
53.10

	
78.49

	
25.39

	
24.49

	
−28.61




	
Soil

	
Cultivated loessal soils

	
85.66

	
87.94

	
2.28

	
59.88

	
−25.79




	
Alluvial soils

	
11.83

	
11.31

	
−0.52

	
36.29

	
24.46




	
Red clay soils

	
2.35

	
0.71

	
−1.64

	
3.61

	
1.26




	
Water

	
0.15

	
0.04

	
−0.12

	
0.22

	
0.07




	
NDVI

	
(−0.15–0.01)

	
13.96

	
22.88

	
8.92

	
11.12

	
−2.84




	
(0.01–0.04)

	
16.94

	
12.85

	
−4.09

	
12.55

	
−4.39




	
(0.04–0.07)

	
22.45

	
15.18

	
−7.28

	
26.68

	
4.23




	
(0.07–0.09)

	
27.44

	
32.28

	
4.83

	
35.72

	
8.28




	
(0.09–0.31)

	
19.20

	
16.82

	
−2.38

	
13.94

	
−5.27




	
Land use

	
Farmland

	
36.96

	
16.63

	
−20.34

	
35.67

	
−1.29




	
Forestland

	
18.93

	
19.87

	
0.94

	
16.81

	
−2.12




	
Grassland

	
43.70

	
63.37

	
19.67

	
44.74

	
1.04




	
Water bodies

	
0.10

	
0.09

	
−0.01

	
0.36

	
0.26




	
Residential areas

	
0.29

	
0.05

	
−0.24

	
2.36

	
2.07




	
Others

	
0.02

	
0.00

	
−0.02

	
0.05

	
0.04




	
Lithology

	
Group 1

	
75.17

	
68.36

	
−6.81

	
42.36

	
−32.81




	
Group 2

	
12.38

	
17.25

	
4.86

	
16.10

	
3.72




	
Group 3

	
0.94

	
4.90

	
3.96

	
0.80

	
−0.14




	
Group 4

	
6.69

	
3.19

	
−3.50

	
16.22

	
9.53




	
Group 5

	
4.82

	
6.30

	
1.48

	
24.52

	
19.70
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Table 8. Statistics on underestimation pixels and overestimation pixels of RSCART-CART.






Table 8. Statistics on underestimation pixels and overestimation pixels of RSCART-CART.





	
Factors

	
Class

	
A (%)

	
Underestimation RSCART-CART B (%)

	
B-A (%)

	
Overestimation RSCART-CART B (%)

	
B-A (%)






	
Slope angle

	
<10

	
10.44

	
0.00

	
−10.44

	
76.87

	
66.43




	
10–20

	
26.09

	
34.83

	
8.74

	
6.94

	
−19.15




	
20–30

	
35.14

	
11.04

	
−24.11

	
14.28

	
−20.87




	
30–40

	
23.90

	
8.30

	
−15.60

	
1.63

	
−22.27




	
40–50

	
4.41

	
45.83

	
41.42

	
0.00

	
−4.41




	
>50

	
0.02

	
0.00

	
−0.02

	
0.29

	
0.27




	
Elevation (m)

	
933–1000

	
1.14

	
5.45

	
4.31

	
1.26

	
0.12




	
1000–1100

	
13.38

	
42.21

	
28.83

	
9.86

	
−3.52




	
1100–1200

	
28.22

	
22.95

	
−5.27

	
23.76

	
−4.45




	
1200–1300

	
31.06

	
24.88

	
−6.18

	
26.64

	
−4.42




	
1300–1400

	
20.45

	
4.37

	
−16.08

	
27.01

	
6.56




	
1400–1500

	
5.57

	
0.15

	
−5.42

	
10.78

	
5.21




	
1500–1574

	
0.18

	
0.00

	
−0.18

	
0.68

	
0.50




	
Aspect

	
F

	
0.05

	
0.00

	
−0.05

	
0.00

	
−0.04




	
N

	
9.25

	
8.15

	
−1.10

	
8.63

	
−0.62




	
NE

	
13.16

	
4.51

	
−8.65

	
12.34

	
−0.82




	
E

	
16.34

	
13.65

	
−2.69

	
14.35

	
−1.99




	
SE

	
11.26

	
10.49

	
−0.78

	
14.01

	
2.75




	
S

	
10.14

	
15.24

	
5.11

	
14.73

	
4.60




	
SW

	
12.77

	
14.38

	
1.60

	
14.09

	
1.32




	
W

	
15.44

	
27.72

	
12.28

	
13.04

	
−2.40




	
NW

	
11.59

	
5.86

	
−5.73

	
8.80

	
−2.79




	
STI

	
(0–10)

	
48.27

	
26.71

	
−21.56

	
86.04

	
37.77




	
(10–20)

	
30.96

	
46.44

	
15.48

	
6.85

	
−24.11




	
(20–30)

	
11.21

	
17.54

	
6.33

	
3.42

	
−7.79




	
(30–40)

	
4.22

	
6.27

	
2.05

	
1.50

	
−2.71




	
>40

	
5.34

	
3.04

	
−2.29

	
2.18

	
−3.15




	
TWI

	
(1.11–2)

	
56.33

	
49.57

	
−6.77

	
20.92

	
−35.41




	
(2–3)

	
33.16

	
49.94

	
16.78

	
56.19

	
23.02




	
(3–4)

	
7.36

	
0.46

	
−6.90

	
12.35

	
4.99




	
(4–5)

	
2.83

	
0.04

	
−2.80

	
8.99

	
6.16




	
>5

	
0.31

	
0.00

	
−0.31

	
1.55

	
1.24




	
SPI

	
(0–10)

	
32.46

	
2.30

	
−30.16

	
73.36

	
40.90




	
(10–20)

	
19.69

	
28.85

	
9.15

	
5.97

	
−13.73




	
(20–30)

	
13.57

	
13.85

	
0.28

	
2.93

	
−10.64




	
(30–40)

	
8.20

	
25.32

	
17.12

	
1.78

	
−6.41




	
>40

	
26.08

	
29.68

	
3.61

	
15.96

	
−10.12




	
Profile curvature

	
(−7.29)–(−1.65)

	
8.08

	
8.85

	
0.76

	
7.63

	
−0.46




	
(−1.65)–(−0.46)

	
24.10

	
4.55

	
−19.55

	
32.30

	
8.20




	
(−0.46)–(0.58)

	
39.33

	
24.42

	
−14.91

	
41.48

	
2.15




	
(0.58)–(1.97)

	
21.23

	
53.71

	
32.48

	
14.45

	
−6.78




	
(1.97)–(9.45)

	
7.26

	
8.47

	
1.21

	
4.14

	
−3.12




	
Plancurvature

	
(−9.24)–(−1.79)

	
5.38

	
4.15

	
−1.23

	
3.26

	
−2.12




	
(−1.79)–(−0.54)

	
17.98

	
21.91

	
3.93

	
11.23

	
−6.75




	
(−0.54)–0.38

	
42.08

	
50.18

	
8.10

	
43.99

	
1.91




	
0.38–1.44

	
26.34

	
18.79

	
−7.54

	
31.82

	
5.48




	
1.44–7.56

	
8.22

	
4.96

	
−3.26

	
9.70

	
1.48




	
Distance to rivers (m)

	
0–200

	
28.64

	
100.00

	
71.36

	
19.01

	
−9.63




	
200–400

	
25.39

	
0.00

	
−25.39

	
26.60

	
1.21




	
400–600

	
22.38

	
0.00

	
−22.38

	
21.30

	
−1.08




	
600–800

	
15.61

	
0.00

	
−15.61

	
23.98

	
8.37




	
>800

	
7.98

	
0.00

	
−7.98

	
9.11

	
1.13




	
Distance to roads (m)

	
0–100

	
15.20

	
0.14

	
−15.06

	
44.63

	
29.43




	
100–200

	
11.42

	
1.11

	
−10.31

	
13.67

	
2.26




	
200–300

	
11.35

	
6.50

	
−4.85

	
8.83

	
−2.52




	
300–400

	
8.93

	
10.64

	
1.71

	
5.58

	
−3.35




	
>400

	
53.10

	
81.61

	
28.52

	
27.29

	
−25.81




	
Soil

	
Cultivated loessal soils

	
85.66

	
75.02

	
−10.64

	
82.11

	
−3.56




	
Alluvial soils

	
11.83

	
14.70

	
2.87

	
14.95

	
3.12




	
Red clay soils

	
2.35

	
10.27

	
7.92

	
2.61

	
0.26




	
Water

	
0.15

	
0.00

	
−0.15

	
0.32

	
0.17




	
NDVI

	
(−0.15–0.01)

	
13.96

	
14.62

	
0.66

	
8.82

	
−5.14




	
(0.01–0.04)

	
16.94

	
30.21

	
13.27

	
6.53

	
−10.41




	
(0.04–0.07)

	
22.45

	
34.02

	
11.57

	
14.70

	
−7.75




	
(0.07–0.09)

	
27.44

	
12.11

	
−15.33

	
43.89

	
16.44




	
(0.09–0.31)

	
19.20

	
9.04

	
−10.16

	
26.05

	
6.85




	
Land use

	
Farmland

	
36.96

	
33.24

	
−3.72

	
41.50

	
4.53




	
Forestland

	
18.93

	
21.84

	
2.91

	
15.58

	
−3.34




	
Grassland

	
43.70

	
44.23

	
0.53

	
41.66

	
−2.04




	
Water bodies

	
0.10

	
0.60

	
0.50

	
0.10

	
0.00




	
Residential areas

	
0.29

	
0.08

	
−0.21

	
1.13

	
0.84




	
Others

	
0.02

	
0.00

	
−0.02

	
0.03

	
0.01




	
Lithology

	
Group 1

	
75.17

	
78.27

	
3.11

	
66.03

	
−9.13




	
Group 2

	
12.38

	
3.55

	
−8.83

	
15.56

	
3.17




	
Group 3

	
0.94

	
5.21

	
4.27

	
0.26

	
−0.68




	
Group 4

	
6.69

	
0.38

	
−6.31

	
15.20

	
8.51




	
Group 5

	
4.82

	
12.58

	
7.76

	
2.95

	
−1.87
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Table 9. Most imbalanced classes driving the spatial distribution of underestimations and overestimation.






Table 9. Most imbalanced classes driving the spatial distribution of underestimations and overestimation.





	

	
Comparison Maps

	
Imbalanced Classes






	
Underestimation

	
RSCART-LR

	
slope, 40–50; STI, 10–20; TWI,1.11–2; SPI, 30–40;

distance to rivers, 0–200; distance to roads, >400




	
RSCART-CART

	
slope, 40–50; elevation, 1000–1100; profile, 0.58–1.97;

distance to rivers, 0–200; distance to roads, >400




	
Overestimation

	
RSCART-LR

	
slope, <10; STI, 0–10; TWI, 2–3; SPI, 0–10;

distance to roads, 0–100; soil, group2;




	
RSCART-CART

	
slope, <10; STI, 0–10; SPI, 0–10; distance to roads, 0–100
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