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Abstract: Extreme hydrometeorological events have far-reaching impacts on our daily life and may 
occur more frequently with rising global temperatures. The probability of the concurrence of these 
extreme events in the upper reaches of the river network is of particular importance for the lower 
reaches, which is referred to as the encounter probability of extreme events, and may have even 
stronger socio-economic impacts. In this study, the Rao River basin in China is selected as an 
example to explore the encounter probability and risk of future flood and drought based on the 
encounter probability model. The reference period was 1971-2000, and the future prediction periods 
were 2020-2049 and 2070-2099. The calibrated and validated statistical downscaling model (SDSM) 
was used to generate future daily precipitation and daily mean temperature. The calibrated and 
validated Xin’anjiang model was used to predict future daily mean streamflow in the basin. In 
addition, the encounter probability model was established using the joint distribution of occurrence 
dates and magnitudes of daily mean streamflow to investigate the encounter probabilities of flood 
and drought under future climate change. Results show that, for flood occurrence dates, the 
encounter probability during the flood season would decrease in the two future periods while the 
dates would generally be earlier. For flood magnitudes, the encounter probability of the two 
tributaries’ floods and the probability of flood at each tributary would decrease (e.g., the encounter 
probability with the same-frequency of 100-years would reduce by 53% to 95%), which indicates 
reduced risk of future major floods in the study area. For drought occurrence dates, the encounter 
probability during the non-flood season would decrease. For drought magnitudes, the encounter 
probability would decrease (e.g., the encounter probability with the same-frequency of 100-years 
would reduce by 18% to 33%), even though the probability of future drought at each tributary would 
increase. Such analyses provide important probabilistic information to help us prepare for the 
upcoming extreme events. 

Keywords: flood and drought encounter; statistical downscaling model; Xin’anjiang model; copula 
function 

 

  



Water 2020, 12, 104 2 of 25 

 

1. Introduction 

Global climate change accelerates the processes of the global and regional hydrological cycle, 
which alters the spatial and temporal distribution of hydrological events such as precipitation, 
evaporation, and runoff. Consequently, water resources may be redistributed in time and space, 
which increases the occurrence probability of extreme hydrological events [1,2]. The probability of 
future extreme hydrological events has recently become a significant concern in climate change 
research [3,4]. Extreme hydrological events generally have many aspects of characteristics, and 
multivariate analysis can identify their statistical regularities [5,6]. Prediction of the encounter 
probabilities of extreme hydrological events (the probability of the concurrence of several extreme 
hydrological events) is very important for early warnings of possible disasters and disaster 
prevention/reduction under climate change.  

Global Climate Models (GCMs) provide important information about global climate change [7], 
yet, at the coarse resolution, they provide less informed predictions of regional climate characteristics 
and hydrological processes [8]. The errors at the regional scale are particularly large in precipitation 
and temperature [9]. Several methods can be used to downscale global information to a regional scale 
to overcome the spatial scale mismatch [10]. Common downscaling methods generally include 
statistical downscaling methods and dynamic downscaling methods [11,12]. The statistical 
downscaling is widely used because of its simplicity and flexibility [13,14] and has three common 
types: weather classification, weather generators, and transfer functions [15–17]. SDSM [13,18] is one 
of the downscaling models that combines weather generators and transfer functions. Several authors 
have employed the SDSM method to generate future temperature and precipitation in various 
regions over the world and verified its good performance [19–21]. 

The flood (drought) encounter refers to the concurrent flood (drought) of the main stream and 
tributaries (or several tributaries). The calculation of the flood (drought) encounter must take into 
account both the occurrence dates and magnitudes, and the risk of flood (drought) encounter can be 
measured by the encounter probability. Statistical analysis using the historical synchronous flood 
data is usually used for the research of encounter events [22]. However, this method lacks some 
quantitative analysis of the encounter probability of floods. There are few studies on the encounter 
of droughts at present. Given that the encounter probability is a combination problem of joint 
probability (the probability of multiple events occurring at the same time) and marginal probability 
(the probability of one variable taking a specific value irrespective of the values of the others in a 
multivariate distribution), it should be solved through multivariate methods. The Copula function is 
one of the multivariate joint distributions [23–25], which has become widely used since its application 
in hydrology [5,26–29]. 

Prediction of flood and drought in the context of climate change, especially in terms of univariate 
characteristics, has received wide research attention [30–33]. Currently, some studies have considered 
the prediction of the multivariate characteristics of future floods [34,35]. Yet, it comes with limited 
research efforts on exploring the encounter probability and risk of future flood and drought. The 
encounter probability-based prediction of flood and drought events can significantly guide regional 
water resource planning and management, as well as preparation for regional floods and droughts. 

The encounter of floods and droughts in the upper reaches of a river network usually reinforces 
the severity of disasters in the lower reaches, which indicates the importance of encounter probability 
and its variations under the changing climate. To explain this encounter probability, we consider the 
Rao River basin in the northeast of the Poyang Lake basin (Figure 1). SDSM and the Xin’anjiang model 
were combined to simulate the streamflow of Dufengkeng Station (Chang River) and Hushan Station 
(Le’an River) to predict future streamflow. An encounter probability model, which used the copula 
function, was developed to analyze the variation of the risk of the dates and the magnitudes of flood 
and drought encounter for the two tributaries of the Rao River basin under future climate change. In 
this study, the reference period was 1971–2000, and the future prediction periods were 2020–2049 and 
2070-2099 [36]. 
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Figure 1. (a) Location of the Rao River basin. (b) Distribution of meteorological and hydrological 
stations. (c) Corresponding HadCM3 grid points of meteorological and hydrological stations. 

The paper is organized as follows. (1) The calibrated and validated SDSM was used to generate 
future daily precipitation and daily mean temperature based on observed meteorological data, the 
National Centers for Environmental Prediction, and the National Center for Atmospheric Research 
(NCEP/NCAR, hereafter refer to as NCEP) reanalysis data, and GCM output data (the third version of 
the Hadley Centre coupled model, hereafter refer to as HadCM3). (2) The Hamon method was used 
to calculate the current and future potential evapotranspiration by applying daily mean temperature. 
The calibrated and validated Xin’anjiang model was used to predict future daily mean streamflow 
based on future precipitation and potential evapotranspiration. (3) The marginal distribution and 
joint distribution of the occurrence dates and magnitudes of the flood and drought were established, 
and the optimal function was selected to create an encounter probability model of the dates and the 
magnitudes of flood and drought. Then the encounter probabilities and risk of the flood and drought 
for the two tributaries of the Rao River were investigated. 

2. Materials and Methods  

2.1. Study Area and Data 

The Rao River, which is one of the five major rivers of the Poyang Lake system, is located in the 
northeast section of the Poyang Lake basin (Figure 1a). The river has two tributaries known as the 
north branch (the Chang River, 5851 km2) and the south branch (the Le’an River, 8367 km2). Rainfall 
is unevenly distributed throughout the year. The precipitation from April to June accounts for more 
than 60% of the total annual rainfall. Floods occur mainly in this period of the year. 

The data used in this study consists of (1) daily precipitation and daily mean temperature of five 
meteorological stations in the study area from 1961 to 2000, and (2) daily mean streamflow of two 
hydrological stations from 1961 to 2000. The distribution of meteorological and hydrological stations 
is shown in Figure 1b, (3) NCEP reanalysis data, (4) daily data for atmospheric variables in the A2 
and B2 scenarios of the global climate model HadCM3 of the Hadley Center for Climate Prediction 
and Research [37]. The spatial resolution of NCEP (1961-2000 period) is the same as that of the 
HadCM3 model (1961-2099 period), which is 3.75° (longitude) × 2.5° (latitude). Both NCEP reanalysis 
data and HadCM3 data are predictors in the SDSM model, and have been normalized with respect 
to their 1961-1990 means and standard deviations. Because the former can better reflect the actual 
climate state, it is used to establish the statistical relationship with the predictions (precipitation or 
temperature). HadCM3 data are taken into the established statistical relationship to generate 



Water 2020, 12, 104 4 of 25 

 

downscaled precipitation/temperature. The corresponding HadCM3 grid points of the 
meteorological and hydrological stations are shown in Figure 1c. 

In this study, the flood and drought are defined based on daily mean streamflow data. The flood 
refers to the annual maxima of the daily mean streamflow series, and the drought refers to the annual 
minima of the daily mean streamflow series. The common definition of drought is a sequence of low 
precipitation or streamflow values and should be characterized by its length (or duration), intensity, 
and severity. However, this research assumed a simplification. The definition of drought in this 
research is based on the encounter probability model, and the encounter probability of occurrence 
dates is defined based on the dates in which the drought (or flood) occurs. Therefore, we use the 
annual minima of the daily mean streamflow to define drought.  

2.2. SDSM Method 

Statistical downscaling is used to obtain small-scale information by establishing a statistical 
relationship between predictands and predictors. 

𝑌𝑌 = 𝐹𝐹(𝑋𝑋), (1) 

where Y represents a small-scale predictand, X represents large-scale climate predictors, and F 
represents the statistical relationship between Y and X. 

SDSM achieves the predictor-predictand conversion by combining multi-variate regression with 
the stochastic weather generator [13,18]. As a parameter of the local weather generator, the large-
scale predictor is used to determine whether precipitation occurs and to provide the random 
variation of precipitation during wet days. This method can be expressed by the equation below.  

𝜔𝜔𝑡𝑡 = 𝛼𝛼0 + ∑ 𝛼𝛼𝑗𝑗𝑢𝑢�𝑖𝑖
(𝑗𝑗)𝑛𝑛

𝑗𝑗 − 1 + 𝛼𝛼𝑡𝑡 − 1𝜔𝜔𝑡𝑡 − 1 , (2) 

where 𝜔𝜔𝑡𝑡  is the conditional probability of precipitation on day t, 𝑢𝑢�𝑖𝑖
(𝑗𝑗)  is the standardized jth 

predictor, 𝛼𝛼𝑗𝑗 is the regression coefficient calculated by the least-squares method, and 𝜔𝜔𝑡𝑡−1 and 𝛼𝛼𝑡𝑡−1 
are the probability of precipitation and the corresponding regression coefficient on day t−1. The 
values of these two parameters depend on the characteristics of the study area and the predictand. A 
uniformly distributed random number 𝑟𝑟𝑡𝑡（0 ≤ 𝑟𝑟𝑡𝑡 ≤ 1）is generated to determine a wet day when 𝜔𝜔𝑡𝑡 
≤ 𝑟𝑟𝑡𝑡 and a dry day when 𝑟𝑟𝑡𝑡 < 𝜔𝜔𝑡𝑡. 

On wet days, the normalized precipitation Z can be represented by the equation below. 

𝑍𝑍𝑡𝑡 = 𝛽𝛽0 + ∑ 𝛽𝛽𝑗𝑗𝑛𝑛
𝑗𝑗 = 1 𝑢𝑢�𝑖𝑖

(𝑗𝑗) + 𝛽𝛽𝑡𝑡 − 1𝑍𝑍𝑡𝑡 − 1 + 𝜀𝜀, (3) 

where 𝑍𝑍𝑡𝑡 is the value of Z on day t, 𝛽𝛽𝑗𝑗 is the estimated regression parameter, 𝛽𝛽𝑡𝑡−1 and 𝑍𝑍𝑡𝑡−1 are the 
regression parameter and Z on day t−1, and ε is the stochastic component of the normal distribution. 

With the 𝑍𝑍𝑡𝑡, the precipitation 𝑦𝑦𝑡𝑡  on day t can be expressed by the equation below. 

𝑦𝑦𝑡𝑡 = 𝐹𝐹 − 1[∅(𝑍𝑍𝑡𝑡)], (4) 

where ∅ is the normal cumulative distribution function, and 𝐹𝐹 is the empirical distribution function 
of 𝑦𝑦𝑡𝑡 . 

For temperature, there is only randomness on how high the temperature fluctuates, which can 
be represented similarly to Equations (3) and (4). After calibration, one can evaluate the downscaling 
model with statistics such as the coefficient of determination (R2) and root mean square error (RMSE). 

2.3. The Xin’anjiang Model 

The Xin’anjiang model is a watershed hydrological model that is widely used for hydrological 
simulation and prediction in humid and sub-humid regions [38]. The three-water-source Xin’anjiang 
model used in this paper includes the calculations of evapotranspiration, runoff yield, water source 
separation, and runoff concentration. The inputs are precipitation (P) and potential 
evapotranspiration (PET), while the output is the streamflow (Q) at the basin’s outlet. 
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To assess the goodness-of-fit between the simulated and observed streamflow, according to the 
Standard for Hydrological Information and Hydrological Forecasting (SHIHF) [39], Nash-Sutcliffe 
efficiency (NSE) is used to measure the accuracy. 

NSE = 1 − ∑ [𝑦𝑦𝑐𝑐(𝑖𝑖) − 𝑦𝑦0(𝑖𝑖)]2𝑛𝑛
𝑖𝑖 = 1
∑ [𝑦𝑦0(𝑖𝑖) − 𝑦𝑦�0]2𝑛𝑛
𝑖𝑖 = 1

, (5) 

where NSE is the Nash-Sutcliffe efficiency, 𝑦𝑦𝑐𝑐(𝑖𝑖) is the simulating value, 𝑦𝑦0(𝑖𝑖) is the observed value, 
𝑦𝑦�0 is the mean of the observed value, and n is the length of the data series. The forecast accuracy is 
classified into Grade A, B, and C, when NSE ≥ 0.90, 0.90 > NSE ≥ 0.70, and 0.70 > NSE ≥ 0.50, 
respectively. Only when the accuracy of prediction reaches grade A or B, can it be accepted for further 
analysis. 

PET represents the maximum evapotranspiration that can occur from a given underlying surface 
under certain meteorological conditions when the water supply is not limited [40]. The Hamon 
method is one of the common methods to calculate PET, which is simple in calculation and superior 
in performance [40–42]. We chose the Hamon method to calculate PET because we do not have the 
radiation data, which is a requirement in most of the other methods. The calculated PET is used as 
input for further analysis of the Xin'anjiang model. 

2.4. Encounter Probability Model 

(1) Marginal Distribution 
 
Flood occurrence dates are first converted to the radian t (𝑡𝑡 = 𝐷𝐷𝑗𝑗 × 2𝜋𝜋/𝐿𝐿, where 𝐷𝐷𝑗𝑗  represents 

the observed flood of the jth year that occurs on the day 𝐷𝐷𝑗𝑗  of the flood season of the length 𝐿𝐿). Since 
the probability density function of the flood occurrence dates can be either unimodal or multimodal, 
the mixed von Mises distribution (i.e., the probability density function of the flood occurrence dates 
t) is selected as follows. 

f(𝑡𝑡) = ∑ 𝑝𝑝𝑖𝑖
2𝜋𝜋𝐼𝐼0(𝜅𝜅𝑖𝑖)

exp[𝜅𝜅𝑖𝑖 cos(𝑡𝑡 − 𝜇𝜇𝑖𝑖)] , 0 ≤ 𝑡𝑡 ≤ 2𝜋𝜋, 0 ≤𝑚𝑚
𝑖𝑖 = 1 𝜇𝜇𝑖𝑖 ≤ 2𝜋𝜋, 𝜅𝜅𝑖𝑖 > 0, (6) 

where i is the component of the mixed von Mises distribution, m is the number of components, 𝑝𝑝𝑖𝑖  is 
the mixing ratio, 𝜇𝜇𝑖𝑖 is the location parameter, 𝜅𝜅𝑖𝑖 is the scale parameter, and 𝐼𝐼0(𝜅𝜅𝑖𝑖) is the first-class 
Bessel function with a zero-order correction. 

According to the Regulations for Calculating Design Flood of Water Resources and Hydropower 
Projects [43], the Pearson type III (P-III) distribution is used as the marginal distribution of the flood 
magnitudes q, and its probability density function is shown below. 

f(𝑞𝑞) = 𝛽𝛽𝛼𝛼

𝛤𝛤(𝛼𝛼)
(𝑞𝑞 − 𝛿𝛿)𝛼𝛼 − 1 exp[−𝛽𝛽(𝑞𝑞 − 𝛿𝛿)] ,𝛼𝛼 > 0,𝛽𝛽 > 0, 𝛿𝛿 ≤ 𝑞𝑞 < ∞, (7) 

where 𝛼𝛼, 𝛽𝛽, and 𝛿𝛿 are the shape, scale, and location parameters of the P-III distribution, and 𝛤𝛤(𝛼𝛼) is 
the gamma function. 

Similarly, this method can be applied to the marginal distribution of the occurrence dates and 
magnitudes of drought. 

 
(2) Joint Distribution 

 
The copula function is a multivariate joint distribution function that is uniformly distributed 

from zero to one. Assuming that 𝐹𝐹𝑋𝑋1(𝑥𝑥1) and 𝐹𝐹𝑋𝑋2(𝑥𝑥2) are the marginal distribution functions of the 
random variables 𝑋𝑋1  and 𝑋𝑋2 , the joint distribution function of 𝑋𝑋1  and 𝑋𝑋2  defined by the two-
variable copula function is shown below. 

𝐹𝐹(𝑥𝑥1, 𝑥𝑥2) = 𝐶𝐶 �𝐹𝐹𝑋𝑋1(𝑥𝑥1),𝐹𝐹𝑋𝑋2(𝑥𝑥2)� = 𝐶𝐶(𝑢𝑢, 𝑣𝑣), (8) 

where the copula function C connects the marginal distribution of two random variables, forming the 
joint distribution of the two variables.  
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The Archimedean copula function is frequently used due to its simple structure, ease of 
calculation, variety of forms, and great adaptability [44,45]. Table 1 shows several common two-
dimensional Archimedean copula functions. The relationship between the parameter (θ) of the 
copula function and the Kendall rank correlation coefficient (τ) is used to estimate θ. 

Table 1. Several types of the two-dimensional Archimedean Copula function. 

Types Copula Formula The Relationship between θ and τ 
Gumbel-Hougaard 
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The ordinary least square criterion (OLS) and Akaike information criterion (AIC) are used to 

evaluate the fitting of the copula function [46]. The smaller the OLS value (AIC value) is, the better 
the fit of the copula function will be. 

 
(3) Establishment of the Encounter Probability Model 

 
The copula function is used to represent the joint distributions of the flood occurrence date and 

flood magnitudes at the two hydrological control stations of the tributaries of the Rao River. 

F(𝑡𝑡𝐷𝐷, 𝑡𝑡𝐻𝐻) = 𝐶𝐶(𝐹𝐹𝑇𝑇𝐷𝐷(𝑡𝑡𝐷𝐷),𝐹𝐹𝑇𝑇𝐻𝐻(𝑡𝑡𝐻𝐻)), (9) 

F(𝑞𝑞𝐷𝐷 , 𝑞𝑞𝐻𝐻) = 𝐶𝐶(𝐹𝐹𝑄𝑄𝐷𝐷(𝑞𝑞𝐷𝐷),𝐹𝐹𝑄𝑄𝐻𝐻(𝑞𝑞𝐻𝐻)), (10) 

where 𝑇𝑇𝐷𝐷 and 𝑇𝑇𝐻𝐻  represent the flood occurrence dates at Dufengkeng Station (D) in the Chang River 
and Hushan Station (H) in the Le’an River. 𝑄𝑄𝐷𝐷 and 𝑄𝑄𝐻𝐻  represent the flood magnitudes at the two 
stations. 𝐹𝐹𝑇𝑇𝐷𝐷(𝑡𝑡𝐷𝐷) and 𝐹𝐹𝑇𝑇𝐻𝐻(𝑡𝑡𝐻𝐻) are the marginal distributions of the flood occurrence dates at the two 
stations and 𝐹𝐹𝑄𝑄𝐷𝐷(𝑞𝑞𝐷𝐷) and 𝐹𝐹𝑄𝑄𝐻𝐻(𝑞𝑞𝐻𝐻) are the marginal distributions of the flood magnitudes at the two 
stations. 

A flood encounter occurs when the flood of the two tributaries appear on the same day. When 
the flood magnitudes are not considered, the flood encounter refers to the dates when a flood 
encounter occurs. There are some limitations due to the simplification of our model design. This 
study does not take into account the situation that the floods occurred on adjacent dates in the two 
tributaries, which will also lead to a large flood downstream. The probability of the maximum flood 
occurrence date of the two tributaries on the ith day is shown below. 

𝑝𝑝𝑖𝑖 = 𝑃𝑃(𝑡𝑡𝑖𝑖 ≤ 𝑇𝑇𝐷𝐷 < 𝑡𝑡𝑖𝑖 + 1, 𝑡𝑡𝑖𝑖 ≤ 𝑇𝑇𝐻𝐻 < 𝑡𝑡𝑖𝑖+1) = 𝐹𝐹𝑇𝑇(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖) + 𝐹𝐹𝑇𝑇(𝑡𝑡𝑖𝑖+1, 𝑡𝑡𝑖𝑖+1) − 𝐹𝐹𝑇𝑇(𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑖𝑖 + 1) −
𝐹𝐹𝑇𝑇(𝑡𝑡𝑖𝑖 + 1, 𝑡𝑡𝑖𝑖), (11) 

where 𝐹𝐹𝑇𝑇�𝑡𝑡𝑖𝑖 , 𝑡𝑡𝑗𝑗� is the joint probability of the maximum annual flood occurring before day i in station 
D and day j in station H. 

The probability of flood occurrence in the flood season is shown below. 

𝑃𝑃𝑇𝑇 = ∑𝑝𝑝𝑖𝑖, (12) 

The probability of the two tributaries experiencing a flood greater than a particular magnitude 
(or within a particular return period) is shown below. 

𝑝𝑝𝑇𝑇 = 𝑃𝑃(𝑄𝑄𝐷𝐷 > 𝑞𝑞𝐷𝐷𝑇𝑇 ,𝑄𝑄𝐻𝐻 > 𝑞𝑞𝐻𝐻𝑇𝑇) = 1 − 𝐹𝐹𝑄𝑄𝐷𝐷(𝑞𝑞𝐷𝐷) − 𝐹𝐹𝑄𝑄𝐻𝐻(𝑞𝑞𝐻𝐻) + 𝐹𝐹(𝑞𝑞𝐷𝐷 , 𝑞𝑞𝐻𝐻), (13) 

where 𝑄𝑄𝐷𝐷  and 𝑄𝑄𝐻𝐻  represent the flood magnitudes at stations D and H, and 𝑞𝑞𝐷𝐷𝑇𝑇  and 𝑞𝑞𝐻𝐻𝑇𝑇  are the 
design floods of the two tributaries with T-year return periods. Since the correlation between the 
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dates and the magnitudes of the maximum flood occurrence is small, they can be regarded as 
independent events. In the flood season, the probability of the two tributaries experiencing flood 
occurrence and both of the floods greater than a certain magnitude (a particular return period) is 
shown below. 

𝑃𝑃 = 𝑃𝑃𝑇𝑇 × 𝑃𝑃𝑇𝑇, (14) 

The establishment of the encounter probability model of drought is the same as that of flood. 
However, the probability in Equation (13) needs to be changed to that of the two tributaries 
experiencing a drought smaller than a particular magnitude (or within a particular return period), 
which is shown below. 

𝑝𝑝𝑇𝑇 = 𝑃𝑃(𝑄𝑄𝐷𝐷 < 𝑞𝑞𝐷𝐷𝑇𝑇 ,𝑄𝑄𝐻𝐻 < 𝑞𝑞𝐻𝐻𝑇𝑇) = F(𝑞𝑞𝐷𝐷 , 𝑞𝑞𝐻𝐻), (15) 

3. Results and Discussion 

3.1. Predictions of Future Precipitation and Temperature 

3.1.1. Calibration and Validation of SDSM 

SDSM was used to establish a statistical model between large-scale predictors and regional 
predictands. The predictors suitable for downscaling of daily precipitation and daily mean 
temperature at five meteorological stations were selected from the 26 atmospheric predictor variables 
of the NCEP data. Predictors were screened based on the correlation between predictands and 
predictors. The explained variance and partial correlation coefficients between the two were used as 
screening criteria. The larger explained variance and partial correlation coefficient suggest a 
potentially reliable predictor. The predictors for the five stations in this study were screened station 
by station, and the selected predictors of each station are shown in Table 2. 

Table 2. Selected predictors for different predictands of the five meteorological stations in SDSM. 

Predictands 
Predictors 

Qimen Jingdezhen Leping Dexing Wuyuan 

Precipitation 
(mm) 

p5_v, p500, 
p8_z, r850, 

rhum 

p5_v, p5th, 
p8_z, r500, 
r850, rhum 

p5_v, p8_v, 
p8_z, r500, 
r850, rhum 

p5_v, p500, 
p5th, p8_z, 
r500, r850, 

rhum 

p5_v, p5th, 
p8_z, r500, 
r850, rhum 

Temperature 
(℃) 

mslp, p500, 
p850, shum, 

temp 

mslp, p500, 
p850, shum, 

temp 

mslp, p500, 
p850, shum, 

temp 

mslp, p500, 
p850, shum, 

temp 

mslp, p500, 
p850, shum, 

temp 

Note: p5 and p8 represent 500 hPa and 850 hPa. v represents the meridional wind velocity. z 
represents the vorticity. th represents the wind direction. p500 and p850 represent the geopotential 
height of 500 hPa and 850 hPa. r500, r850, and rhum represent the relative humidity at 500 hPa, 850 
hPa, and the sea level. mslp represents the mean sea level pressure. shum represents the specific 
humidity near the surface. temp represents the mean temperature. 

Observed daily precipitation and daily mean temperature at the five meteorological stations and 
the selected predictors (in the period of 1961-2000) were used to calibrate and validate SDSM. Model 
calibration and validation were performed with data from 1961 to 1990 and from 1991 to 2000, 
respectively. Table 3 shows the coefficient of determination (R2) and root mean square error (RMSE) 
of daily precipitation and daily mean temperature for each station in the model calibration and 
validation periods. The table demonstrates that, in the calibration period, R2 for daily precipitation of 
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the five meteorological stations was between 24.8% and 38.1%. RMSE was between 10.84 mm and 
11.29 mm. R2 for the daily mean temperature was between 69.1% and 71.8%, and RMSE was between 
1.66 °C and 1.82 °C. In the validation period, R2 for daily precipitation of the five meteorological 
stations was between 28.1% and 35.8%, and RMSE was between 12.64 mm and 14.23 mm. R2 for the 
daily mean temperature was between 68.2% and 73.7%, and RMSE was between 0.63 °C and 1.85 °C. 
Precipitation downscaling is more problematic than temperature because daily precipitation 
amounts at individual sites are relatively poorly resolved by regional-scale predictors, and because 
precipitation is a conditional process in SDSM (i.e., both the occurrence and amount processes must 
be specified) [18]. Scholars used the SDSM model to downscale precipitation in different regions of 
the world. The average value of the coefficient of determination of daily precipitation is usually less 
than 30% [21,47,48]. Therefore, the coefficient of determination of precipitation in this paper indicates 
good performance of precipitation downscaling. Figures 2 and 3 further demonstrate the observed 
and simulated daily precipitation and daily mean temperature for each month. Figure 2 illustrates 
that the SDSM model gave good simulation results for daily precipitation, and the simulated values 
in each month were similar to the observed values except for a few cases. Figure 3 shows that the 
simulated daily mean temperature over the whole year was close to the observed value. The fitting 
for each station in each month was satisfactory. 

Table 3. The coefficient of determination (R2) and root mean square error (RMSE) of daily precipitation 
and daily mean temperature for each station in the calibration and validation periods. 

Stations Period 
Precipitation (mm) Temperature (℃) 

R2 (%) RMSE (mm) R2 (%) RMSE (℃) 

Jingdezhen 
calibration 24.8 10.84 70.1 1.78 
validation 28.1 12.64 73.7 1.76 

Qimen 
calibration 38.1 11.1 71.8 1.66 
validation 29 14.1 73.4 0.63 

Leping 
calibration 26 11.21 70.9 1.78 
validation 31 13.61 72.6 1.78 

Dexing 
calibration 25.5 11.29 69.6 1.82 
validation 35.8 13.62 68.2 1.85 

Wuyuan 
calibration 26.7 11.23 69.1 1.78 
validation 34.1 14.23 69.8 1.77 
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Figure 2. Observed and simulated daily precipitation for the five meteorological stations in the 
validation period. 
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Figure 3. Observed and simulated daily mean temperature for the five meteorological stations in the 
validation period. 

3.1.2. Predictions of Future Precipitation and Temperature 

Based on the output of the HadCM3 model, the future daily precipitation and daily mean 
temperature for the five stations are predicted. Figure 4 represents annual mean precipitation and 
annual mean temperature for the two future periods under the A2 and B2 scenarios. The figure 
indicates that the annual mean precipitation decreases, while the annual mean temperature increases 
for the two future periods in both the A2 and B2 scenarios when compared with the reference period. 
These results are consistent with other independent studies using the most recent climate model 
outputs. For example, the projection by Guan [49] under the Representative Concentration Pathway 
(RCP) 4.5 scenario showed that the annual mean precipitation would decrease and the annual mean 
temperature would increase from 2020 to 2099 in most areas of the middle and lower reaches of the 
Yangtze River, China. Bao et al. [50] showed that the annual mean precipitation would decrease when 
compared with 1976-2005 in Southern China during 2031-2050 under RCP 4.5 scenario. Tian et al. [51] 
showed that the annual mean temperature continued to increase from the 1970s to the end of the 21st 
century in China under the RCP2.6, RCP4.5, and RCP8.5 scenarios. 
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Figure 4. Annual mean precipitation and temperature for the two future periods in the A2 and B2 
scenarios. 

3.2. Predictions of Future Runoff 

3.2.1. Calibration and Validation of the Xin’anjiang Model 

Daily potential evapotranspiration was calculated by Hamon’s equation using the daily mean 
temperature. The daily precipitation and potential evapotranspiration were then used as inputs to the 
Xin’anjiang model to simulate the outlet daily mean streamflow of Dufengkeng Station and Hushan 
Station. The observed daily mean streamflow for the two stations in the period 1961-1990 and 1991-
2000 were used for model calibration and validation, respectively. The calibrated parameters are 
shown in Table 4. 

Table 4. The calibrated parameters for the Xin’anjiang model. 

Outlet 
stations 

WM WUM WLM  KE   B  SM  EX  CI  CG  IMP  C   KI   KG  N  NK 

Dufengkeng  120   20   70   0.98  0.35  21  1.2  0.2  0.5  0.02  0.18  0.88  0.98  2   2.8 
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Hushan  120   20   70   0.85  0.40  25  1.2  0.2  0.5  0.02  0.18  0.90  0.98  2   2.8 
Note: WM represents areal mean tension water capacity. WUM represents areal mean tension water 
capacity of the upper layer. WLM represents areal mean tension water capacity of the lower layer. KE 
represents the evaporation coefficient. B represents the tension water distribution index. SM 
represents the areal mean free water capacity of the surface soil layer. EX represents the free water 
distribution index. CI represents the recession constant of the interflow storage. CG represents the 
recession constant of the groundwater storage. IMP represents an impermeable coefficient. C 
represents a coefficient of deep evapotranspiration. KI represents outflow coefficients of the free water 
storage to interflow. KG represents outflow coefficients of the free water storage to groundwater. N 
represents the parameter n of the Nash model. NK represents the number of time steps. 

Boxplots of the calculated Nash-Sutcliffe efficiency (NSE) of each year for the calibration and 
validation periods are shown in Figure 5. It shows that the medians of NSE for the Dufengkeng 
Station and Hushan Station were 0.771 and 0.835 in the calibration period and were 0.845 and 0.832 
in the validation period. The range of NSE for Dufengkeng Station and Hushan Station were within 
0.703-0.888 and 0.720-0.913 in the calibration period and were within 0.706-0.931 and 0.766-0.912 in 
the validation period. Therefore, all NSE of the two stations were >0.7, which met the precision 
requirements of SHIHF. Figure 6 compares the observed and simulated streamflow for Dufengkeng 
Station and Hushan Station in the calibration and validation periods (in the cases of 1966 and 1995 
with moderate simulation results). The simulated streamflow is close to the observed one, which 
demonstrates the ability of the constructed Xin’anjiang model in simulating the streamflow process 
in the two hydrological stations. 

 
Figure 5. Boxplots of the Nash-Sutcliffe efficiency (NSE) in the calibration and validation periods for 
the Xin’anjiang model. 
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Figure 6. Observed and simulated streamflow in the calibration and validation periods. 
(a)Dufengkeng Station, 1966. (b) Dufengkeng Station, 1995. (c) Hushan Station, 1966. (d) Hushan 
Station, 1995. 

3.2.2. Predictions of Future Runoff 

Predicted daily mean streamflow for Dufengkeng Station and Hushan Station in the periods of 
2020-2049 and 2070-2099 were obtained from the calibrated Xin’anjiang model using predicted future 
daily precipitation and potential evapotranspiration. Figure 7 shows the average annual runoff for 
both stations for the two future periods in the A2 and B2 scenarios. As can be seen, the runoff would 
decrease for the two future periods in both the A2 and B2 scenarios when compared with the 
reference period. These results are consistent with the findings from Liu et al. [52], who also showed 
that the future annual runoff would decrease in the Rao River basin under A2 and B2 scenarios. The 
runoff of the same future period has few differences in these two scenarios, while the runoff in the 
second period is less than that of the first period, which shows the decrease of available water 
resources. 

 
Figure 7. Average annual runoff for Dufengkeng Station and Hushan Station in the two future periods 
for the A2 and B2 scenarios. 

3.3. Probability Analysis of Future Flood Encounters 

3.3.1. Establishment of the Marginal Distribution 

The flood, mainly occurring in the flood season (April-September), refers to the annual maxima 
of the daily mean streamflow series in this study. The occurrence dates of the flood can be treated as 
a circular quantity and, thus, were converted into radians. The mixed von Mises distribution was 
used to fit the marginal distribution of flood occurrence dates, and the parameters were estimated by 
the maximum likelihood method. The Pearson type III (P-III) distribution was used to fit the marginal 
distribution of the flood magnitudes, and the parameters were estimated using L-moments. Table 5 
shows the marginal distribution parameters and RMSE between the theoretical probability and the 
empirical frequency for Dufengkeng Station and Hushan Station in the reference period. The 
marginal distribution of the flood occurrence dates has 3 × 4 parameters since the probability density 
function is multimodal. Table 6 indicates that the RMSE values for the marginal distributions of the 
occurrence dates and magnitudes for the two stations are rather small, which justifies the selection of 
the mixed von Mises distribution and P-III. 

Table 5. Marginal distribution parameters and RMSE between the theoretical probability and the 
empirical frequency for Dufengkeng Station and Hushan Station in the reference period. 

Stations 
Mixed von Mises Distribution Pearson Type Ⅲ Distribution 
Ρi Κi μi RMSE α β δ RMSE 

Dufengkeng 
0.14 40.11 2.96 

0.023 1.25 1478.44 1308.52 0.033 
0.19 1.12 1.57 
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0.39 22.56 3.26 
0.28 3.92 2.36 

Hushan 

0.21 12.92 0.5 

0.029 20.55 329.16 −2906.34 0.028 
0.21 52.16 2.96 
0.22 27.52 3.31 
0.36 3.15 2.61 

Table 6. Parameter estimation and fitting results for the joint distribution of flood occurrence dates 
and magnitudes in the reference period. 

Types 
Occurrence Dates Magnitudes 
θ OLS AIC θ OLS AIC 

GH 1.54 0.035 −198.90 1.66 0.03 −207.55 
Clayton 1.09 0.046 −182.31 1.32 0.046 −182.31 
Frank 3.54 0.038 −194.28 4.12 0.038 −194.28 

 
The estimated flood quantiles in different return periods were calculated based on the marginal 

distribution of the flood magnitudes. The results show the return period of certain flood quantiles 
will be longer in the two future periods relative to the reference period for Hushan and Dufengkeng 
stations, which suggests a lower risk of a future major flood at each station. For instance, the 
estimated flood quantile of the 50-year-return-period at Hushan Station is 7262.88 m3/s, while the 
return period of such an estimated quantile in the future is about 60 years (A2: 2020-2049), 80 years 
(A2: 2070-2099), 180 years (B2: 2020-2049), and 300 years (B2: 2070-2099), respectively. The situation 
at Dufeng Station is the same as that of Hushan Station. These marginal distributions were then used 
to explore the flood encounter probability, which may significantly reinforce the severity of the flood 
disaster. 

3.3.2. Establishment of the Joint Distribution 

Kendall coefficients of rank correlation were used to calculate the parameters of three commonly 
used copula functions (see Table 1). The goodness of fit test was conducted on the three copula 
functions using the ordinary least square criterion (OLS) and the Akaike information criterion (AIC). 
Table 6 gives the parameters fitting results for the joint distribution of flood occurrence dates and 
magnitudes in the reference period. Table 6 implies that the Gumbel-Hougaard (GH) copula function 
has the least OLS and AIC values for both flood occurrence dates and magnitudes and, thus, was 
selected for the encounter probability study. Figure 8 shows the relevance between the empirical 
frequencies and theoretical probabilities of the flood occurrence dates and magnitudes when the GH 
copula function was used for the joint distribution, and Figure 9 shows the fitting results. Figure 8 
indicates that the dots of empirical frequencies and theoretical probabilities fall near 1:1 line and that 
the coefficient of determination R2 is larger than 0.98. The observed and the modeled distribution 
curves are close to each other (Figure 9), which justifies the application of the GH copula function for 
the joint distribution of flood occurrence dates and magnitudes. 



Water 2020, 12, 104 15 of 25 

 

 
Figure 8. Correlation between empirical frequencies and theoretical probabilities for flood occurrence 
dates and magnitudes. (a) Flood occurrence dates. (b) Flood magnitudes. 

 
Figure 9. Fitting of the empirical frequencies and theoretical probabilities for flood occurrence dates 
and magnitudes. (a) Flood occurrence dates. (b) Flood magnitudes. 

3.3.3. Flood Encounter Analysis 

After the marginal distribution and joint distribution are obtained, the encounter probability 
model of flood occurrence dates and magnitudes can be established and analyzed. Figure 10 
represents the encounter probability of flood occurrence dates in the flood season, derived from the 
two tributaries of the Rao River in the reference period and two future periods for the A2 and B2 
scenarios. The flood encounter of the two tributaries might occur in late June to early July, with a 
probability >0.001 in the reference period. In the A2 and B2 scenarios, the flood encounter of the two 
tributaries is likely to occur from April to July in 2020-2049. In scenario A2, the flood encounter risk 
in late June and late July will be greater than that at other times, with the probabilities of about 0.000 
33 and 0.000 37. In scenario B2, the flood encounter risk in early June and late June is greater than that 
at other times, with the probabilities of about 0.00047 and 0.00036. In both the A2 and B2 scenarios, 
floods of the two tributaries are both likely to occur in April and June in 2070-2099 and the encounter 
risk in April is greater than that in June, with the probabilities of about 0.00032 (scenario A) and 0.0018 
(scenario B). Meanwhile, the cumulative encounter probability in the two future periods is smaller 
than that in the reference period. Generally, the flood encounter dates of the two tributaries in the 
reference period concentrate from late June to early July, and the encounter probability is relatively 
large. The flood encounter dates have multiple high probabilities in the flood season in the two future 
periods for the two scenarios, and the encounter probability is relatively small when compared with 
the reference period except for the period 2070-2099 in the B2 scenario. Furthermore, the flood 
encounter dates are generally earlier in the future scenarios than that in the reference period. 
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Figure 10. Encounter probability of flood occurrence dates in the flood season. (a) The reference 
period. (b) 2020-2049 period of scenario A2. (c) 2070-2099 period of scenario A2. (d) 2020-2049 period 
of scenario B2. (e) 2070-2099 period of scenario B2. 

Figure 11 shows the flood encounter probability of the two tributaries of the Rao River for 
different return periods in the flood season during the reference period and the two future periods 
in the A2 and B2 scenarios. From this figure, one can obtain the flood encounter probability of the 
same-frequency flood and different-frequency flood in the two tributaries with different return 
periods (10, 50, 100, and 200 years, respectively). By analyzing the five subfigures, one can find that 
the flood encounter probability of the future two periods will decrease when compared with the 
reference period. For example, the encounter probability of floods with the same-frequency of 50-
year-return-period in the reference period is about 0.00025, while the encounter probability of floods 
with different-frequency of a 50-year-return-period and a 100-year-return-period is about 0.00018. In 
the A2 scenario, the encounter probability of floods with the same-frequency of 50-year-return-period 
in the period of 2020-2049 is merely 0.00012, while the encounter probability of floods with different-
frequency of 50-years and 100-years is 0.00008. 
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Figure 11. Encounter probability of flood magnitudes with different return periods in the flood 
season. (a) The reference period. (b) 2020-2049 period of scenario A2. (c) 2070-2099 period of scenario 
A2. (d) 2020-2049 period of scenario B2. (e) 2070-2099 period of scenario B2. 

Figure 12 shows the changes in the encounter probability of the two tributaries in the two future 
periods of the A2 and B2 scenarios compared with the reference period. It can be seen from the figure 
that the encounter probability of floods with the same-frequency of 20-year, 50-year, 100-year, and 
200-year in the period of 2020-2049 and 2070-2099 for both scenarios will decrease when compared 
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with the reference period, which is reduced by more than 52% to 97%. That is, compared with the 
reference period, the encounter probability of floods with the same-frequency in the two future 
periods in both scenarios will decrease. 

 
Figure 12. Changes in the encounter probabilities of floods with the same-frequency in comparison 
with the reference period. 

In summary, the probability of a future major flood at each station will decrease, according to 
the estimated quantiles of marginal distribution of flood, and the flood encounter probability of the 
two tributaries for different return periods will also decrease in the two future periods when 
compared with the reference period. This shows the reduced risk of future major flood in the study 
area. 

3.4. Probability Analysis of a Future Drought Encounter 

The encounter probability of droughts was calculated in the same way as in Section 3.3. First, 
the annual minimum series of daily mean streamflow (refer to as drought in this study) for each 
station is selected. According to the analysis of the long-term series data in each station, the drought 
mainly occurred in the non-flood season (October-May). The mixed von Mises distribution and the 
P-III distribution are then used to establish the marginal distributions of the drought occurrence dates 
and magnitudes. Next, the marginal probability of future drought is also estimated in Section 3.3. 
Lastly, through the test, the GH Copula function is selected to calculate the joint distribution of the 
drought occurrence dates and magnitudes (the related figures and tables are not shown). 

The estimated drought quantiles in different return periods were also calculated based on the 
marginal distribution of the drought magnitudes. Results show the return period of certain drought 
quantiles will be shorter in the two future periods relative to the reference period for Hushan Station 
and Dufengkeng Station, which suggests the increased probability of future major droughts at each 
station. For instance, the drought quantile of the 50-year-return-period at Hushan Station is 4.25 m3/s, 
while the return period of such an estimated quantile in the future is about 40 years (A2: 2020-2049), 
10 years (A2: 2070-2099), 20 years (B2: 2020-2049), and 10 years (B2: 2070-2099), respectively. The 
situation at Dufeng Station is the same as that of Hushan Station.  

Figure 13 presents the encounter probability of drought occurrence dates in the non-flood season, 
derived from the two tributaries in the reference period and two future periods for the A2 and B2 
scenarios. First, different from the encounter probability of flood occurrence dates, which is generally 
unimodal in the reference period and two future periods (figure 10), the encounter probability of the 
drought is primarily multimodal, that is, the encounter dates are more dispersed for the drought. 
Global warming not only can change the hydrometeorological process at an annual scale but also 
may alter the seasonality [53]. Monthly variations in precipitation and temperature may result in the 
multimodal encounter probability of drought (or flood) occurrence dates. It remains a challenging 
and open area of research that modeling climate change at high temporal resolutions [54,55]. 
Therefore, there are still some uncertainties. Next, although the encounter probability of drought 
occurrence dates in the two future periods is multimodal, the probability of the main peak is smaller 
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than that in the reference period. The cumulative encounter probability in the two future periods is 
also smaller than that in the reference period. In terms of the encounter dates, the flood is advanced 
relative to the reference period under future climate scenarios, but the drought has no significant 
advance or delay. In summary, the drought encounter dates have multiple high probabilities in the 
non-flood season during the reference period and the two future periods in the two scenarios, and 
the encounter probability in the two future periods is relatively small when compared with the 
reference period. 

 
Figure 13. Encounter probability of drought occurrence dates in the non-flood season. (a) The 
reference period. (b) 2020-2049 period of scenario A2. (c) 2070-2099 period of scenario A2. (d) 2020-
2049 period of scenario B2. (e) 2070-2099 period of scenario B2. 

Figure 14 shows the drought encounter probability of the two tributaries for different return 
periods in the non-flood season during the reference period and the two future periods in the A2 and 
B2 scenarios. From the figure, the encounter probability of the same-frequency drought and different-
frequency drought in the two tributaries with different return periods (10, 50, 100, and 200 years, 
respectively) can be obtained. By analyzing the five subfigures, it can be seen that the drought 
encounter probability of the future two periods in the two scenarios will decrease compared with the 
reference period. For example, the encounter probability of drought with the same-frequency of a 50-
year-return-period in the reference period is about 0.000016, while the encounter probability of 
drought with a different frequency of 50-year-return-period and 100-year-return-period is about 
0.000008. In the A2 scenario, the encounter probability of drought with the same-frequency of a 50-
year-return-period in the period of 2020-2049 is merely 0.000011. The encounter probability of 
drought with different-frequency of 50-years and 100-years is 0.000005. 
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Figure 14. Encounter probability of drought in the non-flood season. (a) The reference period. (b) 
2020-2049 period of scenario A2. (c) 2070-2099 period of scenario A2. (d) 2020-2049 period of scenario 
B2. (e) 2070-2099 period of scenario B2. 

Figure 15 represents the changes in the drought encounter probability of the two tributaries in 
the two future periods of the A2 and B2 scenarios compared with the reference period. The encounter 
probability of drought with the same frequency of 20-years, 50-years, 100-years, and 200-years in the 
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period of 2020-2049 and 2070-2099 for both scenarios will decrease when compared with the reference 
period, which is reduced by 18% to 34%. That is, compared with the reference period, the encounter 
probability of drought with the same frequency in the two future periods in both scenarios will 
decrease, which is the same as the above conclusions.  

 
Figure 15. Changes in the encounter probabilities of drought with the same frequency in comparison 
with the reference period. 

The analysis of the major drought risk should consider comprehensively the changes of the 
single station probability and the encounter probability of the upstream stations. On the one hand, 
the probability of future major drought at each station will increase according to the estimated 
quantiles of the marginal distribution of drought. On the other hand, the drought encounter 
probability of the two tributaries for different return periods will decrease in the two future periods 
compared with the reference period. In summary, the risk of future major drought can be greater or 
lower compared with the reference period. 

In this study, the risk of future major flood will mitigate, and the risk of future major drought 
can be greater or lower in the study area in the two future periods of the A2 and B2 scenarios when 
compared with the reference period. Arnell et al. [56] made an assessment of the implications of 
climate change for global river flood risk based on 21 climate models in the the Coupled Model 
Intercomparison Project Phase 3 (CMIP3) multi-model dataset. The results of some climate models 
indicated that the risk of flooding in East Asia would decrease in the future, which is consistent with 
the findings in this study. Sheffield et al. [57] predicted the changes of drought under future global 
warming from multiple models and scenarios. The results showed that the frequency of short-term 
droughts would increase from the mid-twentieth century to the end of the twenty-first century 
globally. The results of Lehner et al. [58] showed that Southeastern Asia saw no significant change in 
drought risk under any future scenario. Hirabayashi et al. [59] provided the global distribution of the 
multi-model median return period from 1971-2000 for the 100-year-return-period flood discharge in 
2071-2100 in RCP scenarios. However, the results showed that the frequency of flood occurrence 
would increase (the return period decreases) across large areas of East Asia. The above literature 
shows that there are still many uncertainties in predicting future flood and drought risks in the 
context of climate warming. 

The encounter probabilities and risk of floods and droughts will change under future climate 
change, according to our results. However, there are uncertainties in the prediction of future climate 
change based on GCMs. As for the significance of the changes, we are not sure about the magnitude 
of the changes, but are more concerned about the direction of the changes. Compared with the 
quantitative estimation of the changes of the encounter probabilities of future floods and droughts, 
this study pays more attention to understand whether the encounter probability and risk of flood and 
drought will change under future climate scenarios, so as to better cope with the future flood and 
drought disasters. 

4. Conclusions 
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In this study, SDSM was used to generate future precipitation and temperature in the Rao River 
basin based on GCM data. Future streamflow in the Rao River basin was then obtained from the 
Xin’anjiang model utilizing the output from SDSM. The GH copula function was used to create an 
encounter probability model. The changes of future precipitation, temperature, and streamflow were 
studied and the changes in the encounter probabilities of flood and drought occurrences in the basin 
were further explored under the two climate scenarios of A2 and B2. The results of the research lead 
to the following conclusions. 

(1) SDSM provided a good fit for future daily precipitation and daily mean temperature. The 
annual mean precipitation would decrease and the annual mean temperature would increase during 
the two future periods in the A2 and B2 scenarios when compared with the reference period. The 
Xin’anjiang model accurately simulated the daily mean streamflow at the hydrologic stations in the 
two tributaries of the Rao River. The average annual runoff would decrease in the two future periods 
for both scenarios. 

(2) For flood occurrence dates, the encounter of the two tributaries’ floods concentrated from 
late June to early July in the reference period, while the encounter dates have multiple high 
probabilities in the flood season during the two future periods. The encounter probability of floods 
occurring in the flood season would both decrease in the two future periods, and the dates would 
generally be advanced under future climate change scenarios.  

(3) For flood magnitudes, the encounter probability with the same frequency and different 
frequencies would both decrease in the two future periods when compared with the reference period 
(e.g., the encounter probability with the same-frequency of 100-year would reduce by 53% to 95%), 
and the probability of future flood at each station would also decrease. It indicates that the risk of a 
major flood would mitigate in the two future periods in the study area. 

(4) For drought occurrence dates, the encounter dates of the two tributaries’ drought have 
multiple high probabilities in the non-flood season during the reference period and the two future 
periods in the two scenarios. The encounter probability would decrease in the two future periods 
when compared with the reference period.  

(5) For drought magnitudes, the encounter probability with the same frequency and different 
frequencies would both decrease in the two future periods when compared with the reference period 
(e.g., the encounter probability with the same frequency of 100-years would reduce by 18% to 33%), 
but the probability of future drought at each station would increase. It indicates that the risk of future 
major drought can be greater or lower compared with the reference period.  

This work is a new attempt on exploring the encounter probability and risk of future flood and 
drought of different sub basins under future climate change, using GCM data, a downscaling method, 
a hydrological model, and a copula function method. The results of this paper are helpful to 
understand the changes of flood and drought risk with the changes of occurrence time and 
magnitude of flood and drought under future climate scenarios.  

We recognize that a single GCM may be limited for describing uncertainties in climate 
projections and new future climate scenarios of RCP can provide more updated information on 
climate change. However, the current study mainly focuses on the methodology to estimate the 
encounter probability and risk of future flood and drought. In addition, the methodology developed 
in this research will be easily applied in different regions in other climate models or scenarios. 
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