Eggshell-supported Catalysts for the Advanced Oxidation Treatment of Humic Acid Polluted Wastewaters

Paula Oulego*, Amanda Laca, Sonia Calvo and Mario Díaz*

Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería, s/n. 33071 Oviedo, Spain; lacaamanda@uniovi.es (A.L.); sonia10_3095@hotmail.com (S.C.)

* Correspondence: oulegopaula@uniovi.es (P.O.); mariodiaz@uniovi.es (M.D.); Tel.: +34-985-10-34-43 (P.O.); +34-985-10-34-39 (M.D.)

Received: 31 October 2019; Accepted: 25 December 2019; Published: date

Table of contents

- 1. Instrumental parameters for the determination of the iron and copper content by ICP-MS (Table S1).
- 2. N₂ adsorption-desorption isotherms of the calcined eggshell and the iron and copper supported catalysts (Figure S1).
- 3. Textural properties of the calcined eggshell and the iron and copper supported catalysts (Table S2).
- 4. Concentration of iron and copper in the samples collected at 15, 180 and 360 min of WO measured by ICP-MS (Table S3).
- 5. Chemical composition in weight percentage of the used catalysts measured by XRF (Table S4).
- 6. Influence of a high pH value on the removal of HA using pure CaO (Figure S2).
- 7. HAADF-STEM analysis of the iron and copper supported catalysts (Figures S3, S4, S5 and S6).

1. Instrumental parameters for the determination of the iron and copper content in the aqueous solution after WO treatment by ICP-MS (Table S1).

Inductively Coupled Plasma		Mass Spectrometer	
RF power (W)	1550	Sampling cone	Nickel
Carrier gas (L/min)	1.07	Skimmer cone	Nickel
Plasma gas (L/min)	15	Peak pattern	1 point
Auxiliary gas (L/min)	0.9	Replicates	3
Sample depth (mm)	10	Sweeps/Replicate	100
Solution uptake rate (mL/min)	0.1	Integration time/Mass	0.2 s
Nebulizer	MicroMist	Analytical masses	⁵⁶ Fe, ⁶³ Cu and ⁴⁵ Sc

 Table S1. Instrumental parameters for ICP-MS.

2. N₂ adsorption-desorption isotherms of the calcined eggshell and the iron and copper supported catalysts (Figure S1).

Figure S1. Nitrogen adsorption-desorption isotherms at 77 K: (**a**) calcined eggshell, (**b**) Fe 5%, (**c**) Fe 15%, (**d**) Cu 5% and (**e**) Cu 15%.

3. Textural properties of the calcined eggshell and the iron and copper supported catalysts (Table S2).

Table S2. Textural properties of the calcined eggshell and the iron and copper supported catalysts determined by N₂ adsorption-desorption at 77 K.

Sample	BET surface area	Pore volume	Average pore
	(m²/g)	(cm³/g)	diameter (nm)
Eggshell	4	0.059	50.8
Fe 5%	6	0.138	49.3
Fe 15%	2	0.071	77.5
Cu 5%	5	0.120	65.1
Cu 15%	6	0.129	65.6

4. Concentration of iron and copper in the samples collected at 15, 180 and 360 min of WO measured by ICP-MS (Table S3).

Table S3. Concentration of iron and copper in the aqueous solutions after the WO treatment of HA solution.

	WO of HA solution with Fe 5%		WO of HA	solution wi	th Fe 15%	
Sample ^a	Fe (µg/L)	SDb	%RSD ^c	Fe (µg/L)	SDª	%RSD ^b
15 min	1.30	0.02	1.7	9.2	0.6	6.1
180 min	2.50	0.07	2.9	10.6	0.7	6.5
360 min	9.6	0.4	3.7	145.0	1.0	0.7
	WO of HA solution with Cu 5%			WO of HA	solution wi	th Cu 15%
Sample ^a	Cu (µg/L)	SDb	%RSD ^c	Cu (µg/L)	SDª	%RSD ^b
15 min	14.2	0.2	1.5	38.8	1.0	0.3
180 min	273.3	3.3	1.2	377.5	3.8	1.0
360 min	327.7	3.6	1.1	445.9	3.1	0.7

^a Time at which samples were collected; ^bStandard deviation; ^cRelative standard deviation.

5. Chemical composition in weight percentage of the used catalysts measured by XRF (Table S4).

Table S4 Chemical con	position in weight	percentage of the used	catalysts measured by XRF
Table 34. Chemical Con	iposition in weight	percentage of the used	catalysis measured by ART.

	-		-	-
Element	Fe 5%	Fe 15%	Cu 5%	Cu 15%
Ca	92.90 ± 0.05	83.77 ± 0.04	93.35 ± 0.06	83.80 ± 0.02
Mg	0.86 ± 0.02	0.67 ± 0.04	0.89 ± 0.02	0.69 ± 0.01
Na	0.34 ± 0.03	0.24 ± 0.03	$0.31 {\pm}~ 0.03$	0.29 ± 0.04
Р	0.26 ± 0.02	0.25 ± 0.02	0.24 ± 0.02	0.26 ± 0.04
К	0.06 ± 0.02	0.06 ± 0.01	0.05 ± 0.01	0.05 ± 0.02

Fe	5.41 ± 0.02	14.94 ± 0.04	n.d.*	n.d.*
Cu	n.d.*	n.d.*	5.10 ± 0.04	14.84 ± 0.06

*n.d.: not detected

6. Influence of a high pH value on the removal of HA using pure CaO (Figure S2).

Figure S2. Evolution of COD concentration with time in presence of pure CaO at pH 12 (spotted area) and at pH 7.5 (horizontal lines). In all cases, T = 150 °C, P = 40 bar, initial COD concentration = 367 ppm and catalyst concentration = 1 g/L.

7. HAADF-STEM analysis of the iron and copper supported catalysts (Figure S3, S4, S5 and S6).

Figure S3. HAADF-STEM micrograph of Fe 5% and the elemental mapping of O, Mg, Ca and Fe.

Figure S4. HAADF-STEM micrograph of Fe 15% and the elemental mapping of O, Mg, Ca and Fe.

Figure S5. HAADF-STEM micrographs of Cu 5% and the elemental mapping of O, Mg, Ca and Cu.

Figure S6. HAADF-STEM micrographs of Cu 15% and the elemental mapping of O, Mg, Ca and Cu.