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Abstract: Advancement in river flow prediction systems can greatly empower the operational river
management to make better decisions, practices, and policies. Machine learning methods recently
have shown promising results in building accurate models for river flow prediction. This paper
aims to identify models with higher accuracy, robustness, and generalization ability by inspecting
the accuracy of a number of machine learning models. The proposed models for river flow include
support vector regression (SVR), a hybrid of SVR with a fruit fly optimization algorithm (FOA)
(so-called FOASVR), and an M5 model tree (M5). Additionally, the influence of periodicity (π) on the
forecasting enactment was examined. To assess the performance of the proposed models, different
statistical meters were implemented, including root mean squared error (RMSE), mean absolute error
(MAE), correlation coefficient (R), and Bayesian information criterion (BIC). Results showed that the
FOASVR with RMSE (4.36 and 6.33 m3/s), MAE (2.40 and 3.71 m3/s) and R (0.82 and 0.81) values
had the best performance in forecasting river flows at Babarud and Vaniar stations, respectively.
Also, regarding BIC parameters, Qt−1 and πwere selected as parsimonious inputs for predicting river
flow one month ahead. Overall findings indicated that, although both the FOASVR and M5 predicted
the river flows in suitable accordance with observed river flows, the performance of the FOASVR was
moderately better than the M5 and periodicity noticeably increased the performance of the models;
consequently, FOASVR can be suggested as the most accurate method for forecasting river flows.

Keywords: river flow forecasting; stream flow; hybrid machine learning; M5 model tree; fruit fly
optimization algorithm (FOA); support vector regression; big data; deep learning; hydro-informatics
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1. Introduction

Dependable approximation of discharge is imperative in water resources management [1].
River flow prediction has emerged from hydrological modeling and transformed into a dynamic and
active research area [2,3]. Studying the river flow and stream flow is fundamental to flood protection,
sustainable irrigation, and urban development [4,5]. Due to the uncertainties in atmospheric behavior
associated with change climate, the dynamic and data-driven methods for hydrological modeling of
catchments have become popular more than ever [6]. Data mining and machine learning methods
have brought novelty in producing insight from big data [7,8]. These tools forecast forthcoming trends
using knowledge-driven decisions resulting from enormous input-output data. The literature includes
reviews of the latest machine learning models and comparative studies of the models in river and
stream flow forecasting [8–13]. Among the machine learning methods used for river flow prediction,
machine learning models presented higher performance with better accuracy and generalization ability
for river flow as well many hydrological applications [14]. However, there are many machine learning
methods that have never been applied in this realm, which presents a gap in the literature. This paper,
consequently, aims at introducing new models and evaluating their performance.

The M5 model tree (M5), as a sub-technique of data mining, constructs tree-based linear models
for continuous data. Lately, the implementation of M5 as a decision tree-based regression method has
been used for hydrological and water-related studies [15–22]. Londhe and Dixit [23] implemented
M5 to estimate the river flow at two stations in India. The models to predict the next day’s river flow
were established by the preceding day’s gauged river flow and rainfall. Sattari et al. [24] inspected the
proficiencies of the support vector machine (SVM) and M5 model tree in forecasting the flows of the
Sohu River. They revealed that M5 provided more precise predictions when compared with SVM.

SVM is a technique in which the strong points of traditional statistical methods, which are
theory-oriented and analytically simple, are utilized. The SVM approach has been frequently
implemented in the areas of hydrology and time series forecasting. Liong and Sivapragasam [25]
applied the method to foresee floods. Yu et al. [26] suggested a method for forecasting the daily runoff by
combining Chaos Theory and the SVM method. Recently, the support vector regression (SVR) method
has been developed based on SVM and shows superiority in the prediction of hydrologic processes.
Kalteh [27], by applying an Artificial Neural Network (ANN) and SVR to monthly streamflow recorded
at two different stations, revealed that both models coupled with wavelet transformation produced
more accurate outcomes than the regular models. Also, the results specified that SVR models had
enhanced performance in comparison to ANN models. Wu et al. [28] used a genetic algorithm to
optimize the SVR model, and the result established that the suggested model could anticipate river
flow precisely in comparison with other models. Londhe and Gavraskar [29] utilized the SVR model to
forecast river flow one day ahead in two studied locations. The model results were favorable according
to the low values of the evaluating metrics.

On the other hand, Cao and Wu [30] coupled the Fruit Fly Optimization algorithm (FOA) with
SVR (the combination was named FOASVR) to optimize the parameters of SVR for seasonal electricity
consumption forecasting. The results showed that applying FOASVR had a significant role in increasing
the prediction accuracy. Lijuan and Guohua [31] used FOASVR to estimate monthly incoming tourist
flow, and it was reported that the suggested FOASVR is a viable option for touristic applications.
To the best knowledge of the authors, FOA has not previously been integrated with SVR in river
flow forecasting.

The primary objective of this research is to present models with higher accuracy, robustness,
and generalization ability for river flow prediction. M5, support vector regression, and optimized SVR
with FOA were used to forecast river flow at the Vaniar and Babarud stations on the Aji Chay and the
Barandouz rivers, respectively, located in the Lake Urmia Basin of Iran. Some evaluation parameters
for error estimation are utilized to assess the enactment of the considered models.
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2. Study Area

The current study used data on the monthly river flow for the Vaniar station on the Aji Chay River
and the Babarud station on the Barandouz River, both located at Lake Urmia Basin of Iran (Figure 1).
The observed data includes 780 monthly river flow measurements (taken over 65 years from 1952 to
2017) at Babarud station and 744 monthly records (over 62 years from 1952 to 2014) at Vaniar station.
There is no basic and technical way of separating training and testing data. For example, the study by
Kurup and Dudani [32] used 63% of total data for model development, whereas Pal [33] used 69%,
Samadianfard et al. [20,21,34] used 67% of total data, and Deo et al. [35] and Samadianfard et al. [36]
used 70% of the total data to develop their models. Thus, to develop the studied models, the data
are divided into training (70%) and testing (30%). Table 1 displays the statistics of implemented data
for both stations. The observed data confirms high positive values of skewness (Csx = 2.13 and 3.19).
Furthermore, the low auto-correlations demonstrate the low persistence for both mentioned stations.
It should be noted that Lake Urmia is currently in a drought crisis, with the amount of precipitation and
consequently river flow having decreased in recent years; therefore, this may cause some difficulties in
forecasting river flows.

Water 2019, 11, x FOR PEER REVIEW 3 of 15 

 

2. Study Area 

The current study used data on the monthly river flow for the Vaniar station on the Aji Chay 
River and the Babarud station on the Barandouz River, both located at Lake Urmia Basin of Iran 
(Figure 1). The observed data includes 780 monthly river flow measurements (taken over 65 years 
from 1952 to 2017) at Babarud station and 744 monthly records (over 62 years from 1952 to 2014) at 
Vaniar station. There is no basic and technical way of separating training and testing data. For 
example, the study by Kurup and Dudani [32] used 63% of total data for model development, 
whereas Pal [33] used 69%, Samadianfard et al. [20,21,34] used 67% of total data, and Deo et al. [35] 
and Samadianfard et al. [36] used 70% of the total data to develop their models. Thus, to develop the 
studied models, the data are divided into training (70%) and testing (30%). Table 1 displays the 
statistics of implemented data for both stations. The observed data confirms high positive values of 
skewness (Csx = 2.13 and 3.19). Furthermore, the low auto-correlations demonstrate the low 
persistence for both mentioned stations. It should be noted that Lake Urmia is currently in a drought 
crisis, with the amount of precipitation and consequently river flow having decreased in recent years; 
therefore, this may cause some difficulties in forecasting river flows. 

 
Figure 1. Babarud and Vaniar stations, located at Lake Urmia Basin [37]. 

Table 1. Statistical parameters of the implemented data (Xmean, Xmax, Xmin, Sx, Csx, a1, a2, a3 denote the 
overall mean, maximum, minimum, standard deviation, skewness, lag-1, lag-2, lag-3 auto-correlation 
coefficients, respectively). 

Station Data Set Xmean 
(m3/s) 

Xmax 
(m3/s) 

Xmin 
(m3/s) 

Sx 
(m3/s) 

Csx 
(m3/s) r1 r2 r3 

Babarud 

Training 
data 8.75 66.50 0.00 9.63 2.05 0.70 0.25 −0.07 

Testing 
data 4.71 43.27 0.00 7.37 2.54 0.59 0.14 −0.12 

Entire data 7.74 66.50 0.00 9.28 2.13 0.69 0.25 −0.05 

Vaniar 

Training 
data 14.28 178.29 0.00 21.35 2.94 0.62 0.15 −0.11 

Testing 
data 

5.66 65.30 0.00 10.50 3.02 0.50 0.11 −0.05 

Entire data 12.13 178.29 0.00 19.58 3.19 0.63 0.18 −0.07 

Figure 1. Babarud and Vaniar stations, located at Lake Urmia Basin [37].

Table 1. Statistical parameters of the implemented data (Xmean, Xmax, Xmin, Sx, Csx, a1, a2, a3 denote the
overall mean, maximum, minimum, standard deviation, skewness, lag-1, lag-2, lag-3 auto-correlation
coefficients, respectively).

Station Data Set Xmean
(m3/s)

Xmax
(m3/s)

Xmin
(m3/s)

Sx
(m3/s)

Csx
(m3/s) r1 r2 r3

Babarud
Training data 8.75 66.50 0.00 9.63 2.05 0.70 0.25 −0.07
Testing data 4.71 43.27 0.00 7.37 2.54 0.59 0.14 −0.12
Entire data 7.74 66.50 0.00 9.28 2.13 0.69 0.25 −0.05

Vaniar
Training data 14.28 178.29 0.00 21.35 2.94 0.62 0.15 −0.11
Testing data 5.66 65.30 0.00 10.50 3.02 0.50 0.11 −0.05
Entire data 12.13 178.29 0.00 19.58 3.19 0.63 0.18 −0.07
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3. Techniques Applied in Modeling

3.1. M5 Model Tree

With a constant value at their leaves, model trees are based on regression trees [38]. In this regard,
M5, as one of the versions of model trees, has a high capability to forecast continuous numerical
attributes [39]. Two different steps are necessary to develop tree models. First, a splitting principle
should be utilized to create a decision tree. This criterion is constructed using the standard deviation
(SD) of the class values which reach a node as a size of the error. So, the standard deviation reduction
(SDR) is given by:

SDR = SD(T) −
∑
|Ti|

|T|
× SD(Ti) (1)

where T is a set of data that reaches the node and Ti is the ith subset of data. After the first step,
data in the secondary nodes have lower SD as compared with the initial nodes, so M5 selects the
split which expects to maximize error reduction. The main drawback of this step is the production
of a large tree, which may cause an overfitting problem. Pruning techniques should be employed
in order to fix this problem and to avoid overfitting. Therefore, the second step for developing M5
involves these techniques and substitution of subtrees with linear functions. By applying these two
steps, M5 develops a linear model for each subspace.

3.2. Support Vector Regression (SVR)

SVM is a recognized technique for classification and regression [40]. Generally, regression-based
SVM is called SVR. To solve complex problems effectively, SVR is constructed based on minimizing the
structural risk. The insensitive loss function (ε−) is identified as the model tolerating errors up to in
the training data. Thus, the SVR ε pursues a linear function as follows:

F(x) = wTx + b (2)

where w and b represent the coefficients of the weight vector. This can be clarified as the
following problem:

Min
1
2
||w||2 + C

N∑
i=1

(
ξi + ξ

∗

i

)
Subject to


F(x) − yi ≤ ε+ ξ

∗

i
yi − F(x) ≤ ε+ ξi

ξi, ξ∗i ≥ 0, i = 1, 2, . . . , N
(3)

where C > 0 is a penalty parameter which has to be selected earlier. The constant C can grade the
experimental error. Moreover, ξi and ξ∗i , which are known as slack variables, indicate the distance
between real values and the corresponding boundary values of ε-tube. Hence, in order to minimize
Equation (2) subject to Equation (3), the function is given by [41,42]:

f (x) =
N∑

i=1

(
α∗i − αi

)
K(x, xi) + B (4)

where K(x, xi) is the kernel function, ai, a∗i ≥ 0 are the Lagrange multipliers and B is a bias term.
The kernel trick is an approach which is used to solve this problem by SVR [43]. In this study, the widely
implemented kernel named radial basis function (RBF) is utilized for building an optimum SVR model.
Converging fast, working well in high dimensional spaces, and being simple are some advantages of
the selected kernel [44]. The kernel function equation is as follows:

k(x, xi) = exp
(
−γ||x− xi||

2
)

(5)
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where γ is the bandwidth of the kernel function and C, γ, and ε are three predefined parameters.
In this research, 1, 0.01, and 0.001 were selected as default amounts which are used in WEKA software.
Figure 2 indicates the schematic configuration of the SVR model.Water 2019, 11, x FOR PEER REVIEW 5 of 15 
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3.3. Fruit fly Optimization Algorithm (FOA)

FOA, which was introduced by Pan [45], is a swarm intelligence optimization algorithm that
imitates the activities of fruit flies to search for the global optimum. Fruit flies can identify a smell
from a distance of as much as 40 km and fly all the way to it. Figure 3 displays the food searching
progression utilized by the fruit fly iteratively. According to Pan [45], the following equations are
exploited to acquire the initial swarm location of a fruit fly (LR):

X0 = rand(LR)
Y0 = rand(LR)

(6)

where LR is the location range of the accidental initial fruit fly swarm. Subsequently, unexpected search
direction and distance for foraging of the fruit flies are given by:

Xi = X0 + rand(FR)
Yi = Y0 + rand(FR)

(7)

where FR is the random flight range, so, smell concentration judgment value (S) can be computed by:

Si = 1/
√

x2
i + y2

i (8)
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To improve the performance of the river flow forecasting, FOA was implemented for choosing
optimized values of three SVR parameters including C, ε,γ, which are connected to (Sci, Sεi, Sγi)
(i.e., C = Sci, γ = Sγi, and ε = Sεi). It should be noted that the values of LR and FR were selected based
on a trial and error procedure for minimizing the prediction errors. The flowchart of the mentioned
procedure (FOASVR) is displayed in Figure 4.

The differences between the predicted and the actual values were evaluated by mean squared
error (MSE) as presented in the equation below:

MSE =

∑n
i=1 (pi − oi)

2

n
(9)

where pi and oi are the ith predicted and observed values and n is the entire number of data. The fruit
fly saves the finest smell concentration value and the corresponding coordinate among the swarms,
then flies toward the next place. When the new result is not superior to the previous iteration,
the iteration number reaches its maximum, or the error of the prediction reaches the predefined value,
this process will stop. Therefore, optimal values are acquired, and the model has the best performance
with these values.
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In this research, data were normalized to be between 0 and 1 because this helps to increase the
accuracy of the model and to predict performance [46]. Additionally, LR and FR were chosen to be
included at [0, 10] and [−1, 1], respectively; also, the maximum iteration number (maxgen) was equal to
100, and a population size (sizepop) of 20 was selected in order to have reasonable efficiency. Libsvm
toolbox was used to run SVR in this article.
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4. Evaluation Parameters

In this study, different evaluation parameters were considered for scrutinizing the precision of the
examined models for river flow forecasting.

As one of the widely-used statistical parameters, the root mean squared error (RMSE) measures
the average amount of error (the difference between predicted and observed flows) appropriately,
and it can be determined as follows:

RMSE =

√√
1
n

n∑
i=1

(
Qp(i) −Qo(i)

)2
(10)

where Qp(i), Qo(i), and n represent the predicted river flow, the observed river flow, and the number of
observations, respectively.

The bias in the predicted river flow is calculated by the mean absolute error (MAE) which
measures the closeness of the predictions to the actual flows. Lower MAE values represent more
precise predictions of river flow, either equal or close to the observed values. It is calculated as follows:

MAE =
1
n

n∑
i=1

∣∣∣Qp(i) −Qo(i)
∣∣∣ (11)

The correlation coefficient (R), which describes the amount of linearity among simulated and
observed values of river flows, ranges from −1 to 1 and is described as follows:

R =

(
n∑

i=1
Qo(i)Qp(i) − 1

n

n∑
i=1

Qo(i)
n∑

i=1
Qp(i)

)
 n∑

i=1
Qo(i)

2
−

1
n

(
n∑

i=1
Qo(i)

)2 n∑
i=1

Qp(i)
2
−

1
n

(
n∑

i=1
Qp(i)

)2
(12)

Also, the Bayesian information criterion (BIC) was utilized in order to specify the best model
parsimoniously, which means that the model with fewer input parameters would have better
performance in comparison to others. BIC measures models relative to each other; in fact, the model
with the best performance has the smallest quantity of the BIC [47]. It is given as follows:

BIC = n× ln
(RSS

n

)
+ K × ln(n) (13)

where K indicates the number of input parameters and residual sum of squares (RSS) can be determined
as follows:

RSS =
n∑

i=1

(
Qp(i) −Qo(i)

)2
(14)

Furthermore, a Taylor diagram (TD), which is a graphical illustration of the observed and
forecasted data, was applied to inspect the precision of models [48]. The TD is able to encapsulate
some characteristics of the predicted and observed flows at the same time. For instance, this diagram
can illustrate RMSE, R, and SD between the forecasted and actual data simultaneously. In the TD,
the azimuth angle, the radial distance from the origin, and radial distance from the observed data point
denote the R-value, the ratio of the normalized SD, and the RMSE value of the prediction, respectively.

5. Results and Discussion

For evaluating the effects of previous monthly flows, three input combinations were established
(Table 2). Moreover, the periodicity effect was inspected by appending a component π (1 to 12 for
each month).
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Table 2. Input parameters of the established models.

Model Input Parameters Output Parameters

1 Qt−1 Qt
2 Qt−1, π Qt
3 Qt−1, Qt−2 Qt
4 Qt−1, Qt−2, π Qt
5 Qt−1, Qt−2, Qt−3 Qt
6 Qt−1, Qt−2, Qt−3, π Qt

The results of the statistical parameters for studied techniques in the test phase for the Babarud
station are given in Table 3. From these tables, it is clear that the periodicity considerably increased each
model’s accuracy. For the FOASVR model, R increased from 0.63 (for input combination (1)) to 0.82 (for
input combination (2)) and similarly, RMSE and MAE indices decreased from 5.74 to 4.36 and from 3.29
to 2.40, respectively. Regarding two previous cases, by adding the periodicity component, R increased
from 0.70 to 0.80 and RMSE and MAE decreased from 5.33 to 4.50 and from 2.90 to 2.67, respectively.
Finally, in the case of three previous discharge inputs, R increased from 0.67 to 0.79 and RMSE and MAE
decreased from 5.69 to 4.58 and from 3.20 to 2.67, respectively. Comparison of FOASVR, M5, and SVR
models indicated that the FOASVR-2 model, whose inputs are Qt−1, and π, had better accuracy than
the M5 and SVR models. M5 also performed better than the SVR model. Overall, FOASVR performed
better than SVR and M5. Also, FOA increased the accuracy of SVR by approximately 27% for RMSE and
38% for MAE in the second scenario, which performed roughly (4% RMSE and 14% MAE) better than
M5. Without periodicity, FOASVR-3 indicated a 6% better performance than M5-3, and both models
performed better than the SVR-5 model. The relative RMSE and MAE differences between the optimal
FOASVR-3 model without periodicity and FOASVR-3 model with periodicity input were 18.2% and
17.2%, respectively. From the BIC point of view, FOASVR-2, M5-2, and SVR-4, with the values of 597.55,
581.85, and 701.18, respectively, had better performance in comparison with other models, which means
that these scenarios had parsimonious inputs (accurate results with fewer input parameters). So, for this
station input combination, (2) was a reasonable choice. The time variation of observed and predicted
river flows by the optimal periodic and non-periodic FOASVR, M5, and SVR models is illustrated in
Figures 5–8. It can be comprehended from the Figures 5 and 6 that all three periodic and non-periodic
models considerably underestimate some peak flows. It seems that the precision of these models
decreases with increasing flow rate. However, the superior accuracy of FOASVR and M5 to the SVR
model can also be comprehended from these figures. Comparison of Figures 5 and 6 visibly indicate
that the periodic models better approximate the observed river flows than the non-periodic models.
Figure 9 displays the scattered diagrams of the observed and predicted monthly river flows for each
method. It is noticeable from the graphs that the SVR model performs worse than the other two
methods, especially in the prediction of peak river flows. Comparison of the two figures reveals that
the periodic models produce more accurate estimates than non-periodic models. Also, this figure
indicates that all models (periodic and non-periodic) overestimate some low flows, and the periodic
models perform worse than periodic ones in estimating peak flows. This may be because the peak
flows do not have any high correlation with the time of the year (i.e., the periodicity value).

The test statistics of the FOASVR, M5, and SVR models for the Vaniar station are provided in
Table 4. The encouraging influence of the periodicity component on models’ precision is clearly seen
for this station. For the FOASVR model, R increased from 0.57 (for input combination (1)) to 0.79 (for
input combination (2)) and similarly, RMSE and MAE values decreased from 8.78 to 6.58 and from 4.77
to 3.86, respectively. In the case of two previous discharge inputs, when the periodicity component was
added, R increased from 0.55 to 0.80 and RMSE and MAE decreased from 8.88 to 6.48 and from 4.97 to
3.75, respectively. Finally, in the three previous discharge inputs case, R increased from 0.55 to 0.81 and
RMSE and MAE values decreased from 8.99 to 6.33 and from 5.53 to 3.71, respectively. Comparison of
the three models reveals that the optimal FOASVR-6 model whose inputs are Qt−1, Qt−2, Qt−3, and π
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performed better than optimal M5-2 comprising Qt−1 and π inputs, and both performed better than the
optimal SVR-6 model whose inputs are the same as FOASVR-6. Generally, FOASVR performed better
than SVR and M5 models; moreover, the accuracy of SVR was increased by 29.7% and 30.4% related to
RMSE and MAE, respectively, in the optimal scenario (FOASVR-6) by applying FOA; also, FOASVR
showed 16.8% and 19.7% better performance than M5 in terms of RMSE and MAE, respectively, for this
scenario. Without the periodicity component, the optimal FOASVR-1 model performed better than
the optimal M5-1 and SVR-3 models. The relative RMSE and MAE differences between the optimal
FOASVR-1 model without periodicity and FOASVR-1 model with periodicity input were 25.1% and
19.1%, respectively. The best values for BIC in this station were related to FOASVR-6 with 703.64,
M5-2 with 740.34, and SVR-2 with 825.05. In light of the fact that FOASVR-6 was closely followed by
FOASVR-4 with the value of 707.09 and FOASVR-2 with the value of 707.53, it is better to choose a
combination with fewer input parameters. Thus, the input parameters of Qt−1 and π were selected
as a parsimonious scenario for this station, which is similar to the previous station. Figures 7 and 8
demonstrate the time variation of observed and predicted river flows by the optimal periodic and
non-periodic FOASVR, M5, and SVR models. As found for the Vaniar station, here also the three
periodic and non-periodic models underestimate some peak flows. Comparison of Figures 7 and 8
confirms that appending the periodicity component as the input increases the estimation capacity of the
models. The scatter plots of the observed and predicted monthly river flows by each method are shown
in Figure 9. As with the previous station, the FOASVR and M5 perform better than the SVR model,
especially in the prediction of peak river flows. This figure indicates that the estimates of periodic
models are more accurate. According to Figure 9, as at Babarud station, the models overestimate the
low flows at the Vaniar station, thereby forecasting shifts from overestimation to underestimation with
increasing flow rate.

Table 3. The evaluation parameters of studied models in the test period for Babarud Station.

Model Input Model
Statistical Parameters

RMSE (m3/s) MAE (m3/s) R BIC

Qt−1

SVR-1 6.10 4.10 0.59 706.88
M5-1 5.94 3.62 0.61 696.57

FOASVR-1 5.74 3.29 0.63 683.28

Qt−1, π
SVR-2 5.97 3.88 0.61 703.79
M5-2 4.54 2.73 0.80 597.55

FOASVR-2 4.36 2.40 0.82 581.85

Qt−1, Qt−2

SVR-3 5.98 4.04 0.62 704.44
M5-3 5.79 3.49 0.68 691.92

FOASVR-3 5.33 2.90 0.70 659.80

Qt−1, Qt−2, π
SVR-4 5.85 3.83 0.64 701.18
M5-4 4.55 2.83 0.80 603.67

FOASVR-4 4.50 2.67 0.80 599.39

Qt−1, Qt−2, Qt−3

SVR-5 5.91 3.90 0.62 705.14
M5-5 5.79 3.50 0.68 697.18

FOASVR-5 5.69 3.20 0.67 690.42

Qt−1, Qt−2, Qt−3, π
SVR-6 5.82 3.77 0.64 704.46
M5-6 4.54 2.84 0.80 608.09

FOASVR-6 4.58 2.67 0.79 611.49
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Table 4. The evaluation parameters of studied models in the test period for Vaniar Station.

Model Input Model
Statistical Parameters

RMSE (m3/s) MAE (m3/s) R BIC

Qt−1

SVR-1 9.33 5.60 0.50 831.52
M5-1 9.57 5.44 0.54 840.91

FOASVR-1 8.78 4.77 0.57 809.04

Qt−1, π
SVR-2 9.04 5.31 0.52 825.05
M5-2 7.19 4.46 0.77 740.34

FOASVR-2 6.58 3.86 0.79 707.53

Qt−1, Qt−2

SVR-3 9.21 5.57 0.53 831.95
M5-3 9.80 5.46 0.59 854.92

FOASVR-3 8.88 4.97 0.55 818.45

Qt−1, Qt−2, π
SVR-4 8.96 5.33 0.54 826.99
M5-4 7.58 4.64 0.76 765.10

FOASVR-4 6.48 3.75 0.80 707.09

Qt−1, Qt−2, Qt−3

SVR-5 9.22 5.73 0.52 837.57
M5-5 9.79 5.55 0.60 859.76

FOASVR-5 8.99 5.53 0.55 828.22

Qt−1, Qt−2, Qt−3, π
SVR-6 9.01 5.53 0.53 834.27
M5-6 7.61 4.62 0.75 771.78

FOASVR-6 6.33 3.71 0.81 703.64
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Furthermore, TDs were utilized to examine SD and R values for the FOASVR, M5, and SVR
models. Figure 10 exhibits TDs for all models, where the space from the reference green point is an
amount of the centered RMSE. It can be comprehended from Figure 10 that FOASVR (a point with
yellow color) provided relatively precise predictions of river flow at both stations.
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6. Conclusions

In the current study, three different data-driven techniques, FOASVR, M5, and SVR, were compared
for one month of river flow forecasting at two stations located in the Lake Urmia Basin of Iran.
Comparison of three periodic models revealed that the periodic FOASVR model had better accuracy
than the periodic M5 and SVR models. M5 was also found to achieve more suitable results than the
SVR model. Similarly, the comparison of non-periodic models showed that the optimal FOASVR also
had better performance than the M5 and SVR models. It was proved that appending a periodicity
component significantly increases models’ accuracy in forecasting monthly river flows for both stations.
For the Babarud station, the relative RMSE and MAE differences between the optimal periodic and
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non-periodic FOASVR models were found to be 18.2% and 17.2%, respectively. For the Vaniar station,
the periodicity component decreased the RMSE and MAE values of the optimal FOASVR models
by 27.9 and 22.2%, respectively. According to BIC, the second input combination (Qt−1 and π) were
used as parsimonious inputs for FOASVR with values of 581.85 and 707.53 for Babarud and Vaniar
stations, respectively. Generally, the FOASVR models performed better than the other two methods in
forecasting monthly river flows. However, all methods had some difficulties in forecasting peak river
flows, while the FOASVR models provided a better forecast in this case. The presented advancement
in river flow prediction can highly empower operational river management to make better decisions
and policies. The hybrid model of FOASVR shows promising results in building accurate models for
river flow prediction.
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