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Abstract: The groundwater behavior at a municipal solid waste disposal dump, located in Central
Italy, was studied using a multi-parameter monitoring over 1 year consisting of 4 seasonal
samples. The hydrological and hydrogeological dynamics of water circulation, microbiological
parameters (microbial abundance and cell viability of the autochthonous microbial community),
dissolved organic carbon, and several contaminants were evaluated and related to the geological
structures in both two and three dimensions and used for geostatistical analysis in order to obtain 3D
maps. Close relationships between geological heterogeneity, water circulation, pollutant diffusion,
dissolved organic carbon, and cell viability were revealed. The highest cell viability values were found
with dissolved organic carbon (DOC) values ≤0.5 mg/L; above this value, DOC negatively affected the
microbial community. The highest DOC values were detected in groundwater at some sampling points
within the site indicating its probable origin from the waste disposal dump. Although legislation
limits for the parameters measured were not exceeded (except for a contaminant in one piezometer),
the 1-year multi-parameter monitoring approach made it possible to depict both the dynamics and
the complexity of the groundwater flux and, with “non-legislative parameters” such as microbial cell
viability and DOC, identify the points with the highest vulnerability and their origin. This approach
is useful for identifying the most vulnerable sites in a groundwater body.

Keywords: geostatistical analysis; geological heterogeneity; dissolved organic carbon; autochthonous
microbial community

1. Introduction

Contamination of groundwater is a serious environmental problem and a risk to human health,
especially because many communities depend on groundwater as the sole or major source of
drinking water. In fact, more than 65% of the drinking water produced in Europe is sourced
from groundwater [1,2]. Most subsurface systems consist of rock fissures and caves or pores in sand,
silt, and gravel where the water flows and connects the aquifer with the surface water [3–5]. Soil
pollution can influence groundwater quality because groundwater bodies are the final recipient of
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pollutants of both a point and nonpoint nature due to anthropic pressure. Groundwater is increasingly
threatened by contaminants from human activities, like agriculture, industrial plants, livestock farming,
septic tank leaking, and subsurface storage of household, municipal solid and industrial wastes [6–9].

The attenuation capacity of the unsaturated zone is crucial in order to reduce the contamination of
the water reservoir below. In this context, persistence and mobility in soil of a specific chemical are key
aspects for evaluating groundwater vulnerability [10,11]. An organic compound persistence is strictly
dependent on its degradation route, which is a complex phenomenon dependent on both abiotic and
biotic processes occurring mainly in the surface environment. However, the role of natural microbial
communities in degrading or removing contaminants in situ [12,13] or in groundwater microcosm
experiments has recently been discovered [1,14–16].

Leaching of a contaminant from surface to groundwater depends on various chemical and
physical processes which take place in the underground profile and are linked to the chemodynamic
properties of a substance (e.g., sorption to soil organic matter, reactivity of the solid matrix) and to
specific hydrogeological settings. The process occurs through matrix and macropore flow. In the latter
case, large and discontinuous macropores can operate as preferential flow pathways causing a rapid
movement of chemicals through the unsaturated zone [17,18]. In other cases, pollutant persistence is
related to the water travel times, which determine their concentration and impact on biota [19,20].

Volcanic areas are generally considered protected from groundwater contamination due to their
intrinsically low permeability [21–24]; however, volcanic substrata, considered to be un-deformed or
blandly deformed, could be intensely fractured due to brittle deformation processes [25]. In particular,
meso-scale brittle deformation elements such as faults and extensional fractures, define a potential
gradient of water circulation related to the strain processes [26]. In this context, geological heterogeneity
is likely to be a problem in planning management programmes (e.g., sampling design). The linkage
of brittle elements and their frequency, orientation, and spatial distribution influence the mechanical
stratigraphy [27,28] and the environmental conditions [29,30]. Consequently, the understanding of
the mechanisms underlying the reservoir shape and water travel time facilitates the optimization and
planning of sustainable use of natural resources [31] in areas characterized by intense anthropogenic
activities. The concept of geological heterogeneity is key in creating a well-defined model able to predict
directions, flux and time-space movement of water, including possible pollutants, within a reservoir.
Accordingly, the understanding of mechanisms underlying the rate of diffusion of water-borne
pollutants will facilitate the optimization of sampling efforts (e.g., number of measurements in living
organisms).

The EU Directive 2000/60/EC (Water Framework Directive, WFD) [32] defines a general objective
of reaching a good quality status in all surface and groundwater bodies and introduces the principle
of preventing any further deterioration in status. Analyses of ecological and chemical parameters
are foreseen for surface water, while only quantitative and chemical parameters are considered for
groundwater bodies. Consequently, for assessing a groundwater body status, WFD does not take
into consideration biota and considers that subsurface environments are without life. The key role
of microbial communities in biochemical processes and ecosystem services [33], including water
purification and organic contaminant degradation in groundwater, is nowadays recognized [1,34,35].
Nevertheless, there has been little research into these communities owing to the lack for a long time of
consistent and suitable methods for identifying and characterizing their structure and functioning.
The application to microbial ecology of molecular methods has made it possible to study groundwater
microbial communities in their natural environment [1,34].

Microorganisms constitute the major group of organisms in groundwater systems, both in terms
of biomass and activity [36]. Community composition is key for all the ecosystem processes [37].
Where groundwater is in a near-natural state and far from the surface, one may assume a steady
state without much development over time, but spatial gradients are important [38]. The microbial
community response may prove an indicator of residual toxicity linked to the disappearance or
sequestration of pollutants and their degradation products [34,39,40].
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The factors that regulate the occurrence and abundance of microorganisms, their biotic interactions
and their community structure are relatively difficult to discern, due to their large numbers, small size,
and difficulty in evaluating the spatial or temporal scale of the environmental gradients influencing
microbial communities [41,42]. The organic material load, in particular the dissolved organic carbon
(DOC), has proved useful for the study of factors governing microbial activity in groundwater [43,44].

The current study aims to show the importance of taking into consideration the autochthonous
microbial communities in groundwater in addition to other ecological parameters (DOC) in quality
monitoring control because of their sensitivity to anthropogenic pressures. We illustrate this by a study
of a municipal solid waste dump located in Central Italy, which collects daily waste from the city
of Rome.

The overall results showed that legislation limits were exceeded only for a contaminant in one
piezometer, while the 1-year multi-parameter monitoring approach made it possible to depict the
dynamicity and complexity of the groundwater flux and identify where contaminant movement to
groundwater was concentrated. Close relationships between geological heterogeneity, water circulation,
pollutant diffusion, dissolved organic carbon, and microbial viability were found. This approach can be
extremely useful for improving the monitoring plans and to identifying the most vulnerable sampling
points in groundwater.

2. Materials and Methods

2.1. Geological and Hydrogeological Setting

The investigated area is about 52 ha of which 11 ha comprise waste disposal dumps and the rest
treatment facilities (Figure 1). It is located in the South-Western sector of the Colli Albani volcanic
district (Albano Laziale, Rome), which is represented by Quaternary volcanisms belonging to the
ultrapotassic Roman province [45]. The treatment facility manages waste with a mechanical biological
treatment aimed at the production of secondary solid fuel and stabilized organic fraction, and metal
recovery. It also manages the biogas collection system and related electricity production facility.
The plant is able to treat 500 tons of municipal solid waste per day.

Figure 1. Study area and sampling site location map: the catchment basin is highlighted with a blue line
(intermediate map); the dashed black line shows the site (detail map) where each red circle represents
a sampled piezometer (CE-A, CE-B, CE-C, CE-D, CE-F, CE-G, CE-H, and CE-I).

The area is located at the top of the Tuscolano-Artemisio volcanic stage [46–48].
Moreover, the outcropping formations are characterized by grey tuffs, fractured lava, and compact
pozzolanas. The last, from a hydrological point of view, represents the impermeable layer of the aquifer
hosted in the fractured lavas. The groundwater circulation is linked to the extensive Colli Albani
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main hydrogeological unit [21], characterized by a centrifugal drainage trend around the Albano Lake
volcanic complex [49,50]. The whole area is also characterized by several minor perched aquifers
maintained by thin waterproof layers represented by compacted tuffs and paleosols. It has long been
recognized in literature that the permeability of rocks is extremely variable, from low to high [51–53].
This is mainly due to a secondary process, represented by fracturation, which completely changes the
hydrogeological behavior of the un-deformed rocks.

2.2. Digital Elevation Model

With the integration of elevation data gathered from topographic maps, aerial photo interpretation
and field measurements, a Digital Elevation Model (DEM) was created (Figure 1) using the
Surfer10 software.

A rectangular grid (numerical matrix) was realized using the intersection of rows and columns to
obtain a three-dimensional representation of the entire drainage basin.

A highly detailed Digital Elevation Model (DEM) was used to automatically map the stream
channel and divide the networks of a watershed located in the study area. The construction of a code
describing the network topology, each drainage area and the associated stream link represents the
basis for an efficient watershed information system. A detailed DEM was superimposed on a thematic
slope map and on drainage direction/intensity ones to obtain dynamic surface maps and to identify the
local-scale run-off potentially affecting the municipal solid waste disposal site [54–57].

Meso and macrostructural surveys together with surface and sub-surface geological analyses were
carried out to spatially identify the geological structures, geometry, and when possible the fracturation
network. The latter represents a fundamental aspect that directly affects the water circulation and
facilitates infiltration processes and groundwater circulation.

The DEM was realized with a mesh of 5 meters in order to have a reproduction as close as
possible to reality. When necessary, in order to increase the ground resolution of the altimetric
variations, the mesh was thickened up to 2 m ground resolution. A geological cross section and block
diagram were realized by processing data from the stratigraphical logs of the piezometer used as
a monitoring network.

2.3. Groundwater Sampling and on Site Characterization

It was first necessary to depict the dynamicity and complexity of the groundwater flux and
identify where contaminant movement to groundwater was concentrated. Therefore, water samples
were collected from eight piezometers four times and the main chemical (inorganic and organic
contaminants) and quantitative parameters (groundwater regime level) required in both the Italian [58]
and European (Water Frame Directive) [32] legislation were measured. An ecological evaluation was
performed in addition. It includes the analyses of the groundwater natural microbial community (cell
abundance and viability) and the dissolved organic carbon (DOC). Finally, we integrated the overall
data with the geological structures in both two and three dimensions.

A preliminary campaign made it possible to select 8 internal piezometers and an external one
(Figure 1, Table 1). Water samplings for chemical and microbiological analyses and hydrogeological
measurements were performed in all piezometers within the municipal solid waste disposal site.
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Table 1. Maximum depth, piezometer-top/bottom and diameter, and static water level of the CE-A,
CE-B, CE-C, CE-D, CE-E, CE-F, CE-G, CE-H, and CE-I piezometers in the four sampling campaigns (I,
II, III and IV). Static level was not measured for CE-E piezometer. a.s.l. = above sea level.

Piezometer
Maximum Depth
from Surface (m)

Piezometer-Top/Bottom
(m) (a.s.l.)

Diameter
(mm)

Static Level (m) (a.s.l.) Range
I

September
II

February III July IV
October

CE-A 153 156.39/3.39 150 63.5 63.8 63.8 64.2 0.7
CE-B 100 140.74/40.74 150 59.6 59.7 60 60 0.4
CE-C 142 142.58/0.58 250 57.1 57.5 57.8 57.6 0.7
CE-D 158 166.31/8.31 180 68.8 68.9 69.4 69.3 0.6
CE-E 15 134.52/119.52 75 - - - - -
CE-F 90 134.04/44.04 75 54.2 54.8 56.1 56.1 1.9
CE-G 120 155.82/35.82 75 55.5 53.8 62.8 57.2 7.3
CE-H 115 137.31/20.31 75 54.9 54.2 58.9 56.4 4.7
CE-I 125 143.96/16.96 170 56.2 56.6 56.8 56.6 0.4

Each single water point was sampled in four campaigns during one year (between 2012 and
2013: I September, II February, III July, IV October) in order to have a multi-temporal analysis of the
parameters investigated. Owing to accessibility problems, the CE-G piezometer was sampled only in
the third and fourth campaigns. Hydrogeological (piezometric depth-average: 124 m), chemical (main
inorganic and organic contaminants), DOC and microbiological data (total microbial abundance and
cell viability) were analyzed inside and outside the area studied in order to assess if the water body
might be negatively affected by the waste disposal plant.

For this purpose, data from the eight internal piezometers (named CE-A, CE-B, CE-C, CE-E, CE-F,
CE-G, CE-H, CE-I) and the external one (CE-D, which is the most upstream one) were compared during
1 year and processed with a geostatistical approach [59–61].

For each piezometer the depth-average piezometric level and main physico-chemical parameters
(pH, redox potential, electrical conductivity, dissolved oxygen, temperature, and alkalinity) were
measured on site using a pre-calibrated multiparameter probe (WTW, Germany) [53,62]. Water samples
were collected from each single piezometer after 30 minutes of purging and placed in sterile polyethylene
bottles to avoid any contamination. Subsamples were immediately processed for different purposes.
For trace elements, dissolved organic carbon (DOC) and main cations and anions, water samples
were filtered (0.45 µm) and then put in polyethylene bottles (previously cleaned with HNO3 and then
washed with milliQ water). A pre-acidification of the sample (HNO3 1%) was performed before metal
and DOC analyses. For organic contaminants, water samples were collected in pre-cleaned 2.5 L dark
glass bottles. For microbiological analyses, water samples were immediately fixed with formaldehyde
(2% final concentration) for microbial abundance or were kept fresh for microbial cell viability. All the
groundwater samples were stored (24 h maximum) at 4 ◦C before use.

The reconstruction of the piezometric level of the aquifer was performed through the analysis of
the static groundwater level using several measuring points consisting of springs, piezometers and
equipped piezometers within the municipal solid waste disposal site. These data were processed to
obtain a three-dimensional surface, suitable for obtaining a 3D volumetric geometry of the aquifer.
All the data were analyzed using geostatistical programs.

2.4. Chemical Analyses

The main inorganic and organic pollutants considered in the WFD [32] and Italian legislation
(Decree law 152/06) [58] for evaluating the water quality state were searched for.

Analyses of thirty-two inorganic elements (anions, cations, and metals) were performed in
accordance with the Italian Environment Protection Agency Guidelines [63] and APHA, AWWA,
WEF methods [64]. Inorganic Anions (Fluoride, Chloride, Nitrite, Nitrate, and Sulfate) were determined
by ion chromatography using a Dionex DX-120 Ion Chromatograph. Inductively coupled plasma-mass
spectrometry (ICP-MS-Agilent technologies 7500c, Santa Clara, CA, USA) with an Octopole Reaction
System (ORS) was used for the determination of Boron, Barium, Antimony, Arsenic, Cadmium,
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Total Chromium, Copper, Lead, Mercury, Nickel, Selenium, Vanadium, Iron, Zinc, Manganese,
Aluminum, Strontium, Lithium, Cesium, Uranium, and Cobalt.

Calcium, Magnesium, Sodium, and Potassium were determined by Inductively Coupled Plasma
Optical Emission Spectroscopy (ICP-OES-Perkin Elmer, Waltham, MA, USA) using a Perkin Elmer
P400 spectrometer.

Analysis of ninety-two organic contaminants was performed. Polycyclic Aromatic Hydrocarbons
(PAHs) were extracted by SPE (solid-phase extraction) and then determined using a high-performance
liquid chromatography (HPLC-Varian 9010-Agilent technologies, Santa Clara, CA, USA) with
fluorescence detection (FL-Perkin Elmer LS30-Perkin Elmer, Waltham, MA, USA) [65]. The identity
of each analyte was confirmed by liquid chromatography-mass spectrometry (LC-MS) in accordance
with Patrolecco et al. [65].

Volatile organic compounds (VOCs) were determined by the dynamic purge-and-trap technique
using a Tekmar dynamic purge-and-trap system (Teledyne Tekmar, Mason, OH USA), equipped with
a 25 mL glass vessel, coupled to a gas Saturn 2200 (Varian) chromatograph/mass spectrometric system
(GC/MS-Agilent technologies, Santa Clara, CA, USA). An aliquot of 25 mL of the water sample was
manually introduced into the vessel using a syringe. The VOCs purged by a helium flow were trapped
onto a Tenax cartridge and then thermally desorbed at 210 ◦C and swept to the GC column were they
were separated and detected by the MS system. LODs obtained were between 0.005 and 0.1 µg/L
depending on the VOC selected.

Chlorinated pesticides were extracted applying solid-phase extraction (SPE) and then determined
by gas chromatography (GC) with an electron capture detector (ECD) using Perkin Elmer, Clarus 480
and a fused silica capillary column [66].

The list of overall organic compounds analyzed in the groundwater samples is reported in Table 2.

Table 2. List of organic contaminants examined in the nine piezometers sampled.

Group of Organic Contaminants Chemicals

Polycyclic Aromatic Hydrocarbons (PAHs)

Naphthalene, Acenaphthene, Fluorene, Phenanthrene, Anthracene,
Fluoranthene, Pyrene, Benzo(a)Anthracene, Chrysene,

Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,
Dibenz(a,h)anthracene, Benzo(g,h,i)perylene, Indeno(1,2,3-c,d)pyrene,

Dibenzo(a,e) pyrene, Dibenzo(a,i) pyrene, Dibenzo(a,h) pyrene,
Dibenzo(a,l) pyrene

Volatile Organic Compounds (VOCs)

Trichloromethane, Tribromomethane, 1,2-Dibromoethane,
Dibromochloromethane, Bromodichloromethane, 1,2-Dichloroethane,

1,1-Dichloroethane, 1,2-Dichloropropane, 1,1,2-Trichloroethane,
1,2,3-Trichloropropane, 1,1,2,2-Tetrachloroethane, Chloroethene,

Chloromethane, 1,2-Dichloroethene, 1,1-Dichloroethene,
Trichloroethylene, Tetrachloroethylene, Hexachloro-1,3-butadiene,

Chlorobenzene, 1,2-Dichlorobenzene, 1,3-Dichlorobenzene,
1,4-Dichlorobenzene, 1,2,4-Trichlorobenzene, 1,2,3-Trichlorobenzene,
n-Hexane, Benzene, Ethylbenzene, Styrene, Toluene, ortho-Xylene,
meta-Xylene, para-Xylene, (1-methylethyl)benzene, Propylbenzene,

Methylbenzene, Bromobenzene, Phenylamine, Diphenylamine,
o-Toluidine, prop-2-enamide, pyridine-3-carboxylic acid,

1,2-Dinitrobenzene, 1,3-Dinitrobenzene, 1-methyl-2,4-dinitro benzene,
n-Nitrotoluene, 1-Chloro-2-nitrobenzene,

1-Chloro-3-nitrobenzene,1-Chloro-4-nitrobenzene,
1,2,3-Trichloropropane, Dichloromethane, Bromomethane,

Tetrachloromethane, Chloroethane, Dichlorodifluoromethane,
Trichlorofluoromethane, Bromoethene, 1-bromo-2-chloroethane,
Dichlorobutane, 1,1,1-Trichloroethane, 1,1,1,2-Tetrachloroethane,

Bromodichloroethane, 4-Bromochlorobenzene, 1,1-Dichlorocycloutane,
1,4-Dichlorobut-2-ene, 2-Methoxy-2-methylpropane, Diiodomethane,

n- Propylbenzene

Chlorinated Pesticides Dichlorodiphenyldichloroethylene (DDE)
Gamma-hexachlorocyclohexane (γ HCH)
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2.5. Dissolved Organic Carbon (DOC)

Aliquots of water samples (20–500 µL) were analyzed for dissolved organic carbon content with
high temperature catalytic oxidation using a Shimadzu TOC-5000A Total Organic Carbon Analyzer,
with a detection limit of 0.15 mg/L.

2.6. Microbiological Analysis

The microbial abundance (No. cells/mL) was determined in at least four replicates in each
piezometer. Water aliquots (20 mL) fixed in formaldehyde (2%) were filtered on black polycarbonate
filters (pore size 0.22 µm, 25 mm diameter) and stained for 20 minutes at 4 ◦C in the dark with the
DNA intercalant DAPI (at the final concentration of 1 µg/L). Finally, the filters were observed under an
epifluorescence microscope (Leica DM 4000B). The DAPI method was used because it is able to detect
all the microbial cells in a sample whatever their physiological state and metabolic activity and for this
reason is suitable for the total microbial counts [67,68].

Cell viability (% live cells/live + dead) was measured in four fresh replicate subsamples (20 mL
each) using two fluorescent dyes. SYBR Green II and propidium iodide (Sigma-Aldrich, Germany) were
used for distinguishing between viable (green) and dead or damaged (red) cells under a fluorescence
microscope [34]. The cells were counted in both analyses with the epifluorescence microscope at 1000
magnification, counting a minimum of 300 cells per filter. Each microbiological measure was the
average of four replicate filters comprising at least 1200 microbial cells counted.

2.7. Statistical Analysis

The statistical analysis was performed, using the R software version 2.15 (downloaded from the
Comprehensive R Archive Network (CRAN), which is located at http://cran.r-project.org/). The t test
was used to compare the overall organic contaminant concentrations among the different piezometers.
Moreover, any correlations between DOC and abiotic (conductivity, dissolved oxygen, bicarbonates,∑

organic contaminants, PAHs, VOCs) and biotic (microbial abundance and cell viability) parameters,
whatever the piezometer location and the sampling time, were also evaluated.

2.8. Geostatistical Analysis

In order to investigate the distribution and evolution patterns of pollutants in the groundwater an
ordinary kriging [69–71] was performed taking into consideration the overall data obtained from the
sampling, using the Surfer10 software.

This method consists of a spatial interpolation technique, which makes it possible to obtain
contour distribution maps. Among the numerous geostatistical gridding methods that are useful
in many fields of applications, kriging provides visually appealing maps from irregularly spaced
data and incorporates anisotropy and underlying trends in an efficient and natural manner [72].
Moreover, kriging is very flexible and makes it possible to obtain spatial autocorrelation graphs,
allowing prediction, prediction standard errors, and probability maps, minimizing at the same time
errors in predicted values. To measure the mean variability between two sampled points x and x
+ h, as a function of their distance h semi-variograms were produced. The semi-variogram is an
autocorrelation statistic defined as follows:

ŷ(h) =
1

2n

∑n

i=1
(z(xi) − z(xi + h))2

where n is the number of pairs of sample points separated by distance h, z(xi) is the value of the
variable z at point i, and z(xi + h) is the value of the variable z at point i + h. The assumptions of
kriging are a stationary difference between x and x + h and variance of the differences, which define
the requirements for the intrinsic hypothesis. This means that semi-variance does not depend on the
location of samples and only depends on the distance between samples, so that the semi-variance

http://cran.r-project.org/
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is isotropic. Consequently, several geostatistic thematic maps of the site were made using the most
suitable model with the least errors.

3. Results

3.1. Geological and Hydrogeological Characterization

The reconstruction of a detailed geological cross section (Figure 2) allows us to identify the limit
of the aquiclude represented by the “Pozzolane inferiori” formation. Using the surface geological and
geometrical data acquired directly in the field and well log stratigraphy it was possible to correlate and
model the complete volcanic sequences observed in the area investigated. Furthermore, each single
geologic unit was geometrically identified and superimposed on the others to obtain a complete 3D
picture of the whole volcanic template succession using the Voxler3 software. In fact, the overall
volcanic sequence lies in an unconformity above a thick sedimentary succession mainly represented by
clay, sand, and silt. Heterogeneity of the geological substrata is represented by the alternation between
tuff levels and lava lenses in the upper half portion of the cross section (between 0 and 50 m), while the
lower half one is characterized by thick fractured lava levels. The latter are characterized by constant
thickness in the NE–SW direction and by important lateral thickness variations in the W–E direction.
This aspect represents an important factor that strongly limits water circulation towards West and East.

Figure 2. Geological and hydrogeological cross sections within the municipal solid waste disposal
dump and stratigraphic correlation of the piezometers investigated.

With a total thickness of 30–35 m and a widespread areal distribution, the aquifer located in the
thick fractured lavas and supported by compact pozzolanas, which act as an aquiclude (Figures 2 and 3),
represents a fundamental element able to rapidly convey pollutants toward SSW, driven by the main
drainage direction (Figure 4). The 3D geological and hydrogeological model [73–76] allows us to
better define the vertical and lateral variations of each single rock body [73–78]. Because both the
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fractured lavas and the tuff layers do not show a constant thickness in the whole area studied, it is
fundamental to build up a detailed geometry of the volcanic deposits, showing a progressive reduction
of the thickness towards both West and South. The latter aspect is key to a better understanding of the
hydraulic behavior of the aquifer and a better identification of the relationships between the dump
activities, water circulation and bacterial behavior.

Figure 3. Detailed 3D sketch of the area investigated: groundwater (blue line), aquiclude (green), lavas
(red) and tuff formations (yellow). Each white vertical pin corresponds to a piezometer (CE-A, CE-B,
CE-C, CE-D, CE-F, CE-G, CE-H, and CE-I). The geological cross-section is oriented from North-East to
South-West (NE–SW). The surface red line corresponds to the contour of the waste treatment plant.

The reconstruction of the piezometric level shows a time-space variation with a progressive
increase in the water level from 68.5 m (I campaign) to 69.3 m (IV campaign) at piezometer CE-D,
which is the upstream of the overall piezometers sampled (Table 1).

The piezometric variation shows a trend that does not seem influenced by seasonal variation,
as highlighted by the high level of the piezometric level measured during the February 2013 campaign
in the upper stream sector. Despite the vertical variation observed, the drainage direction remained
constant during the investigation period showing a main drainage direction from N-NE to S-SW.
During the last campaign, the southern sector was characterized by a counterclockwise rotation of the
drainage direction toward South. This process was mainly observable within the area comprising the
CE-F, CE-H, and CE-I piezometers, as shown in Figure 4.

It is important to underline that the groundwater drainage direction did not have a uniform trend;
the gradient in the northern sector (CE-D, CE-A, CE-B, CE-C, CE-I piezometers) was higher than that
in the southern sector (CE-F, CE-H, CE-G piezometers) (Figure 4). This result can be ascribed to the
inhomogeneities in the permeability profile affecting the groundwater level. Based on the subsurface
geological analysis, the CE-B piezometer was the most vulnerable to the waste disposal occurrence
owing to the presence of several fractured lava layers between the surface and groundwater levels.
This makes possible a passive transport of both organic matter and contaminants from surface to
groundwater. On the contrary, the CE-D piezometer was intrinsically less vulnerable because it was
located upstream and outside the waste disposal area and was characterized by a vertical geological
homogeneity with a low fracturation process. For this reason, it was considered a control piezometer.
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Figure 4. Reconstruction of the piezometric level variations (meters above sea level) in the different
sampling campaigns: I September 2012; II February 2013; III July 2013; IV October 2013. Each red circle
represents a piezometer sampled (CE-A, CE-B, CE-C, CE-D, CE-F, CE-G, CE-H, and CE-I). The blue
arrows show the drainage direction and magnitude. The red line corresponds to the contour of the waste
treatment plant. In the bottom part of the Figure, the monthly cumulative precipitation are reported.

3.2. Main Chemical–Physical Parameters on Site

Temperature and pH in all piezometers were quite constant (Supplementary Materials Table S1),
with no significant differences between different sampling times and piezometers, with average values
of 17.54 ± 0.09 ◦C and 7 ± 0.03, respectively. Conductivity and dissolved oxygen values are reported in
Table 3 and Table S1 (Supplementary Materials).
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Table 3. Conductivity (µS/cm) and dissolved oxygen (mg/L) found in each piezometer (CE-A, CE-B,
CE-C, CE-D, CE-E, CE-F, CE-G, CE-H, and CE-I) at each sampling campaign.

Piezometer
Conductivity (µS/cm) Dissolved Oxygen (mg/L)

I
September

II
February III July IV

October
I

September
II

February III July IV
October

CE-A 704 1404 789 758 9.14 8.30 8.8 4.3
CE-B 1029 1022 1028 1039 3.3 3.50 3.2 3.3
CE-C 855 905 847 840 8.1 5.2 4.0 7.5
CE-D 718 1412 713 710 8.87 8.9 8.9 8.8
CE-E 713 707 709 718 6.8 6.58 5.1 6.4
CE-F 1039 1040 1035 1049 4.4 3.64 3.7 3.7
CE-G - 850 862 - - 6.97 5.1 -
CE-H 850 843 790 798 3.54 6.28 7.5 7.4
CE-I 769 792 770 774 6.5 6.73 6.7 7.3

The highest values for conductivity and the lowest for oxygen were in the CE-B and CE-F
piezometers. All the other parameters are reported in Supplementary Materials Table S1.

3.3. Chemical Analysis

Anion and cation concentrations found in the four samplings rarely exceeded the corresponding
threshold limits required by the Italian legislation (D.Lgs 152/2006 Annex 5; D.Lgs 30/2009, Annex 3),
as can be seen in Table 4 and in detail in Supplementary Materials (Table S1).

Table 4. Minimum (Min) and maximum (Max) concentrations of anions and cations found in the four
sampling campaigns (second and third column); threshold limits reported in the Italian legislations
(fourth column); Numbers of exceeding values and corresponding piezometers (fifth and sixth column).

Ions Min Max Legal limits * >Limits Piezometers

Fluorides 0.86 6.64 1.5 mg/L 11 CE-C; CE-E;
CE-H; CE-I

Nitrites 0 0 0.5 mg/L 0
Sulphates 19.1 40.39 250 mg/L 0

Be 0.1 0.9 4 µg/L 0
B 114 803.54 1000 µg/L 0

Al 3.1 1718 200 µg/L 8 CE-E; CE-F;
CE-G; CE-H

Cr Tot 0.8 3.7 50 µg/L 0
Cr (VI) <0.5 <0.5 5 µg/L 0

Mn 0.2 46.2 50 µg/L 0
Fe 7.5 543 200 µg/L 3 CE-G; CE-H

As 8.3 26.58 10 µg/L 28

CE-A; CE-B;
CE-C; CE-E;
CE-F; CE-G;
CE-H; CE-I

Ni 0.3 7.8 20 µg/L 0
Cu 0.21 4.53 1000 µg/L 0
Co 0.3 2.5 50 µg/L 0
Zn 2.5 838 3000 µg/L 0
Se 0.1 0.6 10 µg/L 0
Ag <0.1 <0.1 10 µg/L 0
V 30.2 49.8 50 µg/L 0

Cd 0.11 0.15 5 µg/L 0
Sb 0.2 0.4 5 µg/L 0
Hg <0.1 1 µg/L 0
Pb 0.1 1.5 10 µg/L 0

* D.Lgs 152/06; D.Lgs 30/2009, Annex 3.

Nitrites were never found and the legislation limits for inorganic elements were exceeded
only in the case of fluorides (>1.5 mg/L), aluminum, iron and arsenic in several piezometers
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(Supplementary Materials Table S1). However, these values were in line with those naturally found in
volcanic areas of Central Italy and can therefore be ascribed to a geogenic origin [53,79].

The overall chemical analysis results (see Supplementary Materials, Tables S2, S3, and S4) showed
that although 92 contaminants were searched for, only 31 were found in residual concentrations.
The legislation limit (0.15 µg/L) for the volatile organic compound 1,2 Dichloropropane was exceeded
just in the case of CE-B (0.17 µg/l) and CE-F (0.55 µg/L) piezometers in the third campaign (July),
(Table S4).

However, in order to assess a possible impact from the waste dump and the groundwater
vulnerability to residual multiple contamination, at each single piezometer sampled, the residual
concentrations of each single compound were added together and a “sum value” is reported for each
single piezometer in Table 5.

Table 5. Sum value of all organic contaminants (µg/L) found in each piezometer (CE-A, CE-B, CE-C,
CE-D, CE-E, CE-F, CE-G, CE-H, and CE-I) and at each sampling.

Piezometer I September (µg/L) II February (µg/L) III July (µg/L) IV October (µg/L)

CE-A 0.398 0.122 0.434 0.287
CE-B 0.813 0.238 1.08 0.597
CE-C 0.508 0.129 0.92 0.353
CE-D 0.312 0.049 0.674 0.259
CE-E 0.291 0.061 0.465 0.236
CE-F 0.667 0.529 1.579 -
CE-G 0.646 0.163 0.347 0.179
CE-H 0.651 0.121 - 0.546
CE-I 0.398 0.219 1.12 0.288

In the first sampling, 15 micro-contaminants were found (trichloroethylene and tetrachloroethylene
were in all piezometers sampled); however, the legislation limits were never exceeded. The highest
number of contaminants and the highest sum value were found at the CE-B piezometer (0.8 µg/L: VOCs
0.78 µg/L + PAHs 0.021 µg/L), followed by the CE-F (0.7 µg/L: VOCs 0.66 µg/L + PAHs 0.04 µg/L), CE-H
(0.65µg/L: VOCs 0.633µg/L + PAHs 0.016µg/L) and CE-I (0.4µg/L: VOCs 0.38 µg/L + PAHs 0.022 µg/L).

In the second sampling, 21 micro-contaminants were found, although their concentrations
were very low. The highest sum values were found at the CE-F piezometer (0.53 µg/L:
0.13 µg/L VOCs + 0.4 µg/L PAHs) and at the CE-B one (0.24 µg/L: 0.09 µg/L VOCs + 0.15 µg/L
PAHs), respectively.

In the third sampling (July) 22 micro-contaminants were found and their sum values were
significantly higher (t test, p < 0.01) than those in the two previous samplings. In particular, at the CE-F
piezometer the sum value of all contaminants was 1.58 µg/L (1.56 µg/L for VOCs and 0.016 µg/L for
PAHs) and at the CE-B piezometer 1.08µg/L (only VOCs were found). In this sampling, beyond the most
frequently found Trichloroethylene, Tetrachloroethylene, 1,2-Dichloropropane, Etilbenzene, o/p-Xilene,
and Phenantrene were also found (Tables S3 and S3). However, the legislation limit (0.15 µg/L) was
exceeded just for the volatile organic compound 1,2-Dichloropropane at both the CE-B (0.17 µg/L) and
CE-F (0.55 µg/L) piezometers.

In the fourth sampling (October) 15 micro-contaminants were found; 1,2-Dichloropropane was
found at the CE-B, CE-C, CE-F, and CE-I piezometers, however its concentrations were always in trace
amounts (Tables S2 and S3), below the legislation limit.

3.4. Dissolved Organic Carbon

The average value of DOC was 0.6 mg/L ± 0.1 at the CE-D piezometer located upstream from
the dump and at the CE-A and CE-E piezometers located on the boundary of the dump; the DOC
values were significantly higher (p < 0.05) (ranging from 0.7 to 1.1 mg/L) at the other piezometers
(CE-B, CE-C, and CE-F). No relationships were found between the DOC values and sum values of all
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organic contaminants; while a positive relationship was found between DOC and dissolved oxygen
and conductivity (p < 0.01) (Table 6).

Table 6. Dissolved Organic Carbon (DOC) values determined in each piezometer (CE-A, CE-B, CE-C,
CE-D, CE-E, CE-F, CE-G, CE-H, and CE-I) at each sampling campaign.

Piezometer
DOC (mg/L)

I September II February III July IV October Average ±se

CE-A 0.4 0.9 0.5 0.5 0.6 ±0.1
CE-B 1.4 1.3 0.9 0.7 1.1 ±0.2
CE-C 0.5 1.2 0.6 0.4 0.7 ±0.2
CE-D 0.5 0.7 0.6 0.4 0.6 ±0.1
CE-E 0.3 0.7 0.7 0.6 0.6 ±0.1
CE-F 1.0 1.2 1.2 1.0 1.1 ±0.0
CE-G 0.4 0.8 1.4 0.6 0.8 ±0.3
CE-H 0.5 1.1 2.0 0.7 1.1 ±0.3
CE-I 0.4 0.9 0.7 0.6 0.7 ±0.1

3.5. Microbial Abundance and Cell Viability

The microbial abundance values (No. cells/mL) ranged from a minimum of 5.3 × 103
± 1.3 × 103

to a maximum of 1.2 × 106
± 7.7 × 104 (Table 7). The CE-D piezometer had the lowest average value if

compared with the other ones.

Table 7. Microbial abundance (No. Cells/mL) values determined in each piezometer (CE-A, CE-B,
CE-C, CE-D, CE-E, CE-F, CE-G, CE-H, and CE-I) at each sampling campaign.

Piezometer
Microbial Abundance (No. Cells/mL)

I September II February III
July IV October Average ±se

CE-A 6.9 × 103 8.8 × 104 5.2 × 104 1.4 × 105 7.2 × 104
±2.9 × 104

CE-B 1.7 × 104 3.1 × 104 2.9 × 104 6.6 × 104 3.6 × 104
±1.1 × 104

CE-C 9.2 × 103 3.1 × 104 9.0 × 103 2.6 × 104 1.9 × 104
±5.7 × 103

CE-D 1.0 × 104 1.4 × 104 1.2 × 104 2.2 × 104 1.4 × 104
±2.5 × 103

CE-E 1.5 × 104 2.6 × 104 1.9 × 104 1.1 × 105 4.2 × 104
±2.2 × 104

CE-F 5.3 × 103 2.6 × 104 6.6 × 104 2.5 × 105 8.8 × 104
±5.7 × 104

CE-G - 1.7 × 104 1.7 × 105 - 9.4 × 104
±7.7 × 104

CE-H 2.5 × 104 6.5 × 104 1.5 × 104 1.2 × 106 3.3 × 105
±2.9 × 105

CE-I 1.2 × 104 5.8 × 104 1.5 × 104 3.5 × 104 3.0 × 104
±1.1 × 104

The cell viability values (expressed as % live cells/live + dead) ranged from 10.7% to 69.5%
(Table 8). The data for the CE-H piezometer regarding the third sampling are not reported, owing to
the interference of suspended particles, which hampered cell observations under the microscope.

Table 8. Cell viability (% live cells/live + dead) values determined in each piezometer at each
sampling campaign.

Piezometer
Cell Viability (%)

I September II February III July IV October Average ±se

CE-A 33.8 12.3 51.5 47.2 36.2 ±8.8
CE-B 11.3 11.2 60.3 50.2 33.2 ±12.9
CE-C 61.4 10.7 58.6 30.6 40.3 ±12.1
CE-D 57.3 44.3 23.5 44.3 42.3 ±7.0
CE-E 50.0 38.9 64.5 39.5 48.2 ±6.0
CE-F 18.0 19.0 37.1 32.7 26.7 ±4.8
CE-G - 19.6 16.8 - 18.2 ±1.4
CE-H 40.4 43.8 - 18 34.1 ±8.1
CE-I 34.9 25.7 69.5 55.5 46.4 ±12.2
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A significant negative correlation was found (p < 0.01) between the cell viability and DOC
values (Figure 5).

Figure 5. Linear regression (n = 34) which shows the relationship between the cell viability and
dissolved organic carbon (DOC).

3.6. Spatial and Multi-Parameter Monitoring over 1 Year with 4 Season Analysis

Data collected were used for the geostatistical analysis. Close relationships among the geological
heterogeneity, water circulation, pollutant diffusion, dissolved organic carbon, and cell viability were
found. The thematic maps regarding microbial abundance, cell viability, and DOC are reported with
a chromatic scale in Figure 6.

Figure 6. Geostatistical maps of microbial abundance (No. cells/mL), cell viability (%), dissolved
organic carbon (mg/L) for each sampling campaign. The higher values are reported in red and the
lower ones in blue.

Microbial abundance was not directly related either to cell viability or to the DOC values (Figure S1).
On the contrary, a close relationship (p < 0.01) was found between cell viability and dissolved organic
carbon. The highest values for cell viability were found with DOC values ≤ 0.5 mg/L; above these
values DOC seems to negatively affect the microbial community (Figure 5).
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4. Discussion

The study carried out allowed us to reconstruct in detail the surface and subsurface geological
structure of the investigated area. Using field analyses, piezometer stratigraphy (when available) and
computer modelling, a new and up to date 3D geological model of the area was performed. The latter,
mainly composed of a layer cake template succession of tuffs, lavas and compacted pozzolanas,
with a total thickness up to 300 m, was characterized by a shallow aquifer comprised within the
lava layers. A detailed structural analysis carried out on the outcropping formation showed an
intense fracturation process, which substantially modified, as a second order process, the first order
mechanical and hydraulic characters of the rocks (very low permeability). This last aspect is key
to a better understanding of water circulation and drainage directions. The brittle deformation
processes involving the most rigid formations of the entire stratigraphic succession are characterized by
piezometer-organized and sub-parallel extensional fracture lineaments, showing different overlapped
generations. In particular, the intersection among different fracture systems represents a preferential
water vertical direction flux from the surface through the volcanic succession to the aquiclude levels,
composed of the compact pozzolanas layers. However, the fracturation processes, which are not
evenly distributed either planimetrically or vertically, favor the development of areas with higher
induced permeability (secondary permeability) values such as those at CE-B and CE-F piezometers.
Using the computer modelling software, it was possible to model the geological structures in the area
investigated in 3D and evaluate the direction, geometry and volumes of both groundwater and volcanic
formations. In this configuration, the surface successions of tuffs, unevenly fractured, represent the
unsaturated layers, which should perform the function of protecting aquifers from contamination
processes coming from the surface. Despite this, the pervasive fracturation processes, which also
affects the tuffs, can make it possible for chemicals to directly reach the aquifer.

The overall data analysis regarding the 6 piezometers belonging to this volcanic aquifer showed
that the threshold values for evaluating the chemical and quantitative status established by the
European WFD and entered in force in the Italian legislation [32,58] were not exceeded, except for one
chemical at two points (CE-B and CE-F) in the July sampling campaign. Using the current legislation
approach, we can state that the waste dump did not negatively affect the groundwater quality.

However, by considering unconventional parameters such as DOC and cell viability and applying
a geostatistical analysis we were able to identify some points where the groundwater was unexpectedly
vulnerable to inputs from the surface. In this context, the high DOC value observed for the most
vulnerable piezometer CE-B, whatever the season, can be ascribed to the dump’s presence. Using our
approach, we identified the initial carbon input peak, at the CE-B piezometer, (September and February)
and its transfer with the subsurface water flow in the following months toward the Southern sector of
the area investigated though groundwater circulation. In fact, a progressive increase in DOC values
during time at the CE-G (February and July), CE-H (February–July) and, downstream, CE-F piezometers
(July and October) was observed (Figure 6).

An opposite trend was found for the cell viability (highest DOC, lowest viability), showing that
DOC values above 0.6 mg/L had a detrimental effect on the groundwater microbial community
(Figure 6). In fact, in the external control piezometer CE-D, DOC always displayed relatively low
values, in accordance with those commonly found in pristine groundwater [1,34]. A low DOC content
is known to be a factor limiting the growth of bacterial communities; on the contrary, in our samples we
observed that the lowest cell viability was associated with the highest DOC values. This suggests that
the additional organic carbon comes from the dump and that the microbial communities are sensitive
to its origin and quality. This result, showing the negative effects on the microbial community of higher
values of DOC in contaminated ecosystems, is in line with those found in in previous works [80–82].
Finally, it is interesting to note that in the third sampling campaign the lowest oxygen concentrations
were found and the volatile organic compound 1,2 Dichloropropane detected above the legislation
limits in the most vulnerable piezometers (CE-B and CE-F). The presence of volatile organic compounds
is an indicator of anthropogenic activities [83]. Negative effects on the microbial community due to
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high DOC values and trace contamination of chlorinated organics were found in previous studies in
groundwater [80]. These results show that a contaminant threshold compliance alone does not exclude
possible effects from the trace contaminant mixture on the groundwater ecosystem. Once the most
vulnerable groundwater sectors are identified, monitoring surveys can focus on these points and also
take into consideration the microbiological parameters.

5. Conclusions

The overall results show that the chemical analysis of single contaminants and quantitative
parameters required by the current regulations is not always able to assess the vulnerability of
a groundwater and all the possible impacts of a waste deposit area. On the contrary, a detailed
geological and hydrogeological analysis made it possible to understand the surface and subsurface
geological structures of the area investigated. The new 3D geological model made it possible to
identify the geometry and distribution of the different volcanic formations in the area studied.
The meso-structural analysis showed different extensional fracture generations affecting both the tuffs
and lavas. The intersection among different fracture lineament generations represents a preferential
pathway for chemicals and organic carbon to reach and affect groundwater. This process was evident in
the most vulnerable CE-B and CE-F piezometers. This study also shows that the geostatistical analysis
makes it possible to understand the relationships between parameters and spatial heterogeneity in
a better way than the classic statistical analysis. Finally, unconventional ecological parameters such as
cell viability and DOC can be more sensitive than the chemical determinations alone for assessing the
anthropogenic pressure on an aquifer and can be good indicators of water quality to be added to those
required by the current legislation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/9/1933/s1,
Table S1. List of parameters and inorganic ions examined in the nine piezometers samples for different sampling
campaigns (I-II-III-IV). Table S2. Organic contaminants (Polycyclic Aromatic Hydrocarbons, PAHs, µg/L) in the
water samples of the four campaigns: I September, II February, III July, IV October. Table S3. Organic contaminants
(PCB, DDE and yHCH µg/L) in the water samples of the four campaigns: I September, II February, III July, IV
October. Table S4. Organic contaminants (VOCs, µg/L) in the water samples of the four campaigns: I September,
II February, III July, IV October. Figure S1: Variograms for Microbial abundance.
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