
Acetaminophen removal from water by microalgae and effluent toxicity assessment by the zebrafish embryo bioassay

Carla Escapa^{a,b}, Ricardo N. Coimbra^c, Teresa Neuparth^b, Tiago Torres^b, Miguel M. Santos^{b,d,*}, Marta Otero^{c,e,*}

- ^a IMARENABIO-Institute of Environment, Natural Resources and Biodiversity, Department of Applied Chemistry and Physics, Universidad de León, Avenida de Portugal s/n, León, Spain
- ^b CIMAR/CIIMAR Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Group of Endocrine disruptors and Emerging contaminants, Av. General Norton de Matos s/n, Porto, Portugal
- ^c Department of Environment and Planning, Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
- ^d FCUP Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto, Portugal
- ^e CESAM-Centre for Environmental and Marine Studies, Campus Universitário de Santiago, Aveiro, Portugal
 - * Correspondence: <u>santos@ciimar.up.pt</u> (M.M.S.); <u>marta.otero@ua.pt</u> (M.O.)

CONTENT										
Figure S1	Periods of the embryo development of <i>Danio rerio</i> : (a,b) gastrula period; (c,d) pharyngula period; (e,f) larval stage. Note: Sketches have been taken from									
	Kimmel et al. [28] and pictures from the microscope.									
Table S1	Effects on zebrafish embryo exposed to effluents from microalgae treatments at									
	a 1:3 dilution with freshwater. Note: Mean results (n= 12 for control; n=6									
	exposed groups) are shown together with SE. Results significantly different									
	from control ($p \le 0.05$) are in bold.									

Figure S1. Periods of the embryo development of *Danio rerio*: (a,b) gastrula period; (c,d) pharyngula period; (e,f) larval stage. Note: Sketches have been taken from Kimmel et al. [28] and pictures from the microscope.

Table S1. Effects on zebrafish embryo exposed to effluents from microalgae treatments at a 1:3 dilution with freshwater. Note: Mean results (n= 12 for control; n=6 exposed groups) are shown together with SE. Results significantly different from control ($p \le 0.05$) are in bold.

		Mortality rate	75%-epiboly	rate	Total abnor	malitie	s Developme	ntal delay	Lack of pign	nentatio	n Excess o	f pig	mentation	Lateral position	Involuntary i	noveme	ents Larval length (µm)
8 hpf	Control	1.7 ±3.9	96.6 ±	5.1	1.8 ±	4.1	1.8 ±	4.1									
	CS	3.3 ± 5.2	96.7 ±	5.2	$0.0 \pm$	0.0	$0.0 \pm$	0.0									
	CV	3.3 ± 5.2	93.3 ±	5.2	$3.3 \pm$	5.2	1.7 ±	4.1									
	SO	1.7 ± 4.1	98.3 ±	4.1	$0.0 \pm$	0.0	$0.0 \pm$	0.0									
32 hpf	Control	3.3 ±4.9			0.0 ±	0.0	0.0 ±	0.0	0.0 ±	0.0	0.0	±	0.0				
	CS	5.0 ± 5.5			7.5 ±	5.8	$0.0 \pm$	0.0	7.5 ±	5.8	0.0	±	0.0				
	CV	5.2 ± 5.7			12.4 ±	3.7	$0.0 \pm$	0.0	12.4 ±	3.7	0.0	±	0.0				
	SO	3.3 ± 5.2			10.4 ±	6.4	0.0 ±	0.0	10.4 ±	6.4	0.0	±	0.0				
30 hpf	Control	4.2 ± 5.1			0.9 ±	3.2	0.0 ±	0.0	0.0 ±	0.0	0.0	±	0.0				
	CS	6.7 ± 5.2			9.5 ±	4.7	$0.0 \pm$	0.0	$0.0 \pm$	0.0	5.6	±	6.1				
	CV	5.0 ± 5.5			16.1 ±	6.0	$0.0 \pm$	0.0	$0.0 \pm$	0.0	16.1	±	6.0				
	SO	3.3 ± 5.2			$10.4 \pm$	6.4	$0.0 \pm$	0.0	$0.0 \pm$	0.0	8.5	±	7.6				
144 hpf	Control	4.2 ±5.1			0.9 ±	3.2	0.0 ±	0.0	0.0 ±	0.0	0.0	±	0.0	0.0 ± 0.0	0.0 ±	0.0	3856.88 ± 45.84
	CS	6.7 ± 5.2			26.9 ±	5.2	$0.0 \pm$	0.0	$0.0 \pm$	0.0	25.0	±	4.3	0.0 ± 0.0	0.0 ±	0.0	3869.60 ± 28.80
	CV	5.0 ± 5.5			$37.2 \pm$	6.1	$0.0 \pm$	0.0	$0.0 \pm$	0.0	37.2	±	6.1	$1.9~\pm~4.5$	0.0 ±	0.0	3890.21 ± 22.28
	SO	3.3 ± 5.2			29.3 ±	6.2	$0.0 \pm$	0.0	$0.0 \pm$	0.0	29.3	±	6.2	0.0 ± 0.0	0.0 ±	0.0	3911.49 ± 17.80