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Abstract: This study evaluates, under field conditions, the efficiency of a permeable reactive barrier
(PRB) with compost and brown coal to remove trichloroethylene (TCE) (109 µg/L) from contaminated
groundwater. Three stainless steel boxes (1.2 × 0.5 × 0.5 m) with the brown coal-compost mixture
at three different mixing ratios of 1:1, 1:3, and 1:5 (by volume) were installed to simulate the PRB.
Groundwater from the TCE-contaminated aquifer was pumped into the system at a flow rate of
3.6 L/h. Residence times in the boxes were of: 25, 20, 10 h, respectively. Effluent samples were
analyzed for TCE and its daughter products: dichloroethylene (DCE), vinyl chloride (VC) and
ethane. During the 198-day experimental period TCE concentrations in groundwater decreased below
≤1.1 µg/L, i.e., much lower than groundwater and drinking water standards in Poland. After 16 days
cis-1,2-DCE was monitored indicating possible reductive dechlorination of TCE. However, complete
transformation of TCE into non-toxic byproducts was not evidenced during the time of experiments,
indicating that reductive dechlorination slowed down or stopped at DCE, and that the designed
residence times were not long enough to allow the complete dechlorination process.
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1. Introduction

Chlorinated solvents are contaminants frequently found in aquifers in the USA [1] and Europe [2].
Their removal is challenging as they are difficult to locate when they are present as dense non-aqueous
phase liquids (DNAPL) [1], recalcitrant to biodegradation [3], and pose a potential and actual health
hazard [4–6]. Evidence suggests that chlorinated solvents can be removed from groundwater via
multiple mechanisms that include chemical oxidation-reduction, physical sorption, and anaerobic
degradation via reductive dechlorination [7].

Reductive dechlorination is considered to be the most important mechanism for the bioremediation
of highly chlorinated solvents like trichloroethylene (TCE). During reductive dechlorination, chlorine
atoms are replaced by hydrogen atoms, resulting in sequential dechlorination from TCE to
dichloroethylene (DCE), vinyl chloride (VC) and ethane [8]. TCE can be degraded into three
different isomers of DCE—cis, trans, and 1,1-DCE; however, cis-1,2-DCE is the dominant product [9].
Reductive dechlorination of chlorinated aliphatic hydrocarbons (CAHs) is carried out by several
different bacteria, in particular, cultures containing Desulfitobacterium, Dehalobacterrestrictus,
Desulfuromonas, Dehalospirillum multivorans, and Dehalococcoides. However, Dehalococcoides are
the only microorganism known capable of complete dechlorination of TCE to ethylene [10–16].

The use of permeable reactive barriers (PRB) to remove chlorinated solvents from groundwater
has proven to be effective and has increased considerably during the past years [17]. The technology
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was first applied to remediate groundwater contaminated with chlorinated solvents using zero valent
iron (ZVI) as a reactive material [18]. Currently, PRBs application is broadened to a wide range of both:
contaminants and reactive materials [19]. While at the beginning most PRBs applications focused on
the use of a single material, typically to treat a single contaminant plume; currently, combinations of
reactive materials are frequently used in single or multi-barrier systems to address mixed contaminants
by the occurrence of various removal processes simultaneously [20]. For instance, Ma and Wu [21]
used a combination of ZVI and microbial community to treat tetrachloroethylene (PCE) and observed
the higher removal efficiency for the combination of ZVI and the microbial community than for ZVI
alone. Likewise, Henry et al. [22] evaluated a field-scale PRB with compost and mulch to remove TCE
and noted 98% reduction of the contaminant concentration after 3 months of operation.

The use of compost in PRBs to treat TCE has been broadly documented [13,23–25]. Compost
has shown to facilitate TCE reductive dechlorination by improving the conditions for microbial
growth, and to provide a suitable environment for creating a bioactive zone capable of decomposing
TCE in groundwater [25]. Brown coal waste materials have been widely used in remediation for
years, especially for their ability to immobilize heavy metals [26–30], nonetheless their ability to
retain organic and less polar organic contaminants (chlorophenols, nitrophenols) has also been
demonstrated [31,32]. Although the efficiency of the proposed reactive materials to remove TCE has
been demonstrated [22,25,32,33], they have not been studied in combination in a single PRB and under
field conditions so far. Although to date over 200 pilot scale and field-scale PRBs have been constructed
in North America and Europe [17,20,34], still most studies to treat chlorinated solvents focus on the
use of ZVI and only few of them are carried out under field conditions.

This study was performed to evaluate the effectiveness of a mixture of two low-cost reactive
materials like compost and brown coal waste to treat groundwater contaminated with TCE. Results
from this study provide guidelines for the design of a full-scale PRB at the selected contaminated site.
The main design parameters of a PRB to be determined during a field test include [35]:

PRB residence time. It is required to achieve site-specific remedial goals. Insufficient residence
time will result in contaminant breakthrough in the barrier. The time required for the treatment together
with the expected groundwater flow velocity can be then used to determine PRB barrier thickness.

Removal efficiency. Effectiveness of the reactive materials to remove the target contaminant
from groundwater.

Hydraulic performance. It assesses the ability to provide the influent groundwater with the
desired residence time in the reactive medium. Selection of the particle size of the reactive medium
(mixtures) should take into account the trade-off between reactivity and hydraulic conductivity.
Generally, higher reactivity requires lower particle size, whereas higher hydraulic conductivity requires
larger particle size.

2. Materials and Methods

2.1. Site Description

The contaminated site is located in Southeast Poland in the vicinity of the town of Nowa Dęba
and covers an area of approximately 30 km2. The aquifer is mainly composed of quaternary alluvial
and terrace deposits of sand, silt, clay and gravel with depths up to 30 m below the ground surface
(bgs). The unconfined aquifer lies on an impervious layer of Miocene clay deposits and Carboniferous
rocks that extends hundreds of meters bgs. The water table is located 1–9 m bgs. The groundwater
flows in a northwest direction at a velocity of 0.4 m/d [36].

The contamination at the site originates from a metalwork facility and the plume extends to the
extraction wells of a waterworks located 1600 m down gradient the source (Figure 1). The concentrations
of TCE (up to 6130 µg/L) and Fe2+ (up to 59,730 µg/L), Ni2+ (up to 993 µg/L), Al3+ (up to 2530 µg/L) in
groundwater exceed the maximum concentration limits (MCL) in Poland (10 µg/L for TCE; 200 µg/L
for Fe; 50 µg/L for Ni and 500 µg/L for Al) [37].
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Since 2010, field investigations have been conducted to delineate the plume and several 
remediation strategies have been evaluated. Initially, natural attenuation (NA) was assessed but the 
results suggested that intrinsic biodegradation of TCE via reductive dehalogenation was not enough 
for risk reduction, and that there was a limited potential for NA as a remediation alternative [38]. 
Currently, the installation of a PRB filled with a mixture of compost and brown coal is being 
evaluated as a long-term alternative.  

Figure 1. Overview map of the contaminated site including the location of metal-works factory,
the affected waterworks and the estimated extent of the contaminant plume. Notation: 1—extraction
wells; 2—piezometers; 3—waterworks area; 4—metal-works area.

Since 2010, field investigations have been conducted to delineate the plume and several remediation
strategies have been evaluated. Initially, natural attenuation (NA) was assessed but the results suggested
that intrinsic biodegradation of TCE via reductive dehalogenation was not enough for risk reduction,
and that there was a limited potential for NA as a remediation alternative [38]. Currently, the installation
of a PRB filled with a mixture of compost and brown coal is being evaluated as a long-term alternative.

2.2. Reactive Material Selection

The selection of appropriate filling reactive materials is a critical step in the design of a PRB.
Factors considered in the selection of the materials included: removal efficiency, hydraulic properties,
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availability and costs. Four reactive materials and four materials mixtures (i.e., brown coal, compost,
zeolite, diatomaceous earth, and mulch-compost, mulch-diatomaceous earth, zeolite-compost and
brown coal-compost; Supplementary Material, Figure S1) were evaluated in a series of step-wise batch
and column experiments to select the best candidate to treat TCE in a PRB [39]. Results of these tests
showed that brown coal presented the highest TCE removal efficiency (97%) of all individual materials
tested, followed by compost (86%). Moreover, the removal efficiency of the brown coal-compost
mixture was of 86%, while in the case of the other mixtures it was below 50% (Supplementary Material,
Figure S2). Therefore, in the present pilot-scale study only brown coal, compost and the brown
coal-compost mixture were evaluated as the most suitable to treat TCE. In addition, also the hydraulic
conductivity was increased by one order of magnitude when the materials were used in combination
(Supplementary Material, Table S1). Finally, both brown coal and compost are inexpensive and
readily available materials in the region. The main physico-chemical properties of the studied reactive
materials are presented in Table 1 (procedures for measuring physico-chemical properties are referred
to in Supplementary Material, Section 1.4).

Table 1. Physico-chemical properties of studied reactive materials.

Materials
pH (1:2.5) * ρb

(g/cm3)
Water

Content (%)
CEC

(mmol/kg)
TOC (%)

LOI

Nutrients Content (mg/kg)

H2O 1 M KCl K P Ca Mg

Compost 8.05 7.39 0.69 44.4 480 34.9 7.40 2.53 9.40 2.15
Brown coal 4.91 4.56 1.13 16.2 n.d 64 - - - -

Notation: ρb—bulk density, CEC—cation exchange capacity, TOC –total organic carbon, LOI—loss on ignition,
MC—moisture content, n.d.—not determined. * The pH of the materials was determined in water and 1M KCl at a
solid to liquid ratio of 1:2.5.

2.3. Pilot Installation for Field Demonstration

The design parameters of the pilot installation (Table 2) were based on the results gained from
laboratory studies [39]. The pilot PRB was installed in the premises of the waterworks affected by the
TCE plume. Three stainless steel boxes of 1.20 m long, 0.5 m wide and 0.5 m deep were constructed to
represent a PRB. To guarantee a homogeneous flow distribution throughout the box, a 0.1 m wall of
gravel was placed at each end of the box and separated from the reactive material by a metallic mesh.
Contaminated groundwater was pumped uninterruptedly from a well and fed to each box at an inflow
rate of 3.6 L/h using Viton tubing and fittings. In order to control the flow and the pressure of water
coming from the well, flow-reducing valves were installed at two points of the system, as well as at the
inlet of each box (Figure 2).

Table 2. Design parameters for the pilot field installation.

Parameter Value

TCE input concentration 109µg/L
MCL for drinking water in Poland 5 µg/L

Residence time in the boxes
BC-C ratio of 1:1 * 25 h
BC-C ratio of 3:1 * 20 h
BC-C ratio of 5:1 * 10 h

Feed flow rate 3.64
L/h

Hydraulic conductivity—aquifer 1.9 m/d
Hydraulic conductivity—BC-C (ratio 1:1) 2.4 m/d
Hydraulic conductivity—BC-C (ratio 3:1) 2.9 m/d
Hydraulic conductivity—BC-C (ratio 5:1) 14 m/d

* BC-C: brown coal-compost mixing ratio by weight.
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Figure 2. Schematic representation of the pilot brown coal-compost permeable reactive barrier (PRB)
installation at the site.

The reactive material placed in the boxes was composed of a mixture of brown coal and compost
at three different volumetric mixing ratios of 1:1, 1:3 and 1:5. Finally, the boxes were completely sealed
to simulate an anaerobic environment.

In addition, hydraulic conductivity (K) of the reactive materials in each box was determined
using the constant head permeability method (ASTM D2434 method). pH and Eh of the solution were
measured using a multifunction computer meter (Elmetron, model Cx-742, Poland).

2.4. Determination of TCE Removal

The evaluation of the PRB was made during a period of 198 days. Since the dechlorination of TCE
was anticipated, concentrations of TCE, as well as daughter products 1,1 DCE, cis-DCE, trans-DCE,
VC, ethane in effluent from each box were measured periodically using gas chromatography (PN-EN
ISO 15680:2008). Removal efficiency (E%) was calculated as the change in concentration between
the influent and the effluent (Equation (1)), where: E is the removal efficiency (%); C0: is the initial
concentration (mg/L); and Ci is the final concentration (mg/L):

E = [(C0 − Ci)/ C0] × 100 (1)

3. Results & Discussion

3.1. TCE Removal from Groundwater

Figure 3 presents cumulative TCE removal during 182 days of the experiments. TCE concentrations
in the effluents from three boxes decreased rapidly, and after only 8 days of operation the TCE removal
efficiencies were of: 74% (ratio 1:1), 83% (ratio 1:3) and 49% (ratio 1:5). Within 52 days of operation,
maximum TCE removal efficiencies of 94% for the mixing ratio 1:1, and 99% for the ratios of 1:3 and 1:5
were reached. Nonetheless, a notorious increase in TCE concentrations was observed in the effluents
from all boxes after approximately 64 days of the experiments (Figure 4) resulting in final removal
efficiencies of: 81%, 72% and 59% (Table 3). The box with the brown coal-compost mixture (mixing
ratio 1:5) attained the overall lowest removal of contaminant.
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Figure 3. Cumulative trichloroethylene (TCE) removal during the time of the experiments.

The pH slightly rose from 5.9 to 6.2 (ratio 1:1), 6.03 (ratio 1:3) and 6.09 (ratio 1:5) during the first
days of operation. After 16 days pH increased to 7.2 (ratio 1:1), 6.87 (ratio 1:3) and 6.75 (ratio 1:5),
and maintained stability without any major fluctuations in all boxes for the remaining time of the
experiment. The redox potential dropped from −16 to −186 mV (ratio 1:1), to −154 mV (ratio 1:3) and
to −127 mV (ratio 1:5) after 16 days of the experiment and stabilized in this range. The decrease in
Eh indicates that redox conditions were reached to a level considered appropriate for TCE reductive
dechlorination. After pH and Eh stabilization the generation of DCE followed.

Table 3. Final concentrations and removal efficiency of TCE.

Box 1 (1:1) Box 2 (1:3) Box 3 (1:5)

TCE initial concentration 109 109 109
TCE Final concentration (µg/L) 21.1 30.4 58.2

TCE maximal removal efficiency (%) 94 99 99

TCE overall removal efficiency (%) 81 72 47

The increase in TCE concentrations suggests desorption of the contaminant from the reactive
material matrix. The amount of contaminant desorbed for studied mixing ratios was of 14.92 µg/L
(ratio 1:1), 29.3 µg/L (ratio 1:3) and 57.1 µg/L (ratio 1:5). The more brown coal was present, the
higher TCE removal was attained and the greater the amount of contaminant desorbed (ca. 50% of
the initial concentration for the mixing ratio of 1:5). Such TCE desorption events have often been
observed in granular media such as zeolite [40] and granular activated carbon (GAC) [41,42] but with
little understanding of the mechanisms involved. Desorption experiments are usually performed
in conjunction with adsorption studies to determine the reversibility of adsorbed compounds onto
the soil matrix. However, the time frame and conditions usually encountered in the field are not
adequately represented in the laboratory. Some studies have shown that adsorbed organics can be
released from solid media when the concentration of the contaminant was reduced in order to reach
equilibrium [42,43]. In addition, Zytner [42] also found that the organic carbon content of the solid
media is an important controlling factor of adsorption and desorption. This means that materials
with high organic carbon content are effective in adsorbing and retaining dissolved TCE. Brown coal
used in this study contains high amounts of organic constituents (ca. 64%), mainly humic acids that
represent a source of organic matter (Table 1). Our results indicate strong adsorption affinity of brown
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coal towards TCE but not as strong resistance to its desorption. Other authors have indicated that
TCE resistance to desorption increases with the residence time and is independent of the material
properties, like the organic carbon content [44–46]. Our results suggest that the organic carbon content
of the material has a minor influence on the resistance to desorption whereas the residence time plays
a greater role.

In addition, it has been postulated by many researchers that adsorption of contaminants will result
in a reduction of the overall rate and degree of biodegradation [47,48]. The adsorbed contaminant
is unavailable for biodegradation unless it desorbs. Therefore, desorption of TCE from the brown
coal-compost mixture can benefit the rate of biodegradation, if enough residence time is allowed for
complete transformation of TCE into less hazardous compounds like ethane.
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3.2. TCE Biodegradation Products

After 16 days of the experiment DCE (cis-1,2-dichloroethene) has been recorded in the three boxes
effluent (Figure 4). As the initial concentration of DCE was zero, it is clear that its presence was due to
TCE degradation. The trend of increasing DCE concentrations was observed in all boxes until day 29
when a slight reduction of DCE concentration was observed followed by an increase soon after. A final
decrease in DCE concentration was noted on day 78 and from then concentration stabilizes until the
end of the experiment. However, the conversion of DCE to VC and non-toxic by-products (ethane) did
not occur during the time of the experiment indicating that reductive dechlorination slowed down or
stopped at DCE. The initial steps in reductive dechlorination are generally more rapid than the final
steps. Consequently, DCE and VC tend to accumulate at contaminated sites [49]. The effectiveness of
chlorinated solvents to serve as electron acceptors is proportional to the number of chlorine molecules
attached [8]. For example, TCE is more likely to serve as an electron acceptor and lose a chlorine atom
through reductive dechlorination than is DCE, or VC. Nonetheless, field studies on dechlorination of
chlorinated solvents have demonstrated the complete transformation of TCE into non-toxic products,
if enough residence time is allowed in a PRB [22,25]. The incomplete removal of TCE observed in our
experiment is likely associated with the short residence time of the contaminant in the reaction zone.
A drop in pH can also slow dechlorination rates but during our experiments pH values remained close
to 7, values which are considered optimal for dechlorination.

In addition, further dechlorination of DCE may have been inhibited by desorbed amounts of TCE
still present in the barrier. Some authors have reported that higher chlorinated ethenes can inhibit the
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degradation of less chlorinated ethenes [50–54]. This means that TCE inhibits degradation of DCE
and VC, and DCE inhibits degradation of VC. Nonetheless, concentrations of TCE in those studies
were significatively higher than the concentration in our study. Studies reporting inhibition with
concentrations similar to that of our studies have not been reported.

Furthermore, the presence of dissolved iron (Fe2+) in the treated groundwater indicates that iron
reduction may be taking place. Iron reduction might have played an additional inhibitory role, since
iron respiration is suspected to be competitively inhibitory to reductive dechlorination, especially for
less chlorinated compounds like DCE [55]. Since H2 is the ultimate electron donor for dehalorespiring
microorganisms, iron-reducer communities, among other microbial communities compete with
Dehalococcoides species for H2 and may inhibit the dechlorination process in TCE-contaminated
aquifers [56,57]. Kean et al. [58] investigated the accumulation of DCE at a site undergoing reductive
dechlorination and observed that geochemical conditions are dominant and influence the progression
of the dechlorination process. Groundwater conditions suggest that iron reduction, sulfate reduction,
or methanogenesis could all influence the accumulation and persistence of DCE. Although, at some
contaminated sites the presence of dissolved iron is thought to negatively impact the dechlorination [23],
it has also been documented by Paul et al. [57] that inhibition of microbial dechlorination of
trichloroethylene by Fe3+ reduction depends on Fe mineralogy of iron oxides and hydroxides.
In contrast, Wei and Fedelman [59] demonstrated that the reduction of Fe3+ did not inhibit dechlorination
of TCE. Atashgahi et al. [60] observed that the type of substrate determines the degradation pattern of
chlorinated compounds and stimulation of specific dechlorination microorganisms like Dehalococcoides
mccartyi and methanogens. Lignocellulosic materials, a long-term electro-donor, exhibited higher
amounts of D. mccartyi. These organisms can sustain reductive dechlorination over time due to its
ability to survive in low H2 conditions, giving it a competitive advantage over other H2 consuming
organisms like iron reducers and methanogens. On the other hand, shrimp waste, a source of rapidly
degradable organic acids and alcohols, evidence a predominance of methanogens and as a result
a reduced degradation of chlorinated compounds compared to lignocellulosic materials.

An additional common environmental phenomenon is the competitive adsorption of cis-DCE
and TCE. The adsorption of several contaminants with different adsorption parameters to a limited
reactive surface causes interspecies competition. DCE is the solute with the weaker adsorption affinity,
and declines its sorption when TCE with higher adsorption affinity is present. This phenomenon is
observed during the sorption of multiple species on microporous materials like activated carbons and
zeolites [61] but also on sediments and wood materials [62].

3.3. Implications of The Field-Test Performance to The Full-Scale PRB Design

The brown coal-compost mixture is a promising combination of reactive materials to remove TCE
from groundwater (99% maximal removal). Nevertheless, results for the studied materials mixtures
illustrate the interference of compost and brown coal specific processes. TCE can be degraded by
microorganism present in the compost, or adsorbed onto brown coal and its removal efficiency is
governed by degradation rates and adsorption parameters. Therefore, the efficient groundwater
treatment in a PRB can be achieved only if both: desorption effects and the formation of intermediate
biodegradation products are carefully taken into account.

Compost fermentation can lead to the production of electron donors that serve for the TCE
reductive dechlorination. This process was demonstrated by the production of the TCE degradation
product (DCE). As the degradation of TCE was observed to be considerably faster than the degradation
of DCE and VC; TCE is unlikely to limit the system performance unless it is present in groundwater
at very high concentrations. Our results show that DCE and VC may be the most problematic
contaminants for the proposed PRB application, even if they do not occur within the contaminant
plume. Both are highly toxic, and have therefore to be limited to a rather low target concentration after
leaving the barrier. In addition, they have lower sorptivity than TCE.
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The designed residence times of 10, 20 and 25 h were not enough to allow the complete
transformation of TCE into less harmful products. DCE was accumulated in the system and was not
further dechlorinated. Consequently, DCE and VC degradation rates will determine the required
residence time and therefore the barrier thickness. Although the required residence time for the
complete transformation of TCE into ethane was not determined in this study, a close approximation
can be achieved using the removal rates for DCE and VC reported in the literature and supported by
numerical modeling. In addition, when determining the barrier thickness a safety factor to account for
desorption should be incorporated anyway.

This study demonstrates the importance of field evaluation of reactive materials and the significant
role that aquifer geochemistry plays in the microbial processes that occur. The results from this study
where DCE accumulated and failed to be further dechlorinated suggests that geochemical conditions
are an important factor influencing the progression of the dechlorination process. Groundwater
conditions suggest that iron reduction could be influencing the accumulation and persistence of
DCE. The specific contribution of each microbial process in the interference with DCE dechlorination
cannot be determined from this work. Microcosms studies to establish the precise microorganisms
participating in the TCE degradation and the role they play in each of the steps of the reductive
dechlorination process should be subject to future research.

The mixing ratio of the reactive materials should be selected based on contaminant removal and
hydraulic properties. Higher amounts of compost in the mixture could benefit reductive dechlorination
and prevent the accumulation of toxic byproducts but at the same time lead to the reduction of the
barrier’s permeability. Our results indicate that the mixing ratio of 1:3 represent a good compromise
between contaminant removal and hydraulic performance as it exhibited a high TCE removal efficiency
(99% maximal removal and 78% overall removal; Table 3), while the hydraulic conductivity is still
higher than that of the surrounding aquifer (2.9 m/d; Table 2), a suggested requirement for the full-scale
barrier installation [35].

The results here presented cannot replace site-specific tests but reveal important features of the
main processes influencing the performance of combined compost-brown coal PRBs. In this way,
these types of experiments definitely hold potential for predicting TCE removal behavior under
field conditions, and provides practical hints for the design of such barriers, even if flow patterns in
a full-scale PRB may differ significantly from flow through a pilot installation like the one presented
here. For the full-scale application, however, further research has to be performed focusing on:
long-term performance of the reactive material, kinetic studies for TCE, daughter products DCE and
VC degradation to determine barrier thickness, and microcosms studies to establish the microorganisms
participating in the TCE biodegradation.

4. Conclusions

The effectiveness of a PRB with a brown coal–compost mixture at three different mixing ratios
(1:1, 1:3, 1:5) was evaluated under field conditions. From this study, it can be concluded that
compost fermentation can lead to the production of electro donors that serve to the TCE reductive
dechlorination. TCE reductive dechlorination was demonstrated by the depletion of TCE (99% removal)
and the production of degradation products (DCE). However, complete TCE dechlorination into
non-toxic byproducts was not evidenced during the duration of the experiments. Anaerobic reductive
dechlorination of TCE is a complex process that can be influenced by multiple factors like retention time
and biogeochemical conditions. In this study, the designed residence time was not enough to allow
the complete transformation of TCE into innocuous end products. The inhibitory degradation of less
chlorinated ethenes by higher chlorinated ethenes, and the competitive adsorption of cis-DCE and TCE
were theorized as important factors influencing the progression of the dechlorination process but were
not demonstrated. Significant TCE removal from this system indicates that the proposed combination
of reactive materials have the ability to decrease TCE concentrations from groundwater, but their



Water 2019, 11, 1922 10 of 13

potential to be applied to other chlorinated solvents sites needs further study on the production of
daughter products, as well as on the effects of contaminant desorption from the reactive material.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/9/1922/s1,
Figure S1: Reactive materials tested, Figure S2: TCE removal efficiency for each reactive material during batch
test, Table S1: Hydraulic conductivities for the individual materials and the mixtures.
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