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Abstract: For this study, we applied activated biochar (AB) and its composition with magnetite
(AB-Fe3O4) as adsorbents for the removal of polychlorophenols in model wastewater. We
comprehensively characterized these adsorbents and performed adsorption tests under several
experimental parameters. Using FTIR, we confirmed successful synthesis of AB-Fe3O4 composite
through cetrimonium bromide surfactant. We conducted adsorption tests using AB and AB-Fe3O4

to treat model wastewater containing polychlorophenols, such as 2,3,4,6-Tetrachlorophenol (TeCP),
2,4,6-Trichlorophenol (TCP), and 2,4-Dichlorophenol (DCP). Results of the isotherm and the kinetic
experiments were well adapted to Freundlich’s isotherm model and the pseudo-second-order kinetic
model, respectively. Main adsorption mechanisms in this study were attributed to non-covalent,
π-electron acceptor–donor interactions and hydrophobic interactions judging from the number of
chloride elements in each chlorophenol and its hydrophobic characteristics. We also considered
the electrostatic repulsion effect between TeCP and AB, because adsorption performance of TeCP
at basic condition was slightly worse than at weak acidic condition. Lastly, AB-Fe3O4 showed high
adsorption selectivity of TeCP compared to other persistent organic pollutants (i.e., bisphenol A
and sulfamethoxazole) due to hydrophobic interactions. We concluded that AB-Fe3O4 may be used
as novel adsorbent for wastewater treatment including toxic and hydrophobic organic pollutants
(e.g., TeCP).
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1. Introduction

In the past decades, several efficient ways to treat wastewater containing organic and
inorganic pollutants have been considered as one of the important topics in environmental
science [1–5]. Chlorinated organic compounds (e.g., dioxins, polychlorophenols) are known as
significant environmental pollutants, because these compounds have great resistance to biological
degradation processes and affect serious health problems (e.g., nervous or respiratory systems) via the
bioaccumulation of organisms in the ecosystem [6]. The emission of chlorinated organic compounds
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could be a result of combustion processes or several industries such as pulp, herbicides, petroleum
refineries, dyes, pharmaceuticals, and pesticides [7,8]. Particularly, polychlorophenols have been
regulated as toxic pollutants by the U.S. Environmental Protection Agency due to its carcinogenic
properties [7], thus it is crucial to investigate the effective way for removal of polychlorophenols from
aqueous phase.

The various physico-chemical or biological methods that have previously been proposed to treat
chlorophenols in wastewater are as follows: adsorption [9], incineration [7], photodegradation [10],
electrochemical oxidation [11], catalytic degradation [12], biodegradation [13], and using a hybrid
bioreactor [14]. However, secondary pollution could be generated by toxic byproducts in chemical
treatments [15]. Furthermore, high operational costs and low efficiency have been described as
weaknesses of biological treatments [7]. Thus, the adsorption process could be considered as an
efficient method due to its simplicity, accessibility, cost-effectiveness, and high removal efficiency with
reusability [16–20]. Novel adsorbents are essential for increasing removal efficiency of adsorbates in the
adsorption process, and several adsorbents have been utilized to treat chlorophenols through carbon
nanotubes, graphene oxides, activated carbon fibers, biochars, natural clays, and minerals [9,11,12].

Biochar is a kind of pyrogenic carbon material obtained from the combustion of biomass via
pyrolysis [21]. This low-cost material has attracted attention since it can be used as an efficient
adsorbent to remove organic pollutants with its outstanding adsorption physico-chemical properties.
In other words, high adsorption efficiency of biochar can be attributed to its high porosity, large surface
area, great ion-exchange capacity, and tunable surface chemistry [21,22]. For instance, biochar has
been used as an effective adsorbent for treatment of wastewater that contains several toxic organic
and inorganic pollutants such as phenol, dyes, chlorophenols, heavy metals, and pharmaceuticals [23].
Although raw biochar is applicable in many situations as an adsorbent, adsorption properties may be
enhanced with further activation using various acids (e.g., HCl, HNO3, H2SO4, and H3PO4) [23]. In
other words, physico-chemical properties can be modified by modifying parameters, thus the pore
size or the chemical bonds of biochar can change with activation agents and exposure time [24]. For
example, the physical properties of biochar were improved by HCl activation, as revealed by an
increased surface area from 289 to 347 m2/g [23]. In addition, increased oxygenated functional groups
after activation (e.g., carboxyl, hydroxyl, and carbonyl groups) could have positive or negative effects
depending on the chemical structure of adsorbates [25].

Nanocomposite materials—iron-based magnetic nanoparticles, in particular (e.g., Fe2O3 and
Fe3O4)—and their efficiency in removing toxic pollutants from wastewater have been widely
studied [26]. Magnetite is generally produced by co-precipitation using Fe(II)/Fe(III) salts under
anaerobic condition, and performances of synthesized magnetite are attributed to preparation
parameters such as solution pH, temperature, and co-ions [27]. Magnetite has been used for composite
materials to treat toxic pollutants in wastewater using its high surface area, reusability by external
magnetic field, reproducibility, mechanical property, and adsorption ability [28]. Thus, there is
synergetic effect if magnetite is synthesized with activated biochar (AB) as a novel adsorbent according
to previous studies [9,27,28]. To the best of our knowledge, our study was the first attempt to treat
2,3,4,6-Tetrachlorophenol (TeCP), 2,4,6-Trichlorophenol (TCP), and 2,4-Dichlorophenol (DCP) in model
wastewater via AB-Fe3O4.

The main goal of this study was to evaluate the feasibility of AB-Fe3O4 as an adsorbent to remove
selected polychlorophenols. We first conducted several characterizations in order to evaluate the
physico-chemical properties of synthesized AB-Fe3O4. Subsequently, we carried out the adsorption
process of polychlorophenols under the following experimental parameters: contact time for kinetics,
initial concentration of polychlorophenols for isotherms, and solution pH. Lastly, we measured
adsorption selectivity of TeCP by AB-Fe3O4 compared to other persistent organic pollutants [i.e.,
bisphenol A (BPA) and sulfamethoxazole (SMX)].
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2. Materials and Methods

2.1. Materials

We purchased commercially available nitric acid (HNO3), sulfuric acid (H2SO4), sodium
hydroxide (NaOH), ferrous chloride (FeCl2·4H2O), ferric chloride (FeCl3·6H2O), BPA (C15H16O2),
SMX (C10H11N3O3S), 2,3,4,6-TeCP (C6H2Cl4O), 2,4,6-TCP (C6H3Cl3O), 2,4-DCP (C6H4Cl2O), methanol
(CH4O), and cetrimonium bromide (CTAB, C19H42BrN) from Sigma-Aldrich (St. Louis, MO, USA).
Table 1 summarizes selected physicochemical properties of TeCP, TCP, DCP, BPA, and SMX. Stock and
feed solutions were prepared using deionized (DI) water.

Table 1. Selected physicochemical properties of 2,3,4,6-Tetrachlorophenol (TeCP), 2,4,6-Trichlorophenol
(TCP), 2,4-Dichlorophenol (DCP), bisphenol A (BPA), and sulfamethoxazole (SMX).

Compound
[Full name] Formula MW

(g/mol) pKa

Water
Solubility

(M)
log Kow Molecular Structure

2,3,4,6-Tetrachlorophenol C6H2Cl4O 231.9 5.22 9.92 × 10−5 4.45
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2.2. Fabrication of AB, Fe3O4, and AB-Fe3O4

Bamboo particles as biomass feedstock were carbonized by being heated in a tubular furnace for
1.5 h at 773 K under an argon atmosphere. The carbonized material (biochar) was then left to cool in
argon until 298 K, ground, and sieved to −200 mesh. Subsequently, we activated 5 g of biochar via
an acid treatment using H2SO4/HNO3 mixture [3:1 (v/v)] at 353 K for 3 h, as suggested in a previous
study [29]. AB was then washed several times with DI to remove residual acids, and the clean AB was
collected through centrifugation.

The magnetite (Fe3O4) particles were produced using a co-precipitation method based on a
previous report [30]. We prepared a solution (50 mL) containing FeCl2·4H2O (2.0 g) and FeCl3·6H2O
(5.2 g) dissolved in 1 M HCl (1 mL) under a nitrogen atmosphere. Then, 1 M NaOH was added
dropwise into the mixture solution with vigorous stirring for 3 h. Then, fabricated Fe3O4 particles
were collected by an external magnetic field, washed several times using DI water, and then dried in a
vacuum oven.

The synthesis of AB-Fe3O4 was prepared as follows: 5 g of AB was dispersed into a beaker
including 100 mL DI water through a magnetic stirrer. Then, 0.1% CTAB surfactant (w/w) was added
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to the beaker and stirred for 30 min to produce AB-CTAB complexation. The long chain cationic
surfactant (CTAB) intercalated to AB-Fe3O4 converted the surface property to a more hydrophobic
characteristic, which helped increase the adsorption of polychlrophenols [31,32]. Lastly, we mixed
Fe3O4 (2.5 g) with AB-CTAB complexation and stirred vigorously for 60 min. The final AB-Fe3O4

products were washed several times with DI water and then separated by vacuum filtration. The
cleaned products were kept in a vacuum oven until we conducted the adsorption experiments.

2.3. Characterization Methods

Physico-chemical properties of adsorbents were investigated by various characterization
techniques. We analyzed the crystalline structure of biochar, AB, Fe3O4, and AB-Fe3O4 via powder X-ray
diffraction (PXRD, D/max-2500; Rigaku, Tokyo, Japan). Analyses of PXRD peaks were carried out using
well-known references (Jade software; Materials Data, Inc., Livermore, CA, USA). Chemical properties
of biochar, AB, Fe3O4, and AB-Fe3O4 were analyzed via Fourier-transform infrared spectroscopy
(FTIR; Thermo Nicolet; Madison, WI, USA) in order to identify each chemical bond [33]. The surface
morphology of AB, Fe3O4, and AB-Fe3O4 was analyzed using scanning electron microscopy with
energy-dispersive x-ray spectroscopy (SEM-EDX, S-4200; Hitachi, Tokyo, Japan). The surface charge
of 100 mg/L AB, Fe3O4, and AB-Fe3O4 was obtained via zeta potential analyzer (Nano ZS; Malvern
Instruments Ltd., Malvern, UK) at pH 3.5, 7, and 10 adjusted by 0.1 M HNO3 and NaOH. The magnetic
hysteresis loops of Fe3O4 and AB-Fe3O4 were evaluated via a vibrating sample magnetometer (VSM,
7407-S; Lake Shore Cryotronics, OH, USA) at room temperature. Textural characteristics of AB, Fe3O4,
and AB-Fe3O4 were confirmed by porosimeter (Quadrasorb SI; Quantachrome Instruments Ltd.,
FL, USA).

2.4. Adsorption Experiments

In this work, we aimed to measure the efficiency of polychlorophenols adsorption by a
prepared adsorbent (AB-Fe3O4). Feed solutions including polychlorophenols (TeCP, TCP, and DCP)
or pharmaceuticals (BPA and SMX) were diluted from 100 mg/L methanol-based stock solutions.
Adsorption tests were conducted in a 60 mL polyethylene plastic bottle containing 30 mg of adsorbent
mass and 30 mL of total liquid volume. Kinetic and isotherm adsorption studies were carried out at
different exposure times (i.e., 15, 30, 45, 60, 120, and 240 min) and initial concentrations of adsorbates
(i.e., 5, 10, 20, 60, 100, and 200 mg/L). Solution pH was adjusted by 0.1 M HNO3 and NaOH before
adsorption tests. The concentration of filtered samples was measured by high-performance liquid
chromatography (1200 series; Agilent Technologies, Inc., Santa Clara, CA, USA).

2.5. Data Analysis

Adsorption performances of TeCP by AB and AB-Fe3O4 were evaluated through adsorption
capacity at equilibrium state (qe, mg/g), as shown in Equation (1):

qe =
(C0 − Ce) V

m
(1)

where C0 (mg/L) is the initial concentration of TeCP, Ce (mg/L) is the concentration of TeCP at equilibrium
state, V (L) is the volume of the total solution containing TeCP and each adsorbent, and m (g) is mass
of each adsorbent.

We referenced another study to conduct kinetic and isotherm experiments on target compounds’
adsorption on adsorbents [15]. We used pseudo-first-order and pseudo-second-order kinetic models to
investigate kinetic study of adsorption on adsorbents and applied Langmuir and Freundlich isotherm
models to verify the isotherm adsorption mechanism in this system.
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3. Results and Discussion

3.1. Characterizations of Biochar, AB, Fe3O4, and AB-Fe3O4

The crystalline structures of biochar, AB, Fe3O4, and AB-Fe3O4 were analyzed by PXRD, which
are summarized in Figure 1. The PXRD pattern of Fe3O4 was comparable to another study [34], and
both Fe3O4 and AB patterns were overlapped in a PXRD pattern of AB-Fe3O4 composite, indicating
successful synthesis of AB-Fe3O4 composite.
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Figure 1. Powder X-ray diffraction (PXRD) patterns of biochar, activated biochar (AB), Fe3O4, and
AB-Fe3O4.

In terms of chemical bonds, we analyzed the FTIR spectra of biochar, AB, Fe3O4, and AB-Fe3O4

(Figure 2a). New peaks appeared after activation via acid treatments when AB (orange line in Figure 2a)
was compared to biochar (green line in Figure 2a). We attributed these peaks to oxygenated functional
groups [e.g., carboxyl (1720 cm−1) and hydroxyl (3500 and 1247 cm−1)] judging from the results of
other studies [29,35]. The newly formed peaks of AB-Fe3O4 (black line in Figure 2a) at 2916 and
2849 cm−1 represented methyl (2916 cm−1) and methylene (2849 cm−1) functional groups of CTAB
surfactant, which was used for synthesis of AB-Fe3O4 [31]. Thus, FTIR spectra of AB-Fe3O4 (black
line in Figure 2a) showed successful synthesis as a composite material based on overlapping peaks of
Fe3O4 (1035 cm−1 of blue line in Figure 2a) and AB (1605 cm−1 of orange line in Figure 2a), respectively.
Furthermore, we conducted the further analyses of FTIR to clarify the change of chemical bonds
before and after adsorption of TeCP, TCP, and DCP on AB-Fe3O4, as shown in Figure 2b. According to
Figure 2b, FTIR spectra were evidently changed after TeCP, TCP, and DCP adsorption on AB-Fe3O4.
First of all, new peaks at 3775, 3659, and 3524 cm−1 were detected after adsorption, and these peaks
could have resulted from hydroxyl group of chlorophenols [36]. Secondly, the C=C stretching vibration
of AB-Fe3O4 at 1480 cm−1 was slightly shifted to a lower wave number, which could be explained
by π–π interaction between adsorbent and adsorbates [37]. Lastly, the C-Cl stretching vibration of
chlorophenols in the range from 800 to 600 cm−1 (i.e., 775 cm−1 in this study) was detected after TeCP,
TCP, and DCP adsorption [38]. These results indicated that those adsorbates were clearly adsorbed on
AB-Fe3O4 in this system.
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Figure 2. FTIR spectra of (a) biochar, AB, Fe3O4, and AB-Fe3O4 and (b) AB-Fe3O4 before and after
TeCP, TCP, and DCP adsorption.

Figure 3a–c shows representative SEM images and EDX spectra of AB, Fe3O4, and AB-Fe3O4,
respectively. SEM images revealed that both AB and Fe3O4 were spherical in shape, measuring 10–100
µm (Figure 3a,c) and ~20 nm (Figure 3b) in diameter, respectively. Using EDX (Figure 3a,b), we
determined that the main elements of AB and Fe3O4 were C/O and O/Fe, respectively. The basis
for our conclusion of the composite of AB-Fe3O4—as shown in Figure 3c—is as follows: (a) Fe3O4

nanoparticles uniformly covered AB surface through SEM image, and (b) elements of C (55 wt %), O
(20 wt %), and Fe (25 wt %) were detected through EDX analysis.
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Figure 3. Representative SEM images and energy-dispersive x-ray spectroscopy (EDX) spectra of (a)
AB, (b) Fe3O4, and (c) AB-Fe3O4.

We measured the surface charge of AB, Fe3O4, and AB-Fe3O4 at pH 3.5, 7, and 10, as shown in
Figure 4. The isoelectric points of AB and AB-Fe3O4 were lower and higher than pH 3.5, respectively,
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meaning that AB-Fe3O4 had a much higher positive surface charge than AB due to the positive surface
charge of Fe3O4 at pH 3.5. Thus, we concluded that AB-Fe3O4 was able to achieve better adsorption
capacity than AB if adsorbates were at a negative surface charge and a weak acid condition. Increased
isoelectric point after composition with Fe3O4 was consistent with other studies, because the pH of
zero point charge of Fe3O4 was close to pH 5~6 [39].
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Figure 4. Variations in the surface (zeta) potential of AB, Fe3O4, and AB-Fe3O4 with solution pH (pH
3.5, 7, and 10) at 298 K. Error bars indicate the standard deviations for at least triplicate measurements.

We analyzed the paramagnetic property of Fe3O4 and AB-Fe3O4 using magnetic hysteresis loops,
as shown in Figure 5. The magnetization curves of Fe3O4 and AB-Fe3O4 showed that the specific
saturation magnetizations of Fe3O4 and AB-Fe3O4 were 85.6 and 13.3 emu/g, respectively. The lower
saturation value of AB-Fe3O4 compared to that of Fe3O4 could have been the result of lower Fe3O4

content in the AB-Fe3O4 composite [40]. The specific saturation magnetization of Fe3O4 was comparable
to a previous report (e.g., approximately 80 emu/g [39]). Thus, the used AB-Fe3O4 adsorbent could be
easily separated and recycled via external magnetic fields based on specific saturation magnetization
of AB-Fe3O4.

Physical properties of AB, Fe3O4, and AB-Fe3O4 were confirmed by porosimeter, and Table 2
summarizes specific surface area and total pore volume. Two physical properties of AB-Fe3O4 were
improved from 2.06 m2/g and 6.13 × 10−3 cm3/g to 2.89 m2/g and 1.43 × 10−2 cm3/g in the case of specific
surface area and total pore volume, respectively, after the introduction of Fe3O4. Hence, composition
with Fe3O4 had merit for its higher adsorption sites if van der Waals force was a major mechanism
between adsorbent and adsorbate [41]. After having evaluated all adsorption performances under
several experimental parameters, we describe each adsorption mechanism in the following sections.
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Figure 5. Room temperature magnetic hysteresis loops of Fe3O4 and AB-Fe3O4.

Table 2. Textural characteristics of AB, Fe3O4, and AB-Fe3O4.

Sample AB Fe3O4 AB-Fe3O4

Specific surface area (m2/g) 2.06 9.29 2.89
Total pore volume (cm3/g) 6.13 × 10−3 5.58 × 10−1 1.43 × 10−2

3.2. Effect of Contact Time on Polychlorophenols Adsorption and Investigation of its Mechanism

It was important to determine the contact time for equilibrium state in the adsorption process
from an engineering perspective. We measured the effect of contact time on the uptake of TeCP, TCP,
and DCP on AB and AB-Fe3O4, as shown in Figure 6a,b, respectively. Both adsorbents showed that
adsorption performances of TeCP, TCP, and DCP reached an equilibrium state within 60 min. Two
kinetic models were applied to investigate kinetic studies of AB and AB-Fe3O4 on adsorption of TeCP,
TCP, and DCP. Table 3 summarizes kinetic parameters of TeCP, TCP, and DCP adsorption by AB
and AB-Fe3O4. The pseudo-second-order kinetic model was better suited for explaining the kinetic
adsorption efficiency of both adsorbents, thus chemisorption was the main kinetic mechanism of this
system [15]. These results were consistent with other research [12,25], which reported carbon-based
materials as the adsorbent for removal of DCP.

Furthermore, Figure 6a,b shows that performance in the removal of polychlorophenols from
the aqueous solutions by using AB and AB-Fe3O4 was ranked in the following order: DCP < TCP <

TeCP. This phenomenon could be explained by the following adsorption mechanisms, as concluded in
previous studies [12]: (a) hydrogen bonding (H-bond), (b) electrostatic interactions, (c) hydrophobic
interactions, and (d) non-covalent π-electron acceptor–donor interactions.
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Figure 6. Effect of contact time on the uptake of TeCP, TCP, and DCP on (a) AB and (b) AB-Fe3O4 at pH
3.5 (C0 = 5 mg/L, V = 30 mL, adsorbent mass 30 mg, and agitation speed = 300 rpm). C indicates the
remaining concentration of TeCP, TCP, and DCP in the solution at time t.

Table 3. Kinetic parameters of TeCP, TCP, and DCP adsorption by AB and AB-Fe3O4.

Adsorbate/
Adsorbent TeCP/AB TCP/AB DCP/AB TeCP/

AB-Fe3O4

TCP/
AB-Fe3O4

DCP/
AB-Fe3O4

Pseudo-first-order
qe (mg/g) 1.0743 1.0730 1.0278 1.0668 1.0857 1.6195

k1 (min−1) 0.0174 0.0202 0.0221 0.0261 0.0260 0.0188
R2 0.9417 0.9586 0.9874 0.9968 0.9848 0.9676

Pseudo-second-order
qe (mg/g) 2.4820 1.5649 1.1216 4.5126 3.0600 2.2242

k2 (g mg-min−1) 0.0346 0.0250 0.0262 0.0535 0.0483 0.0769
R2 0.9998 0.9929 0.9951 0.9999 0.9988 0.9998

H-bond between adsorbent and adsorbate is a useful factor in determining adsorption mechanisms.
In this system, all three adsorbates include one hydroxyl group, thus they can act as both a hydrogen
acceptor and a donor, and the number of hydrogen acceptors or donors is a critical factor in
controlling adsorption performances. Thus, if H-bond was a major adsorption mechanism, adsorption
performances should have been similar, regardless of the role of adsorbates for H-bond, based on
only one hydroxyl group. However, TeCP was removed much more efficiently by both adsorbents as
compared to TCP and DCP, which suggested that H-bond may not have been the most significant.
Other factors would have affected the sorption process.

Electrostatic interactions are good parameters for identifying adsorption mechanisms, because they
are easily confirmed by the characteristics of surface charge between adsorbent and adsorbate. Based on
pKa of TeCP (5.22), TCP (6.23), and DCP (7.89), as shown in Table 1, they existed in a neutral state at pH
3.5, which is the experimental condition depicted in Figure 6a,b. Hence, if electrostatic interactions were
a critical adsorption mechanism, adsorption performances should have been consistent, irrespective
of the surface charge of adsorbents, considering the neutral state of adsorbates at pH 3.5. Therefore,
electrostatic interactions were not the most likely explanation for the adsorption mechanism in this
system, considering TeCP’s removal rate was the highest compared to TCP and DCP.

Hydrophobic interactions are a significant factor when the target compounds have high
hydrophobic characteristics. Table 1 shows the water solubility of TeCP, TCP, and DCP, which
could be used as representative parameters for the degree of hydrophobicity of adsorbates. That is,
hydrophobicity of adsorbates existed in the following order: TeCP > TCP > DCP. This order was the
exact pattern of removal rate of the adsorbates shown in Figure 6a,b. The results of previous studies
also concluded that hydrophobic organic pollutants were efficiently treated by biochar via hydrophobic
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interactions [23]; therefore, hydrophobic interaction was one of the important roles in the removal of
the target contaminants.

According to another study [12], non-covalent π-electron acceptor–donor interactions were a major
adsorption mechanism for removing DCP by biochar. Thus, we applied this adsorption mechanism
to our system. A major difference in the chemical structure of TeCP, TCP, and DCP is the number
of chlorides, which plays a role as the electron-withdrawn atom [12]. In other words, the electron
density of a benzene ring of adsorbates continuously decreases as the number of attached chloride
atoms increases. Meanwhile, biochar contains a lot of oxygenated functional groups after activation
that act as electron-donors. Therefore, non-covalent π-electron acceptor–donor interactions could be a
reasonable explanation for the adsorption mechanism in this system. This was particularly revealed by
the deficient electron density atmosphere of TeCP, because the intrinsic molecular structure of TeCP
contains the highest number of chloride atoms.

Subsequently, adsorption performances of AB-Fe3O4 were better than AB (Figure 6a,b), and
these results could be explained by (a) stronger non-covalent π-electron acceptor–donor interactions
attributed to higher oxygen content as an electron-donor group [12] and (b) larger surface area judging
by the results from the porosimeter (Table 2). Considering TeCP’s high removal efficiency rate, we
thoroughly investigate its use as an adsorbate in following sections.

3.3. Effect of Solution pH and Initial TeCP Concentration on TeCP Adsorption Performances

Surface charge of both adsorbents and adsorbates is attributed to solution pH; thus, we tested
the effect of solution pH on the uptake of TeCP by AB and AB-Fe3O4 (Figure 7). Both adsorbents
showed that adsorption performances were almost constant in the range of pH 3–9. In the case of AB,
adsorption rates at neutral and basic conditions were lower than acidic conditions, thus electrostatic
repulsion acted as a supplementary effect in this system considering its higher negative surface charge
than AB-Fe3O4 (Figure 4) and pKa of TeCP (Table 1). Furthermore, we measured the initial and the
final pH, as described in Figure 4, and both adsorbents showed that the initial pH was higher than the
final pH at over pH 5. This phenomenon might have beem attributed to the reaction between ionized
TeCP and hydroxyl ion in the solution [42].
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Figure 7. (a) Effect of solution pH on the uptake of TeCP by AB and AB-Fe3O4 (C0 = 5 mg/L, V = 30
mL, adsorbent mass 30 mg, agitation speed = 300 rpm, temperature = 25 ± 1 ◦C, and reaction time =

120 min); and (b) the final pH of the solution.

The effect of the initial TeCP concentration with a different contact time on TeCP adsorption
was evaluated by AB and AB-Fe3O4, as shown in Figure 8a,b, respectively. As mentioned above,
the removal rate of TeCP by AB-Fe3O4 was higher than AB, regardless of the initial concentration of
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TeCP, due to stronger non-covalent π-electron acceptor–donor interactions and larger surface area.
Furthermore, the removal rate of TeCP continuously decreased with the increasing initial concentration
of TeCP in both AB and AB-Fe3O4 cases, and these results could be explained by the fact that limited
active sites were available when the mass of the adsorbent was fixed for binding adsorbates [43].
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Figure 8. Effect of initial TeCP concentration and contact time on adsorption of TeCP by (a) AB and (b)
AB-Fe3O4 at pH 3.5 (V = 30 mL, adsorbent mass 30 mg, agitation speed = 300 rpm, temperature = 25 ±
1 ◦C, and reaction time = 120 min).

Subsequently, we tried to evaluate equilibrium isotherms for adsorption of TeCP on AB and
AB-Fe3O4 for further investigation. In this study, we employed the Langmuir and the Freundlich
isotherm models to correlate the adsorption capacities and the residual concentrations of TeCP left
in the aqueous solutions [15]. Figure 9 describes the effect of initial concentration of adsorbates (i.e.,
5, 10, 20, 60, 100, and 200 mg/L) on adsorption capacity (qe), and two isotherm models were plotted
using the qe results. Freundlich isotherm better explained the equilibrium of TeCP adsorption on both
AB and AB-Fe3O4 cases based on the higher correlation coefficients (R2, R2 of AB and AB-Fe3O4 of
Langmuir/Freundlich isotherm models were 0.9368/0.9653 and 0.8724/0.9974, respectively). This result
was similar to previous studies [12,25], which reported biochar and activated charcoal as adsorbents
for DCP treatment in aqueous phase.

3.4. Adsorption Selectivity for TeCP over BPA and SMX

From a practical perspective, adsorption selectivity for TeCP over other organic pollutants is
important parameter, and BPA and SMX were chosen as representative organic pollutants because
they have been commonly detected in a wastewater effluent [44]. Figure 10a,b describes the effect of
contact time on the uptake of TeCP with the presence of BPA and SMX, respectively. The removal
rate of TeCP was better compared to that of BPA and SMX, thus AB-Fe3O4 could be used as a novel
adsorbent for the selective removal of TeCP in wastewater. To conduct further investigation, we
referred to a previous method and calculated the mixture selectivity between two different adsorbates
by each concentration ratio in the feed solution [45]. Mixture selectivities at 240 min in the case of
TeCP/BPA (Figure 10a) and TeCP/SMX (Figure 10b) were 2.31 and 11.14, respectively. These results
could be attributed to the hydrophobic interactions because TeCP has a higher number of hydrophobic
characteristics than BPA and SMX considering log Kow of TeCP (4.45), BPA (3.32), and SMX (0.89), as
shown in Table 1. Thus, these results also suggested that hydrophobic interactions played a role as the
main adsorption mechanism in this study, and AB-Fe3O4 could be applied to the selective removal of
TeCP in wastewater judging from its high adsorption selectivity (Figure 10a,b). Table 4 summarizes the
comparison of polychlorinated compounds removal by reported adsorbents in the literature and this
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study. AB-Fe3O4 showed comparable or higher adsorption performances compared to the previously
reported adsorbents.
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Figure 10. Effect of contact time on the uptake of TeCP with the presence of (a) BPA and (b) SMX on
AB-Fe3O4 at pH 3.5 (C0 = 5 mg/L, V = 30 mL, adsorbent mass 30 mg, temperature = 25 ± 1 ◦C, and
agitation speed = 300 rpm).



Water 2019, 11, 1899 13 of 16

Table 4. Comparison of polychlorinated compounds removal by reported adsorbents in the literature
and this study.

Adsorbent Polychlorinated
Compounds

Experimental
Conditions qmax (mg/g) Reference

Cattail fiber-based
activated carbon DCP

200 mg/L adsorbate
using 100 mg/L

adsorbent
142.8 [42]

Oil palm empty
fruit bunch carbon DCP

250 mg/L adsorbate
using 5 mg/L

adsorbent
27.3 [46]

Palm pith carbon DCP
40 mg/L adsorbate
using 2000 mg/L

adsorbent
19.2 [47]

Coconut
shell-based

activated carbon
TCP

100 mg/L adsorbate
using 5000 mg/L

adsorbent
122.3 [48]

Activated carbon TCP
100 mg/L adsorbate

using 5000 mg/L
adsorbent

112.4 [48]

AB TeCP
200 mg/L adsorbate

using 1000 mg/L
adsorbent

34.8 This study

AB-Fe3O4 TeCP
200 mg/L adsorbate

using 1000 mg/L
adsorbent

149.8 This study

4. Conclusions

In this study, we characterized biochar, AB, Fe3O4, and AB-Fe3O4 via PXRD, FTIR, SEM-EDX,
zeta potential analyzer, VSM, and porosimeter. These characterizations revealed successful synthesis
of AB-Fe3O4 composite, which was utilized as a novel adsorbent to remove polychlorophenols (TeCP,
TCP, and DCP). Furthermore, the results of the kinetic and the isotherm experiments obtained in this
study were well matched to the pseudo-second-order kinetic model and the Freundlich isotherm
model, respectively. The chemisorption of polychlorophenols on AB-Fe3O4 in this system was
verified by FTIR spectra analysis before and after adsorption. Major adsorption mechanisms of this
system were attributed to both hydrophobic interactions and non-covalent π-electron acceptor–donor
interactions judging by the intrinsic properties of polychlorophenols and adsorbents. Lastly, we
measured adsorption selectivity for TeCP over other organic pollutants (i.e., BPA and SMX) because it
is an important factor from a practical perspective. Removal rate of TeCP was outstanding compared
to BPA and SMX due to hydrophobic interactions; thus, we conclude that AB-Fe3O4 can be applied in
the selective removal of TeCP in wastewater based on its results of high selectivity.
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