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Abstract: This paper focuses on proposing the minimum number of storms necessary to derive the
extreme flood hydrographs accurately through event-based modelling. To do so, we analyzed the
results obtained by coupling a continuous stochastic weather generator (the Advanced WEather
GENerator) with a continuous distributed physically-based hydrological model (the TIN-based
real-time integrated basin simulator), and by simulating 5000 years of hourly flow at the basin outlet.
We modelled the outflows in a basin named Peacheater Creek located in Oklahoma, USA. Afterwards,
we separated the independent rainfall events within the 5000 years of hourly weather forcing, and
obtained the flood event associated to each storm from the continuous hourly flow. We ranked all the
rainfall events within each year according to three criteria: Total depth, maximum intensity, and total
duration. Finally, we compared the flood events obtained from the continuous simulation to those
considering the N highest storm events per year according to the three criteria and by focusing on
four different aspects: Magnitude and recurrence of the maximum annual peak-flow and volume,
seasonality of floods, dependence among maximum peak-flows and volumes, and bivariate return
periods. The main results are: (a) Considering the five largest total depth storms per year generates
the maximum annual peak-flow and volume, with a probability of 94% and 99%, respectively and,
for return periods higher than 50 years, the probability increases to 99% in both cases; (b) considering
the five largest total depth storms per year the seasonality of flood is reproduced with an error of less
than 4% and (c) bivariate properties between the peak-flow and volume are preserved, with an error
on the estimation of the copula fitted of less than 2%.

Keywords: stochastic weather generation; AWE-GEN; distributed hydrological model; tRIBS; storm
identification; bivariate flood frequency curve

1. Introduction

Distributed physically-based hydrological models (DHMs) appeared in the 1960s and have been
the object of critics due to their complexity and difficulty of use [1]. Nowadays, the availability of
higher resolution spatio-temporal datasets, the appearance of high performance computers, and the
development of parallel-computing [2–5] have opened the possibility of using these models for large
size basins and long-term hydrological continuous simulations. Thus, challenges such as the influence
of land-use changes [6,7] or the impact of climate change [8,9] on the involved hydrological processes
can be analyzed with these approaches.

Another use of distributed hydrological models is the estimation of extreme floods for the design
of civil infrastructures, such as bridges, levees, or dams. For these structures, it is necessary to estimate
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hydrographs of low probability of occurrence, that is, with return periods that go from hundreds to
thousands of years in the case of dams [10]. Several methods can be applied and are mainly classified
according to two main groups: Statistical flood frequency analysis, and derived flood frequency (DFF)
simulation methods. Statistical methods need large flow records (hardly available [11,12]), have the
drawback of the uncertainty associated to the distribution fitting for large return periods [13], and
provide a value of peak-flow, volume, or duration but not the hydrograph shape. Furthermore, when
they are applied in ungauged basins, the physical processes that occur in the watershed are not usually
considered and the uncertainty on the flood quantiles estimation increases [14].

Due to these reasons, DFF methods are generally preferred over statistical ones [15]. DFF can be
divided into two approaches: Continuous simulation and stochastic event-based methods [15]. Using a
DHM, we are able to derive flood frequency distributions from the continuous hourly streamflow
obtained at any desired point in the drainage network of the basin by forcing the DHM with an hourly
stochastic weather generator. This approach has the advantage of estimating the variables for the
entire period of simulation. However, continuous models tend to be more complex than stochastic
event-based models, with computational efforts that could be very intensive, even when using high
performance computing and parallelization processes. On the other hand, event-based simulations
require much shorter simulation times. However, these methods are based on the assumption that
the flood hydrograph has the same return period as the storm event, which is not realistic [16–18].
Furthermore, different properties of storm events could affect the derivation of flood frequency
curves: Rainfall temporal distribution, event duration, maximum intensity, and total storm depth,
among others.

Examples of both DFF approaches can be found in the existing literature. In the case of event-based
approaches, some studies have combined non-complex stochastic storm generators (i.e., [19,20]) or
complex rainfall generators (i.e., [21]); with semidistributed (i.e., [22]) or distributed models (i.e., [23]).
In the case of continuous simulations, in order to reduce the computational cost, most authors have
worked with lumped or semidistributed models (i.e., [24,25]), and some of them have worked with
distributed models by using high performance computers [2–5].

To overcome the limitations in the two approaches, several authors have proposed combining
event-based models with continuous models. Paquet et al. [26] proposed the SCHADEX model, which
consists of replacing stochastic rainfall events within a short continuous simulation with observed
data and a Monte Carlo framework. Li et al. [15] developed the hybrid-CE approach, which consists
of combining a continuous long-term simulation of rainfall and short continuous simulations to
probabilistically characterize the rainfall and initial soil moisture (respectively) to force an event-based
model. Both approaches [15,26] used lumped models.

The focus of this paper is, by using a fully physically-based DHM coupled with a stochastic weather
generator in a continuous simulation, to provide a guideline to select the minimum necessary storm
events that should be simulated in event-based approaches to obtain similar results to those obtained
by continuous simulations in the derivation of flood frequency curves. Sordo-Ward et al. [27] carried
out a similar analysis in some watersheds in mainland Spain, by using a semi-distributed event-based
model coupled with a continuous stochastic rainfall generator. They separated all the events within the
generated series and analyzed the relationship between the storms and the maximum annual peak-flow
in the Manzanares river basin (Spain) and two of its sub-basins. Flores-Montoya et al. [23] also carried
a similar analysis using a distributed event-based model in two basins in France. However, in both
studies, the lack of a continuous simulation required the estimation of the initial soil moisture (same
curve number value in [27] and probabilistically in [23]). Within this paper, the continuous simulation
with a fully physically-based DHM enables to account for the variations of the initial soil moisture.
Thus, not only can the magnitude and recurrence of events be analyzed, but also the relation between
storms and the seasonality of the flood hydrographs. Furthermore, within this study, the relationship
within storms and flood hydrographs is analyzed, not only in a univariate way, but with a bivariate
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approach through the use of copulas for a better assessment between the relation of storms and the
dependence of the maximum annual peak-flow and volume.

Therefore, the objective is to propose a criterion for the selection of the minimum number of storm
events per year to guarantee a correct derivation of the bivariate flood frequency curve, according to
the following characteristics:

• Magnitude and recurrence of the maximum annual peak-flow and volume (univariate approach).
• Seasonality of the maximum annual peak-flow and volume (univariate approach).
• Dependence, magnitude, and recurrence of simultaneous maximum annual peak-flow and volume

(bivariate approach).

The outcomes of this research can be useful for practitioners and researchers focused on deriving
flood frequency curves through event-based approaches. We divided the manuscript into three main
parts. The first one includes the description of the methodology, the description of the case study and the
setup of the modelling experiments. Afterwards, the results are described and a discussion comparing
them to the previous literature is carried out. Finally, the last section concludes the manuscript.

2. Materials and Methods

Figure 1 presents a general scheme of the modelling framework and methodology proposed:

• Stochastic weather generation. We generated 5000 years of hourly weather series using the
Advanced WEather GENerator (herein AWE-GEN) developed by [28].

• Distributed physically-based hydrological modeling. We modeled the basin response using the
TIN-based real-time integrated basin simulator (herein tRIBS [29,30]). We obtained 5000 years of
continuous flow at the basin outlet, with a warming period of ten years to reduce the influence of
initial conditions in the results obtained.

• Storm events separation and rank. Analyzing the rainfall series within the stochastic weather series
generated, we separated the independent storm events applying the exponential method [31].
Afterwards we ranked each storm within its year of occurrence following three main criteria:
Total rainfall depth, maximum intensity, and total duration.

• Rainfall versus flood comparison. We obtained the flood hydrograph related to each storm event.
We analyzed the relationship between the storm rank and (a) the maximum annual peak-flow and
maximum annual volume, (b) the seasonality of flood hydrographs, (c) the dependence between the
peak-flow and volume, and (d) the bivariate frequency of floods through a copula-based analysis.
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2.1. Stochastic Weather Forcing. AWE-GEN: The Advanced WEather GENerator

AWE-GEN [30] is a generator capable of reproducing low and high-frequency characteristics of
hydro-climatic variables and essential statistical properties of these variables. The weather generator
employs both the physically-based and stochastic approaches and is a substantial evolution of the
model presented by Ivanov et al. [32]. AWE-GEN is a statistical hourly stationary model capable of
reproducing statistical properties of several weather variables including precipitation, cloud cover,
shortwave incoming radiation, air temperature, vapor pressure, wind speed, and atmospheric pressure
over a range of time scales. Since rainfall is the main weather variable involved in the framework of
this work, a brief introduction of the precipitation model is reported. Furthermore, a brief summary of
the air temperature model is reported due to its importance in the weather generation process.

The AWE-GEN uses the point Neyman–Scott rectangular pulse approach to generate the internal
structure of the precipitation process, based on Cowpertwait [33] studies. Such models are able to
capture the main observed rainfall time-series statistic characteristics; for the case of the AWE-GEN
model: (1) Mean waiting time between adjacent storm origins (h); (2) mean waiting time for rain cell
origins after the storm origin (h); (3) mean duration of the rain cell (h); (4) mean number of cells per
storm (-); (5) shape parameter (-) and (6) scale parameter (mm/h) of the Gamma distribution of rainfall
intensity. These six parameters are fitted minimizing an imposed objective function using the simplex
method [34] on a monthly basis, i.e., the six parameters are inferred for each month in order to account
for seasonality.

As exposed by Fatichi et al. [30], to validate the generated series it is recommendable to analyze
statistics different from those used in the calibration. Within this paper, as the focus is on rainfall events
and floods, we analyzed how the stochastic generated series were able to reproduce the observed
rainfall extreme properties.

With regard to the air temperature model, AWE-GEN generates the air temperature series using a
stochastic physic-based approach developed by Ivanov et al. [32]. This model is able to reproduce the
intra-daily variation of air temperature. In particular, the temperature at a generic time is obtained
as the sum of a deterministic and a stochastic component. The deterministic component is assumed
to be directly related to the divergence of eddy and radiative heat fluxes, whereas the stochastic
component is estimated through an autoregressive model. The air temperature model uses parameters
and coefficients estimated at a monthly scale.

The reader is referred to Fatichi et al. [30] and Ivanov et al. [32] for further details on AWE-GEN.

2.2. Hydrological Simulations. tRIBS: The TIN-based Real-Time Integrated Basin Simulator

As exposed, we used tRIBS [29,30] to perform the hydrological simulations. tRIBS is a physically
based, distributed continuous hydrologic model. Its predecessor, the real-time integrated basin
simulator (RIBS) of Garrote and Bras [35] implemented an event-based model for rainfall–runoff analysis.
tRIBS has inherited the functionality of RIBS while adding the hydrology necessary for continuous
operation. tRIBS uses an adaptive multiple resolution approach, described by Vivoni et al. [36], based
on triangulated irregular networks (TIN) to represent the terrain topography. tRIBS considers the
spatial variability in precipitation fields, land-surface descriptors, and is able to solve the basin
hydrologic response at an hourly temporal resolution and a very fine spatial (10–100 m) scale. tRIBS
includes parameterizations of rainfall interception, evapotranspiration, infiltration with continuous
soil moisture accounting, lateral moisture transfers in the unsaturated and saturated zones, and
kinematic-wave runoff routing.

The model computational basis, structure, and description of process parameterizations are given
in full detail in [29,30].
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2.3. Storm Events Separation. The Exponential Method and Rank of Storm Events

2.3.1. The Exponential Method

There are different methodologies [31,37–39] to identify independent rainfall events. Rain events
are usually identified by fixing the duration of the minimum inter-event time (MIT) that follows,
or precedes, a rainfall event. Two rainfall events are independent if there is no rainfall (considering
a minimum rainfall threshold of 0.25 mm/h) between them in a period equal or superior to the MIT
(Figure 2).
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Figure 2. Example of two independent rainfall events (black and grey for events one and two,
respectively). The total depth of the event (VEvent) is represented by the shaded area, the maximum
intensity (Imax) is represented by the dots, and the duration (DEvent) by the lower line. Two dry periods
are represented in the figure. The first one, has a shorter duration than the minimum inter-event
time (MIT) and therefore, the two wet periods belong to the same event. In the second dry period,
the duration is longer than the MIT and it represents the separation between the two events.

Within this study, we applied the exponential method [31] to determine the value of the MIT.
This method assumes that the storm arrival time and the time between two storms follows an
exponential distribution. Consequently, the duration of dry periods can be approximated by an
exponential distribution with a mean that is equal to the standard deviation, and therefore the
coefficient of variation (CV) is equal to one.

To obtain the value of the MIT, we obtained the CV for different dry-period durations applying
Equation (1):

CVk = std
(
dpk

)
/dpk, (1)

where k is the dry-period duration (1 h, 2 h, . . . ), dpk is the average of dry-period durations greater
than the duration of kth, and std(dpk) its standard deviation. The value of the MIT is determined as
the value of k in which CVk approximates to one.

Once we obtained the MIT, we separated all the storm events within the rainfall time-series.
We did the separation to the observed and generated series for: (a) The validation of AWE-GEN
simulations, and (b) for the comparison of rainfall versus floods.

2.3.2. Rank of Storm Events

Analyzing all the separated storm events, we ranked them according to three criteria: Total depth
(VEvent), maximum intensity (Imax), and duration (DEvent) (Figure 2). We ranked the events in the
5000 years within the same year from the highest to the lowest according to the three criteria. Therefore,
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for each criterion, the biggest rainfall event of each year was identified as rank one, the second one as
rank two, etc.

Finally, for each criterion, we identified the rank of the storm event (maximum intensity, total
depth, and total duration) that generated the maximum peak-flow and maximum flood volume of
each year within the 5000-year time-series.

2.4. Rainfall versus Flood Comparison

We analyzed what the maximum rank of a storm event is that should be considered to preserve
the properties of extreme floods regarding: (a) Magnitude and recurrence (univariate frequency
analysis), (b) seasonality, (c) dependence of maximum annual peak-flows and volumes and (d) bivariate
magnitude and recurrence (copula-based frequency analysis).

In several sections within this manuscript, in order to compare the values obtained at the different
ranks to the reference value (the one obtained from the continuous simulation), we obtained the relative
error (RE) as follows (Equation (2)):

RE (%) =

(
1−

Compared value
Reference value

)
·100, (2)

2.4.1. Magnitude and Recurrence. Univariate Frequency Analysis

We analyzed how the storm events were related to the maximum annual peak-flow and volume
focusing on the:

• Probability that a storm with a determined rank generates the maximum annual value of the (a)
peak-flow and (b) volume.

• Relation between the storm rank and the return period associated to the (a) maximum annual
peak-flow and (b) maximum annual volume.

• Maximum storm rank required to obtain 95% and 99% probability of achieving the (a) maximum
peak-flow and (b) maximum volume for a specific year and for different ranges of the return period.

We assigned the return periods to the maximum annual peak-flows and to the maximum annual
volumes independently, by using the Gringorten plotting position formula [40].

2.4.2. Seasonality

We carried out a seasonality analysis based on circular statistics [41]. We analyzed how the
seasonality of the maximum annual peak-flows and volumes is affected by the rank of storms.

As exposed by [42], circular statistics are an effective method to define the basis of the timing of
hydrological extreme events within a year. The date of occurrence of an event in year i can be graphed
on a unitary circle to give the angle (θi) in polar coordinates (Equation (3)):

θi = D·2π/L, (3)

where D stands for the day of the year (one for 1 January, two for 2 January, etc.) and L the number of
days within the year (365, or 366 if it is a leap year). Then, the mean seasonality can be defined as the
average vector from the origin which represents the mean date of occurrence (θ) of all the maximum
annual floods (peak-flow or volume) within the case study basin. The x and y coordinates of the
average vector are obtained from the sample of 5000 extreme events by (Equations (4) and (5)):

x =

∑5,000
i=1 cos(θi)

5, 000
, (4)

y =

∑5,000
i=1 sin(θi)

5, 000
, (5)
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therefore (Equation (6)):

θ = tan−1 y
x

, (6)

whereas the variability of the date of occurrence about the mean date is characterized by the length
parameter r (Equation (7)):

r =
√

x2 + y2, (7)

which ranges from zero (uniform distribution around the year) to one (all extreme events occur on the
same date of the year).

We compared the values of θ and r obtained from the continuous simulation to those obtained
from the different storm ranks.

2.4.3. Dependence

We measured and analyzed how the different storm ranks affected the dependence between the
peak-flow and volume. To do so, we used (1) graphical techniques and (2) numerical measures.

1. We graphed the Chi-Plot, which is a technique that displays a measure of location of an observation
regarding the whole of the observations (λi) against a measure of the Chi-square test statistic for
independence (Xi). Therefore, the bigger the distance between the points and the horizontal axis
is, the larger the dependence is. The dependence is positive if the points are above the upper
control limit, and negative if they are located below the lower control limit [43,44], which we
established with a probability of 90% as shown in Genest et al. [45].

2. Spearman’s rho and Kendall’s tau. Moreover, dependence measures are needed to procure a
quantitative value of the dependence relation between variables. For this purpose, we adopted
the Spearman’s rho and Kendall’s tau as rank-based non-parametric measures of dependence.

2.4.4. Magnitude and Recurrence. Copula-based Frequency Analysis.

Finally, we analyzed how the rank of storms affected the bivariate properties of the pairs of
peak-flow and volume by carrying out a copula-based analysis. To do so, we used the MATLAB toolbox
MhAST Toolbox [46]. Within that toolbox, a total of 26 parametric models of copula families can be
fitted to bivariate data. Within this study, for the sake of simplicity, we focused on three well-known
Archimedean one-parameter copula families for their uses in hydrological sciences: Clayton, Gumbel
and Frank. We proceeded as follows:

First, we fitted the three studied copulas to the pairs peak-flow and volume values obtained from
the continuous simulation using MhAST. For these three copulas, MhAST uses the MATLAB built-in
function, which estimates the parameter (θc) of each copula using the method of maximum likelihood.
To select the copula that provided the best fit, we analyzed the root mean square error (RMSE)
(Equation (8)) and the Nash–Sutcliffe efficiency (NSE) (Equation (9)) coefficient, which measures how
different the empirical observed bivariate probabilities (Ỹ) and their modelled bivariate counterpart
(Y) are:

RMSE =

√∑n
i=1

[̃
yi − yi(θc)

]2

n
, (8)

NSE = 1−

∑n
i=1

[̃
yi − yi(θc)

]2

∑n
i=1

[̃
yi − ỹi

]2 , (9)

RMSE values are within the range [0,∞) with zero being a perfect fit, whereas NSE ranges in the
interval (−∞,1], with one being the perfect fit. The best fit is the one that had a lower value of RMSE
and a higher value of NSE.
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Once the copula family was chosen, we fitted that copula to the different pairs of peak-flow and
volume obtained considering different storm ranks, according to the rainfall criteria separation studied.
We obtained the RE of the estimated copula parameter with respect to the copula parameter of the
continuous simulation.

Finally, we graphically analyzed the differences between the Kendall’s return period (TK) [47]
calculated by both, continuous simulation and different storm ranks according to the VEvent and Imax
criteria. Kendall’s return period represents the mean inter-arrival time of critical events lying on the
probability level t, and can be obtained as follows (Equation (10)):

TK =
µ

1−KC(t)
=

1
1−KC(t)

, (10)

where µ is the average interarrival time of events (i.e., µ = 1 in this paper, as annual maxima are being
analyzed) and KC(t) is the Kendall’s distribution function, where t represents the probability level.
For the sake of brevity, the reader is referred to [47,48] for further details. We obtained the isolines
of TK of 10, 50, and 100 years estimated through continuous simulation and through different storm
ranks for the studied criteria separation using the MhAST toolbox.

2.5. Case Study

2.5.1. Study Basin

The methodology was applied in Peacheater Creek (herein, PC), using the hourly climate data of
Westville, a weather station located within the basin (Figure 3a).
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integrated basin simulator (tRIBS). (c) Partitioning of the basin for parallel computation using
eight processors.

This sub-basin is located in Baron Fork at Eldon river basin (Oklahoma, USA) and it was selected
since it was originally used to test, calibrate, and validate the tRIBS model [29,48]. The Peacheater Creek
basin has a drainage area of 64 km2, with elevations ranging between 248 and 432 m.a.s.l. The sub-basin
is characterized by gentle (slopes between 2% and 5%) to steep (slopes between 15% and 40%) hillslopes.
The vegetation is a mixture of oak-hickory-pine forest grasslands (mainly located in the southern part
of the basin) and cropland-urban areas (mainly in the northern region). The impervious fraction of the
sub-basin is estimated to be about 1.56%. The predominant soil consists of gravelly silt loams [29].

Additional details on the climate, hydrology, and basin characteristics have been presented
in [29,30,49].
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2.5.2. Setup of Modeling Experiments

Two different modeling experiments were carried out:

• Stochastic weather generation: We generated 5000 years of punctual hourly weather with
AWE-GEN [28], calibrated with the climate data recorded from 1997 to 2016 (both years included)
at the Westville weather station: Rainfall, temperature, wind speed, radiation, cloudiness, relative
humidity, and atmospheric pressure. Raw data had a resolution of 5 min. We processed the data
into hourly values, in order to force AWE-GEN and perform the stochastic weather generation.

• Hydrological simulations: Numerical simulations in PC were carried out using the tRIBS model
with a TIN of 6680 nodes (Figure 3b) derived from a US Geological Survey (USGS) 30-m DEM using
the procedure described in Vivoni et al. [36]. We based our simulations on a model calibration
conducted by Ivanov et al. [29,49] as part of the distributed model intercomparison project.
Ivanov et al. [49] obtained a correlation coefficient of 0.763 and a Nash-Sutcliffe coefficient of 0.565
(which can be considered as satisfactory following the guidelines exposed in Sirisena et al. [50])
for the hourly simulated streamflow at the outlet of Baron Fork basin (in which PC is located),
compared to the hourly observed streamflow from April of 1994 to July of 2000. To make the
experiment approachable, the computational load was balanced by using parallel computing
techniques. The basin was partitioned into eight different parts using a surface-flow partitioning
script [5] with the graph-partitioning software METIS [51], which balances the number of TIN
nodes across processors minimizing the dissections that occur in the channel network. Each
processor calculates tRIBS variables within each part of the basin and, every time step each
processor sends messages to the others to sum up all the calculations done within the basin.
Thus, the computational load is balanced between the different processors (Figure 3c) and the
experiment is approachable.

The experiment was carried out by using Magerit, a high performance computer owned by the
Technical University of Madrid. We used the Intel family processors architecture, which consists of
41 nodes with two intel processors Intel XEON E5-2670 of eight cores each, and 64 GB RAM/Core.
The time spent in the hydrological simulations was two and a half months, whilst the weather
simulations were carried out within one day of computation.

2.6. Limitations of the Methodology

The proposed methodology has some limitations that should be noted:

• Rainfall was considered uniform within the whole basin, as a result of using a punctual stochastic
weather generator. As pointed out by Liuzzo et al. [8], due to the small size of PC, there is not a
big difference between considering the spatial and punctual rainfall. However, within the same
study, accounting or not for the rainfall spatially had an appreciable difference for a basin with a
bigger drainage area (Baron Fork, 808 km2).

• The study is focused on return periods up to 500 years. For higher return periods, the length of
the generated weather forcing series should be analyzed to ensure that it is representative enough
of the return period studied.

• The procedure did not account for climate-change effects or land-use changes, but considered
stationary climate conditions. However, interannual variations of the mean annual rainfall were
accounted for due to the nature of AWE-GEN.

• The methodology is applied to one basin, which limits the extrapolation of the results obtained.
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3. Results and Discussion

3.1. Stochastic Weather Generation. Rainfall Extremes Validation.

We analyzed the ability of the weather generator (AWE-GEN) to reproduce rainfall extremes
by comparing the stochastic rainfall frequency curves with those observed at different aggregation
periods (Figure 4a–d, 1 h, 6 h, 12 h, 24 h, respectively). As shown, the behavior of the observed rainfall
frequency curves was mostly within the range of the simulated ones.

Furthermore, we analyzed if the seasonality of the storm events was retained by AWE-GEN.
To carry out the analysis, it was necessary to separate the storm events. By applying the exponential
method (exposed in Section 2.3.1) we determined a MIT of 15 h from the observed hourly rainfall
time-series of Westville Station.
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Figure 4. Validation of the generated rainfall series. (a–d) Comparison between the observed rainfall
frequency curve (blue dots) (obtained by applying the Gringorten plotting position formula [40]) and
synthetic rainfall frequency curves obtained by bootstrapping 1000 series of 40 years of hourly rainfall
obtained from the 5000 years of synthetic weather series generated: (a) Maximum annual cumulated
rainfall (P) in: (a) 1 h, (b) 6 h, (c) 12 h, and (d) 24 h. (e) Comparison between the seasonality of the
observed maximum annual intensity (blue circles), with the predominant direction (blue line) compared
to the predominant direction of the seasonality of 1000 series of 20 years of maximum annual depth
obtained by bootstrapping from the 5000 years of synthetic weather generated (in grey lines), with the
mean predominant direction represented in black. (f) The same as e, but for total depth, with observed
values represented in red circles.

Applying the methods shown in Section 2.4.2, we compared the seasonality of two main
characteristics of storm events (Figure 2): The maximum annual Imax (Figure 4e) and the maximum
annual VEvent (Figure 4f). The seasonality is well-reproduced by AWE-GEN for the maximum annual
Imax (Figure 4e). The mean occurrence (θ) (represented by the direction of the vectors) is late June
(observed, in blue) and early July (simulated, in black), with a similar variability of seasonality (r)
(represented by the length of the vectors (Figure 4e)), with an observed and simulated value of 0.61
and 0.56, respectively). However, in the case of VMax (Figure 4f), the observed seasonality is slightly
more disperse than the generated (the length of the observed vector is 0.16, whereas the simulated
is 0.29) and θ is delayed by one month. Overall, the generated synthetic series are able to reproduce
extreme rainfall properties.

3.2. Rainfall versus Flood Comparison.

Once the weather series had been generated, we used them as weather forcing for the hydrological
model tRIBS and performed the simulations. Afterwards, we obtained the relationship between the
storm ranks and the flood hydrographs generated at the basin outlet.

3.2.1. Magnitude and Recurrence. Univariate Frequency Analysis

Table 1 shows the probability that a storm of a specific rank generates the (a) maximum annual
peak-flow and (b) the maximum annual volume. The three ranking criteria are shown: VEvent, Imax,
and DEvent. It can be seen that the VEvent criteria was the most relevant; that is, a lower storm rank is
required for obtaining both the maximum annual peak-flow and volume.



Water 2019, 11, 1896 12 of 25

Table 1. Relative and cumulated frequency that a storm of a specific rank generates the maximum
annual peak-flow and the maximum annual volume.

Storm Rank

Relative/Cumulated Frequency of Coincidence
with Maximum Annual Peak-Flow (%)

Relative/Cumulated Frequency of Coincidence
with Maximum Annual Volume (%)

Total Depth Maximum
Intensity

Total
Duration Total Depth Maximum

Intensity
Total

Duration

1 53.5/53.5 45.2/45.2 9/9 68.8/68.8 35.6/35.6 17.2/17.2
2 21.7/75.2 18.6/63.8 5.8/14.8 17.9/86.7 17.3/52.9 8.6/25.9
3 11.4/86.6 11.5/75.3 4.8/19.6 6.9/93.6 11.3/64.2 7/32.9
4 5.3/91.9 6.9/82.2 3.3/22.9 2.7/96.3 8/72.2 4.7/37.5
5 3.4/95.3 4.2/86.4 3.6/26.5 1.8/98.1 5.5/77.7 4.5/42
6 1.7/97 3.1/89.4 2.9/29.5 0.7/98.8 4.2/81.9 3.4/45.4
7 1.3/98.2 2.2/91.7 2.9/32.3 0.5/99.3 3.1/85 3/48.4
8 0.8/99 2.1/93.7 2.5/34.8 0.3/99.6 2.8/87.9 3/51.4
9 0.3/99.3 1.5/95.2 2.3/37.1 0.1/99.7 2.5/90.4 2.4/53.8
≥10 0.7/100 4.8/100 62.9/100 0.3/100 9.6/100 46.2/100

According to the different storm rank criteria:

• VEvent. Considering the biggest storm (rank one) results in a probability of generating the
maximum annual peak-flow (Table 1) of more than 53%, whereas considering the storms of rank
one and two this probability increases to more than 75%. If the storms considered are up to rank 3,
this probability exceeds 86%. When analyzing the maximum annual volume (Table 1), the same
probabilities are greater than 68%, 86%, and 93%, respectively.

• Imax. The probability of generating the maximum annual peak-flow (Table 1) is more than 45%,
63%, and 75% for a storm rank up to one, two, and three, respectively. In the case of maximum
annual volume (Table 1), the same Figures are 35%, 52%, and 64%.

• DEvent. The probability of achieving the maximum annual peak-flow and volume with these
criteria is the lowest. Considering storms up to rank ten, the probability of achieving the maximum
peak-flow is less than 40% (Table 1), and less than a 60% (Table 1) probability of resulting in the
maximum annual volume.

Therefore, for PC, the best criterion of the storm rank is VEvent, followed up by Imax when analyzing
the correspondence between the storms and maximum annual peak-flow and volume. For the sake of
simplicity, the following results only focused on these two criteria, excluding DEvent.

Afterwards, we focused on the magnitude of peak-flows and volumes. We related the different
storm ranks (Figure 5, total depth criteria (red) maximum intensity criteria (blue)) to the associated
return period (Tr) of peak-flows (Figure 5a) and volumes (Figure 5b) obtained from the analysis of the
5000 years flow simulated at the basin outlet. According to the two criteria selected, it can be seen that:

• VEvent. The higher the Tr of the peak-flow (Figure 5a) and volume (Figure 5b) are, the lower the
storm rank needed. Therefore, there is a strong correlation between the Tr and the storm rank.
For the Tr of the peak-flow over 10 years, all the storm events have a rank lower than or equal to
four, whereas for the Tr over 100 years all the storms are of rank one or two. For the Tr of volume
over 10 years, all the storm events have a rank lower than or equal to three, whereas for the return
periods over 100 years all the storms are also of rank one or two.

• Imax. There is more dispersion than in the VEvent criteria. For the Tr of the peak-flow over 10 years,
storms have a rank of ten or lower, whereas for the Tr over 100 years all the storms up to rank
three should be considered. In the case of volume, the Tr higher than 10 years corresponds to
storms with ranks up to 23 (not shown in Figure 5), whereas for the Tr over 100 years, storms up
to rank ten can generate the maximum annual volume.



Water 2019, 11, 1896 13 of 25Water 2019, 11, x FOR PEER REVIEW 13 of 25 

 

 

(a) 

 
(b) 

Figure 5. Storm order that corresponds to every return period (Tr) of maximum annual peak-flow (a) 
and maximum annual volume (b) represented as red dots for the total depth criteria and as blue dots 
for the maximum intensity rank criteria. The numbers on the right represent the probability that a 
storm of a specific rank generates the maximum peak-flow (a) or volume (b) of given a year. 

Finally, regarding the analysis of magnitude and recurrence, we calculated the maximum storm 
rank required to obtain 95% and 99% probability of achieving the maximum annual peak-flow and 
the maximum annual volume for a specific year and for different ranges of Tr for the VEvent and IMax 
criteria (Table 2). Considering storms up to rank six according to the VEvent criteria, there is a 95% 
probability of achieving the maximum annual peak-flow and volume for all ranges of the Tr, which 
increases to 99% if all storm events up to rank nine are considered. For IMax, the ranks are 13 and 22 
for the same probability values. As also shown in Figure 5, the storm rank required is less as the Tr 
increases in the two ranking criteria. It is remarkable that, in the case of VEvent, for return periods 
higher than 50 there is a probability of achieving the maximum annual peak-flow and the maximum 
annual volume of 99% if the three highest events are considered. 

Table 2. Maximum storm rank required to obtain 95% and 99% probability of achieving the maximum 
peak-flow or volume for a specific year, depending on the ranking criteria used and the range of 
return periods studied. 

1 2 5 10 20 50 100 200 500

1

2

3

4

5

6

7

8

9

10
St

or
m

 ra
nk

53 %

22 %

11 %

5 %

3 %

2 %

1 %

 <1 %

1 2 5 10 20 50 100 200 500

Tr Peak-flow (years)

1

2

3

4

5

6

7

8

9

10

45 %

19 %

12 %

7 %

4 %

3 %

2 %

2 %

2 %

 5 %

1 2 5 10 20 50 100 200 500

1

2

3

4

5

6

7

8

9

10

St
or

m
 ra

nk

69 %

18 %

7 %

3 %

2 %

 <1 %

1 2 5 10 20 50 100 200 500

Tr Volume (years)

1

2

3

4

5

6

7

8

9

10

36 %

17 %

11 %

8 %

6 %

4 %

3 %

3 %

3 %

 10 %

Figure 5. Storm order that corresponds to every return period (Tr) of maximum annual peak-flow (a)
and maximum annual volume (b) represented as red dots for the total depth criteria and as blue dots
for the maximum intensity rank criteria. The numbers on the right represent the probability that a
storm of a specific rank generates the maximum peak-flow (a) or volume (b) of given a yea.

Finally, regarding the analysis of magnitude and recurrence, we calculated the maximum storm
rank required to obtain 95% and 99% probability of achieving the maximum annual peak-flow and
the maximum annual volume for a specific year and for different ranges of Tr for the VEvent and IMax

criteria (Table 2). Considering storms up to rank six according to the VEvent criteria, there is a 95%
probability of achieving the maximum annual peak-flow and volume for all ranges of the Tr, which
increases to 99% if all storm events up to rank nine are considered. For IMax, the ranks are 13 and 22
for the same probability values. As also shown in Figure 5, the storm rank required is less as the Tr
increases in the two ranking criteria. It is remarkable that, in the case of VEvent, for return periods
higher than 50 there is a probability of achieving the maximum annual peak-flow and the maximum
annual volume of 99% if the three highest events are considered.
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Table 2. Maximum storm rank required to obtain 95% and 99% probability of achieving the maximum
peak-flow or volume for a specific year, depending on the ranking criteria used and the range of return
periods studied.

Probability (%) Tr (Years)

Maximum Storm Rank to
be Considered

Peak-Flow

Maximum Storm Rank to
be Considered

Volume

Total
Depth

Maximum
Intensity

Total
Depth

Maximum
Intensity

95/99 All range 5/8 9/16 4/7 13/22
95/99 1 ≤ Tr < 10 6/9 10/16 4/7 13/22
95/99 10 ≤ Tr < 50 3/3 4/7 1/2 8/14
95/99 50 ≤ Tr < 100 2/3 2/3 1/2 6/10
95/99 Tr ≥ 100 2/2 2/3 1/2 6/6

3.2.2. Seasonality

We studied if seasonality was preserved by the storms depending on the rank considered.
Figure 6 shows the seasonal behavior of storms regarding the maximum peak-flow (Figure 6a–d and
Figure 6i–l) and maximum volume (Figure 6e–f and Figure 6m–p). Comparisons were carried out
with the seasonality of the continuous simulation (red in Figure 6a–f and blue in Figure 6i–p) and
the consideration of storms up to rank one, three, five and ten for the VEvent (Figure 6a–f) and IMax

(Figure 6i–p) criteria.
According to the two rainfall criteria selected:

• VEvent. The seasonality is preserved almost equally if storms are at least considered up to rank
three for both the maximum peak-flow and maximum volume.

• IMax. Within this case, to preserve the seasonality obtained from the continuous simulation, storms
up to rank ten should be considered in both cases, the maximum peak-flow and maximum volume.

To quantify the impact of the rank of storms in seasonality, we obtained the values of θ and r from
the continuous simulation and compared them to the ones obtained from the different storm ranks,
obtaining the RE (Equation (2)).

Tables 3 and 4 show the different values of θ and r depending on the criteria and the RE, for the
maximum peak-flow (Table 3) and for maximum volume (Table 4). According to the two rank criteria:

• VEvent. With storms up to rank five, there is less than 1% absolute RE in the estimation of the
mean direction of seasonality for both the peak-flow (Table 3) and volume (Table 4). Regarding
the radius, which measures the dispersion of the seasonality, considering storms up to rank five
have an absolute RE lower than 4%.

• IMax. With this criterion, the smaller absolute values of RE are in the estimation of the mean
direction of the maximum peak-flow seasonality (2% if storms up to rank five are considered).
When analyzing the mean direction of volume seasonality, RE is over 6% for storms up to rank
ten. When it comes to the radio, all RE values are over 10%.

Therefore, the VEvent sorting criterion is the best for preserving the seasonality of floods in this
case study.
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Figure 6. Comparison between the seasonality of the observed maximum annual peak-flow (red lines
in (a–d); and blue lines in (i–l) and maximum annual volume (red lines e–h; and blue lines (m–p) with
respect to that obtained by applying different criteria (total depth (a–h) and maximum intensity (i–p))
and accounting for different rank orders (up to one, three, five and ten), in which the predominant
direction of the seasonality is represented by a circle with a black line.
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Table 3. Seasonality of the maximum annual peak-flow represented by the angle of its mean direction
(θ ) and its radio (r ), for different storm ranks and for the two different criteria studied. The relative
error (RE) is also shown.

Maximum Storm
Rank Considered

Total Depth Maximum Intensity Total Depth Maximum Intensity
¯
θ

¯
r

¯
θ

¯
r RE ¯

θ
RE ¯

r
RE ¯

θ
RE ¯

r

Continuous
Simulation 169.7 0.29 169.7 0.29 − − − −

Rank 1 146.7 0.20 187.2 0.59 13.5 29.8 −10.3 −101
Rank 3 168.1 0.26 176.5 0.47 0.9 10.1 −4.0 −61.5
Rank 5 169.7 0.28 173.0 0.41 0.0 3.8 −2.0 −40.4
Rank 10 169.9 0.29 170.9 0.33 −0.1 0.0 −0.7 413.1

Table 4. Seasonality of the maximum annual volume represented by the angle of its mean direction (θ )
and its radio (r ), for different storm ranks and for the two different criteria studied. The relative error
(RE) is also shown.

Maximum Storm
Rank Considered

Total Depth Maximum Intensity Total Depth Maximum Intensity
¯
θ

¯
r

¯
θ

¯
r RE ¯

θ
RE ¯

r
RE ¯

θ
RE ¯

r

Continuous
Simulation 142.9 0.25 142.9 0.25 − − − −

Rank 1 146.7 0.20 187.2 0.59 −2.7 18.9 −31.0 −133
Rank 3 145.4 0.25 172.7 0.44 −1.7 −0.3 −20.8 −76.1
Rank 5 143.7 0.25 162.7 0.38 −0.6 −0.6 −13.8 −51.6
Rank 10 143.2 0.25 151.8 0.30 −0.2 −0.6 −6.2 −20.0

3.2.3. Dependence

We analyzed how the storm ranks are able to preserve the dependence between the peak-flow
and volume of the continuous simulation. To do so, as exposed in the methodology, we graphed
the chi-plots comparing the peak-flow volume dependence from the continuous simulation (red
(Figure 7a–d) and blue (Figure 7e–h) dots) to the different storm ranks according to the VEvent and IMax

criteria (grey dots in Figure 7).
For all cases (Figure 7), there is a positive dependence between the peak-flow and volume.

Furthermore, when focusing on the upper tail dependence (first quadrant within all the plots in
Figure 7), the points are located far from the zero value of the y axis, which is the independence
hypothesis. Depending on the criteria:

• VEvent. The dependence is well preserved, and both scatterplots are visually almost identical
when the storm ranks up to three or more are considered. If the biggest storm of the year is
considered, the dispersion is bigger.

• Imax. Dependence is also preserved for this criterion, but a higher dispersion is shown in rank
periods up to one and three. In the case of considering only the biggest storm (rank one), a big
dispersion is found in the upper tail.
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Figure 7. Chi-plots of the maximum annual peak-flow and volume. Grey dots represent the values
obtained considering specific storm orders up to different ranks (a,e) rank one (b,f) rank three, (c,g)
rank five, (d,h) rank ten). Color dots represent the values obtained from the continuous simulation (red
in (a–d), blue (e–h)). Storm rank criteria are total depth in (a–d) and maximum intensity in (e–h).

To numerically compare the degree of dependence of the peak-flow and volume of the continuous
simulation with respect to different storm ranks, values of Spearman’s rho and Kendall’s tau were
computed (Table 5), and their RE (Equation (2)). In the case of the VEvent criterion, all the absolute values
of RE obtained from the different ranks are lower than 1%, whereas in the case of Imax, the absolute
RE values are over 2% for storms up to rank five, reaching absolute RE values of less than 1% if only
storms up to rank ten are considered.

Table 5. Rank-based non-parametric measures of dependence Spearman’s rho (%) and Kendall’s tau (τ)
for the pair of values of maximum annual peak-flows and maximum annual volumes regarding the
maximum storm rank considered and to the criteria used: Total depth or maximum intensity.

Maximum Storm
Rank Considered

Total Depth Maximum Intensity Total Depth Maximum Intensity

% τ % T RE% REτ RE% REτ

Continuous
Simulation 0.884 0.709 0.884 0.709 − - − −

Rank 1 0.883 0.708 0.955 0.826 0.07 0.01 −8.05 −16.56
Rank 3 0.882 0.706 0.922 0.767 0.17 0.31 −4.26 −8.18
Rank 5 0.883 0.708 0.903 0.739 0.05 0.05 −2.16 −4.27
Rank 10 0.884 0.709 0.888 0.716 0.00 −0.01 −0.41 −1.01

Therefore, to preserve the dependence between maximum annual peak-flows and volumes, VEvent

is also the best criteria for the case study.

3.2.4. Magnitude and Recurrence. Copula-based Frequency Analysis

We fitted the three Archimedean copulas exposed in the methodology to the 5000 pairs of
peak-flows and volumes using the MhAST Toolbox [46]. Table 6 shows the parameters estimated for
each of the copulas, obtained by the method of maximum likelihood, with the value of RMSE and the
NSE for each of the copula fits. For the studied copulas, the best fit corresponds to the Frank copula,
followed closely by the Gumbel copula. As both Gumbel and Frank provided a good fit, we chose the
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Gumbel copula for further analysis as it is the only one of the three studied copulas able to model
upper tail dependence [52].

Table 6. Parameters of the Archimedean copula estimation from the pair of values of maximum annual
peak-flows and maximum annual volumes of the continuous simulation, with the root mean square
error (RMSE) and Nash–Sutcliffe error (NSE).

Copula Parameter RMSE NSE

Clayton 3.10 1.68 0.992
Frank 11.5 0.58 0.999

Gumbel 2.98 0.70 0.998

Table 7 shows the parameter fit of the Gumbel copula for different storm ranks according to the
two criteria studied. In the case of the VEvent criterion, the absolute RE is lower than 2% considering
the storms up to any rank. Only in the case of considering storms up to rank ten with the total VEvent

criterion, the absolute RE is lower than 0.5%. In the case of the Imax criterion, storm ranks up to ten
should be considered for absolute values of RE lower than 5%. The results of Table 7 have a reflection
when TK are estimated. Figure 8 shows the TK of 10 (dashed), 50 (dashed-dotted) and 100 (continuous)
years of the continuous simulation (red (Figure 8a–d) and blue (Figure 8e–h) lines) compared to the
different storm ranks according to VEvent and Imax criteria (grey lines in Figure 8).

According to each ranking criterion:

• VEvent. Visually, there is a good agreement between the TK estimated with the VEvent criterion
and the continuous simulation (Figure 8a–d). Worse agreement is shown for high return periods
(100 years). In the case of considering storms with ranks up to ten (Figure 8d), the TK are
almost coincident.

• Imax. There is not a good agreement between the TK estimated with this criterion compared to
the continuous simulation for ranks up to three. If the biggest storm is considered, the TKs are
underestimated. In the case of considering storm ranks up to three, the return periods of 50 and
100 years are highly overestimated. TKs are closer with storms up to rank five (still overestimated
for 50 and 100 years TKs), and almost a perfect agreement is achieved if rank periods up to 10
are considered.

Table 7. Parameters of the Gumbel copula estimation from the pair of values of maximum
annual peak-flows and maximum annual volumes regarding the maximum storm rank considered
and the criteria used: Total depth or maximum intensity, and relative error (RE) respect to the
continuous simulation.

Maximum Storm
Rank Considered

Total Depth Maximum Intensity

Gumbel Parameter RE Gumbel Parameter RE

Continuous
Simulation 2.98 − 2.98 −

Rank 1 2.94 1.37 4.84 −62.34
Rank 3 3.00 −0.79 3.82 −28.32
Rank 5 3.02 −1.18 3.40 −13.91

Rank 10 2.99 −0.25 3.08 −3.26
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Figure 8. Chi-plots of maximum annual peak-flow and volume. Grey dots represent the values
obtained considering specific storm orders up to different ranks (a,e) rank one (b,f) rank three, (c,g)
rank five, (d,h) rank ten). Color dots represent the values obtained from the continuous simulation (red
in (a–d), blue (e–h)). Storm rank criteria is total depth in (a–d) and maximum intensity in (e–h).

3.2.5. Discussion

As exposed, some studies in the literature have previously analyzed the influence of storms on
the derivation of the flood frequency curve through event-based approaches. Table 8 shows the main
characteristics of the research on this topic. Flores-Montoya et al. [23] (extended analysis in [53])
carried out a similar experiment in two French basins. They extracted the storms from the synthetic
time series of spatial-punctual rainfall generated with the Rainsim V3 [54], and forced the event-based
distributed model RIBS [35] (predecessor of tRIBS) with them. As they accounted for spatial variability,
they separated the storms based on the mean area rainfall, and ranked them by total depth, mean
intensity (instead of maximum intensity), and total duration. They carried out the analysis only for the
five highest storms of each year, and performed the experiment simultaneously for Générarges and
Corbès. Sordo-Ward et al. [27,55] performed a similar analysis in four Spanish basins, by also coupling
the RainSim V3 with a simpler semi distributed model [19,20]. Thus, they were able to analyze all the
events each year as the experiment resulted less computationally expensive.

When comparing to the present study, Sordo-Ward et al. [27,55] and Flores-Montoya et al. [23]
both used event-based approaches instead of a continuous approach. As a consequence, they
needed to characterize the soil-moisture in the basin prior to the storm events. In the case of
Sordo-Ward et al. [27,55], they considered a constant value of the curve number in each of the
sub-basins for all the storms. Regarding Flores-Montoya et al. [23], they determined the initial soil
moisture in a probabilistic way. Within this study, as we performed the simulations with tRIBS, all the
conditions prior to the storm events were given by the continuous simulation.
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Table 8. Comparison between similar case studies and the methodology used in each of them.
For comparison purposes, the basin area, weather/rainfall generator, hydrological model and the way
of accounting soil moisture are shown.

Case Study Area (km2)
Weather/Rainfall

Generator
Spatial

Resolution
Hydrological

Model Type Initial Soil
Moisture

Peacheater Creek 64 AWE-GEN
[28] Punctual TRIBS

[6]
Fully

distributed-Continuous
Continuous
assessment

Générargues
[23,53] 245 RainSim V3

[54] Spatial-Punctual RIBS
[35]

Fully distributed-Event
based Probabilistic

Corbès
[23,53] 262.3 RainSim V3

[54] Spatial-Punctual RIBS
[35]

Semidistributed-Event
based Probabilistic

Navacerrada [55] 20 RainSim V3
[54] Spatial-Punctual

Stochastic
HEC-HMS

[19,20]

Semidistributed-Event
based Deterministic

Santillana
[27] 211 RainSim V3

[54] Spatial-Punctual
Stochastic
HEC-HMS

[19,20]

Semidistributed-Event
based Deterministic

El Pardo
[27] 495 RainSim V3

[54] Spatial-Punctual
Stochastic
HEC-HMS

[19,20]

Semidistributed-Event
based Deterministic

Manzanares [27] 1294 RainSim V3
[54] Spatial-Punctual

Stochastic
HEC-HMS

[19,20]

Semidistributed-Event
based Deterministic

Table 9 shows a summary of the results obtained within this paper and the comparison of the
results obtained in other studies (some aspects have not been studied by the other compared studies
and are therefore not shown). Several aspects can be remarked when analyzing Table 9:

• In all the case studies, among the three criteria of storm event ranking, the best was total depth.
This suggests that the choice between one criterion or another has a low dependence on the
hydrological model used or how the initial moisture is accounted. Accounting or not for the
spatial variability of rainfall does not seem to influence either, but this might be due to the small
size of Peacheater Creek.

• Regarding the probability of achieving the maximum annual peak-flow, the lowest values (55%
and 53%) correspond to the Manzanares and Peacheater Creek, respectively. The first is the biggest
basin (1294 km2), and the reduction of probability can be due to the importance of propagation
processes and the temporal patterns of the storm events. However, Peacheater Creek is the
second smallest basin in Table 9. The reduction of the coincidence with the maximum annual
peak-flow might be due to how antecedent basin conditions prior to the storm event are considered.
As the model is continuous, some lower rank events may concur with wetness states of the basin,
incurring higher peak-flows. This phenomenon cannot occur in the Sordo-Ward et al. [27,55] study
basins, as the initial soil moisture was considered constant and equal for all the storm events.

• When the coincidence of the first rank total depth storm with the maximum annual volume is
analyzed (Peacheater Creek and Flores-Montoya et al. [23]), we can see that there is a higher
probability of coincidence than that of the peak-flow. This suggests that total depth has a better
correlation with the maximum annual volume than with the maximum annual peak-flow. This can
also be seen when the minimum rank of storm required is analyzed. Smaller ranks are required
to achieve a 95% probability of obtaining the maximum annual volume than for obtaining the
maximum annual peak-flow with the same probability.

• In all the case studies shown, the maximum peak-flow can be obtained with a 95% probability
considering all the storms up to rank four, five or six. In the case of total volume, the maximum
rank required is reduced to two or four.

• Within this manuscript, we have shown that seasonality and bivariate properties of extreme floods
can be well-preserved if storms up to rank three and one are considered, respectively.
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Table 9. Results obtained for the different case studies considered in Table 8. PF represents the maximum
annual peak-flow, V represents the maximum annual volume, and RE represents the relative error.

Case Study Best Criteria 1st Rank PF
Coincidence (%)

1st rank V
Coincidence (%)

Rank 95%
PF

Rank 95%
V

Rank
Seasonality
PF and V
(<5% RE)

Rank
Copula

Parameter
(<5% RE)

Peacheater Creek Total depth 53 69 5 4 3 1
Générargues [23,53] Total depth 70 88 4 2 − −

Corbès
[23,53] Total depth 70 88 4 2 − −

Santillana
[27] Total depth 66 − 4 − − −

El Pardo
[27] Total depth 67 − 4 − − −

Manzanares [27] Total depth 55 − 6 − − −

Navacerrada [55] Total depth 63 − 6 − − −

Therefore, to sum up, as a general recommendation, considering the five biggest storms per year
classified by their total depth can result in an accurate derivation of the flood frequency curve when
using event-based models, close to that obtained from continuous simulations. Future works can be
focused on analyzing different case studies with different rainfall–runoff models.

4. Summary and Conclusions

This paper approaches a focus on providing guidance on selecting the minimum number of
storm events for deriving the flood frequency curve through event-based approaches. To do so,
the methodology applied compares the resulting flow of coupling a stochastic weather generator
with a fully distributed physically-based model with the flow resulting from selecting only a limited
number of storms per year. The methodology has only been applied to one basin, and therefore
the results and conclusions are restricted to this watershed. Despite this, the study shows how the
number of storms selected has an influence on the derivation of extreme floods, and its characteristics:
Univariate magnitude and recurrence of maximum annual peak-flows and volumes, their seasonality,
their dependence, and their statistic bivariate properties. Specifically, for Peacheater Creek:

• When analyzing the correspondence between storms and maximum annual peak-flow and volume,
the best ranking criterion is total depth, followed by maximum intensity. Considering storms
up to rank five sorted by the total depth criterion, resulted in a probability of generating the
maximum annual peak-flow of 94% and the maximum annual volume of 99%.

• In the case of the total depth criterion, the higher the return period of peak-flow or volume is,
the lower the storm rank needed. For return periods of peak-flow or volume over ten years, all the
storms have a rank equal or lower than four. For return periods higher than 50 years, there is a
probability of achieving the maximum annual peak-flow and the maximum annual volume of
99% if the three highest events are considered.

• For preserving the seasonality of maximum annual peak-flows and volumes, total depth was also
the best criterion. With storms up to rank five, there is less than 1% absolute relative error in the
estimation of the mean direction of seasonality for both the peak-flow and volume. Regarding the
dispersion of the seasonality, considering storms up to rank five resulted in an absolute relative
value lower than 4%.
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• Total depth was also the best criterion for preserving the dependence and bivariate properties of
the floods derived from the continuous simulation. Even by considering only the biggest storm
of each year, the absolute relative errors when estimating Spearman’s rho and Kendall’s tau are
less than 1%. When estimating the parameter of the copula family selected (Gumbel), the relative
error was less than 2% if storms up to any rank were considered, and was less than 0.5% if storms
up to rank ten were considered. Regarding Kendall’s return period, considering the same number
of storms produces Kendall’s return periods of 10 and 50 years very similar to those obtained
by continuous simulation, and the 100 years return period is slightly underestimated. If the ten
biggest storms are considered, all the studied Kendall’s return periods are almost equal.
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Abbreviations commonly used in the text

The following abbreviations are commonly used in this manuscript (sorted alphabetically).
r the variability of the date of occurrence about the mean date (θ)
θ mean date of occurrence of the annual maximum peak-flow/volume
AWE-GEN Advanced WEather GENerator
DEvent duration of a storm event
DFF derived flood frequency simulation methods
DHM distributed hydrological model
Imax maximum intensity of a storm event
MIT minimum inter-event time
NSE Nash-Sutcliffe efficiency coefficient
PC Peacheater Creek
PF maximum annual hydrograph peak-flow
RE relative error as defined in Equation (2).
RIBS real-time integrated basin simulator
RMSE root mean square error
TIN triangulated irregular networks
TK Kendall’s return period.
Tr return period.
tRIBS TIN-based real-time integrated basin simulator
V maximum annual hydrograph volume
VEvent total depth of a storm event
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