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Abstract: Meeting water demands is a critical pillar for sustaining normal human living standards, 
industry evolution and agricultural growth. The main obstacles for developing countries in arid 
regions include unplanned urbanisation and limited water resources. Locating and constructing 
dams is a strategic priority of countries to preserve and store water. Recent advances in remote 
sensing, geographic information system (GIS), and machine learning (ML) techniques provide 
valuable tools for producing a dam site suitability map (DSSM). In this research, a hybrid GIS 
decision-making technique supported by an ML algorithm was developed to identify the most 
appropriate location to construct a new dam for Sharjah, one of the major cities in the United Arab 
Emirates. Nine thematic layers have been considered to prepare the DSSM, including precipitation, 
drainage stream density, geomorphology, geology, curve number, total dissolved solid elevation, 
slope and major fracture. The weights of the thematic layers were determined through the analytical 
hierarchy process supported by several ML techniques, where the best attempted ML technique was 
the random forest method, with an accuracy of 76%. Precipitation and drainage stream density were 
the most influential factors affecting the DSSM. The developed DSSM was validated using existing 
dams across the study area, where the DSSM provides an accuracy of 83% for dams located in the 
high and moderate zones. Three major sites were identified as suitable locations for constructing 
new dams in Sharjah. The approach adopted in this study can be applied for any other location 
globally to identify potential dam construction sites. 

Keywords: water scarcity; dam site suitability map; GIS; machine learning; analytical hierarchical 
process; Sharjah 

 

1. Introduction 

Water is a crucial element for the survival of life on earth [1]. With urban development and its 
associated growing population with its ever-increasing demand [2], water scarcity has been 
significantly increasing. Water consumption per capita has reached 550 L/day in some countries due 
to modern lifestyles, a development which places an additional pressure on existing water resources 
[3]. Developing countries are more vulnerable to water scarcity compared with the developed ones. 
The main obstacles developing countries face include unplanned urbanisation, limited water 
resources and ineffective regulations for managing water supply and distribution. Therefore, 
managing water resources and identifying unconventional methods to store and supply water are 
strategic priorities for any nation [4,5].  
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The United Arab Emirates (UAE) is amongst the fastest developing nations on the globe. Its 
population hopped steeply from 531,265 in 1975 to 9.04 million in 2013 [6]. The UAE is the only federal 
country in the Middle East. It consists of seven emirates (or states). The high-quality lifestyle of the 
UAE population resulted in an increased daily water consumption per capita from 82 L per day in 
1968 to 550 L per day in 2010, a rate that is considered one of the highest around the world [7]. Note 
that the UAE is located in an arid climate region with limited freshwater resources and scarce rainfall 
[8,9]. Thus, the UAE depends mainly on water desalination to meet the water demand of the 
population, a process which entails high cost and negative environmental impacts [10]. The UAE 
vision for 2021 and 2071 is to be one of the best countries in the world [11,12]. One of the challenges 
to realize that vision is to ensure sufficient water supply to its population. Dams represent one of the 
critical assets for water storage. In case of an occurrence of a dam breach or break, massive losses in 
life and economy, as well as a negative impact on the environment, could happen [13–15]. Therefore, 
the problem of selecting best suitable sites to build new dams is crucial. In this research, we focus on 
developing a technique to ascertain the most suitable locations for building new dams in the UAE. 

Generally, dam site selection is conducted by traditional methods, such as conventional 
decision-making techniques or according to political interests [16]. However, remote sensing (RS), 
geographic information systems (GIS) and machine learning (ML) techniques are recently emerging 
as some of the most appropriate approaches to understand dam sites. In recent years, the 
advancement in satellite and computational power has enhanced the opportunity to manage different 
hydrologic parameters and terrain characteristics. RS and GIS offer a high adaptability of joining of 
spatial information with different progressed numerical, factual and decision-making strategies, such 
as fuzzy logic, analytical hierarchal processes (AHP), Boolean logic, weighted overlay analysis, multi-
criteria evaluation techniques and artificial intelligence [17]. 

A contemporary study for dam site selection has been conducted at the Greater Zab Region in 
Northern Iraq [18]. The study has considered several spatial layers like the geological formation, soil 
type, fault line, tectonic line, altitude, slope, rainfall data, water discharge, land use/cover, road 
network and material used for dam construction. These layers were integrated with AHP and fuzzy 
logic techniques to determine the appropriate location for dam site construction. Four major sites 
were identified as suitable locations for intermediate-to-large dam construction areas. Nevertheless, 
the fuzzy model produced suitable results for clustered areas. Another study conducted for the Boda-
Kalvsvik Island in Sweden implemented the weighted overlay analysis technique on layers including 
precipitation, evapotranspiration, potential recharge, piezometric level and geological and 
geomorphological layers [19]. The study was validated using the topographic wetness index method 
and groundwater balance. The method resulted in favour of regions with humid climates with 
limited natural water storage capacities. Many other investigations on dam site selection and 
suitability have also been conducted using a variety of multi-criteria decision-making (MCDM) 
techniques [20,21]. To highlight key factors that affect dam site suitability, we investigated the most 
commonly used factors in the literature (Table 1). The following are the most utilized factors: 
topographical condition, geological and geomorphological structure, foundation condition, 
physiographic unit, availability of materials, spillway size and location and runoff capacity of 
streams. Other factors include construction cost and maintenance, as well as the dam life and 
aesthetics.  
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Table 1. Review of recent dam site suitability studies. 

References Study Area Utilized Factors Utilized Technique 
Noor et al. 
[18] 

Greater Zab river, 
Northern Iraq 

Rainfall, geology, soil type, 
fault line, tectonic line, 
altitude, slope, road 
network, LU/LC*, material 
used for dam construction 

analytical hierarchal processes 
(AHP) and fuzzy logic 

Sayl et al. 
[22] 

Western dessert of Iraq Western dessert of Iraq 
elevation area volume curve method 

Jamali et 
al. [23] Northern Pakistan Northern Pakistan 

analytic hierarchy process (AHP) 
and the factor interaction method 
(FIM) 

Jamali et 
al. [19] 

Boda-Kalvsvik, Sweden Boda-Kalvsvik, Sweden 
water balance calculations and 
overlay analysis 

Weerasing
he et al. 
[24] 

Sao-Francisco and Nile 
catchments 

Sao-Francisco and Nile 
catchments 

soil conservation service curve 
number (SCS-CN) equation, 
compound weighted index (CWI) 
and multi criteria evaluation 
techniques 

Pandey et 
al. [25] 

Karso, Hazaribagh, 
India 

Karso, Hazaribagh, India 
overlay analysis (Integrated Mission 
for Sustainable Development (IMSD) 
guidelines) 

Singh et al. 
[26] 

Soankhad watershed, 
Punjab, India 

Soankhad watershed, 
Punjab, India 

overlay analysis (IMSD guidelines) 
and Water balance study 

Kumar et 
al. [17] 

Bakhar watershed of 
Mirzapur District, Uttar 
Pradesh, India 

Bakhar watershed of 
Mirzapur District, Uttar 
Pradesh, India 

weighted overlay analysis (IMSD 
and Indian National Committee of 
Hydrology (INCOH)) 

Das et al. 
[27] 

Himalayan region, 
India 

Himalayan region, India 
calculation of available flow of water 

Ratnam et 
al. [28] 

Yarafeni watershed in 
Midnapur district, 
West Bengal, India 

Yarafeni watershed in 
Midnapur district, West 
Bengal, India 

sediment yield index (SYI) and 
weighted overlay analysis 

Baban et al. 
[29] 

Langkawi Island, 
Malaysia 

Langkawi Island, Malaysia 
weighted overlay analysis 

LU/LC: Land use and land cover. 

This research utilised weighted overlay analysis supported by state-of-the-art ML techniques to 
create a dam site suitability map (DSSM) for Sharjah, the third largest emirate. Towards generating 
the DSSM, nine factors were developed: geology, geomorphology, drainage stream density (DSD), 
slope, elevation, rainfall, curve number (CN) (representing runoff), total dissolved solids (TDS) and 
major fractures. The geo-hydrological aspects of Sharjah in relation to dam site suitability and the 
most influential factors for such suitability were investigated. This study aims to recognise suitable 
regions for the development of dams by utilising remote sensing, GIS, AHP and the ML system. AHP 
and ML were applied to select suitable sites for dam construction on selected streams. The objectives 
of this research were as follows: 

• Investigate suitable zones for constructing a dam in Sharjah in the light of managing replenished 
water resources 

• Identify and map related geological, geomorphological and climatological factors and discover 
their weighted commitment in deciding the most suitable site for dam construction 

• Employ ML techniques, AHP and a weighted overlay analysis to prepare a DSSM 
• Perform a sensitivity analysis to establish factors that determine the suitable locations for dam 

construction 
• Validate the outcome of the DSSM through already existing dams in Sharjah 

2. Study Area 
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The UAE is located in the Middle East and borders the Gulf of Oman and the Arabian Gulf 
between Oman and Saudi Arabia (Figure 1). The UAE is situated in an arid tropical zone with an 
annual precipitation of 110–150 mm [30]. The country records maximum temperatures of 45–50 °C in 
the desert, has long-term (2003–2017) average relative humidity of approximately 80% and has high 
pan evaporation ranging from 8 to 12 mm/day [8,21]. The development of the UAE has peaked within 
the past 15–20 years as a young developed country, along with a rise in its gross domestic water 
demand from 1970 to 2018. The per capita water consumption of the country is one of the highest in 
the world with 550 L per day [7]. 

This study focuses on Sharjah, the third largest emirate in the UAE. Sharjah covers an area of 
2590 km2, which is approximately 3.3% of the total area of the UAE. Sharjah shares a boundary on 
both coasts: The Arabian Gulf in the west and the Gulf of Oman in the east. Large parts of the emirate 
comprise desert regions, deep soil formed in eolian sands and some agricultural areas. Sharjah also 
has marshes and acacia forests. The annual rainfall of Sharjah is approximately 106.9 mm [9]. The 
southern part of Sharjah comprises a continuous, well-watered fertile littoral strip known as the 
Batinah Coast that runs between the mountains and the sea. The total population of Sharjah according 
to the Department of Statistics and Community Development is approximately 1,628,932 [31].  

 
Figure 1. Study Area.  

3. Methodology 

Figure 2 illustrates the methodology developed to identify the best suitable dam location in 
Sharjah. Firstly, we collected the raw data required to develop the thematic layers of the study area. 
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Data from a suitable imagery programme and the historical records of climatological data were 
necessary. Furthermore, field data collection was conducted to measure in-situ groundwater quality. 

The second stage focused on processing the raw data to generate the thematic layers. Nine 
thematic layers were developed for the study area: precipitation, DSD, geomorphology, geology, CN, 
total dissolved solid, elevation, slope and major fracture. Many processing techniques and statistical 
algorithms were utilised in a spatial context to develop these thematic layers. The next subsection 
presents details about each thematic layer. 

In the third stage, all the thematic layers were processed to model and map the best suitable dam 
location in Sharjah. Since the units of each thematic factor are different, combining and fusing the 
thematic factors is not applicable. Therefore, all the thematic layers were standardized by 
reclassifying each into five classes through the natural breaks (Jenks) technique [32]. Each class was 
ranked in a scale from one to nine according to its relation to a suitable location for dam construction. 
Two main approaches were followed to determine the weighting, i.e., the AHP and ML techniques. 
AHP modelling depends mainly on determining the weight in line with the literature and expert 
opinion. Conversely, the ML approach depends on ground truth data about the available 
groundwater in the study area [8]. The resulted weighting of the two approaches was moderated to 
obtain a new thematic layer weighting. The new weighting was utilised to generate the DSSM for 
Sharjah following the equation below: 

∈
×

   
GPM =   k k

k f
W r  (1) 

where k = element of the thematic layer set, f = set of all the thematic layers, W = weight of each 
thematic layer and r = rating of the subclasses of each thematic layer. 

Subsequently, the DSSM was validated following existing dams in the study area, where the 
weighting may be fine-tuned to achieve accuracy. The drainage streamlines (vector format) were 
finally overlaid at the DSSM to select the best locations for dams in Sharjah. 

 
Figure 2. Methodology Framework. 
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3.1. Data Used 

This study adopted nine parameters for determining suitable sites for dam construction: 
precipitation, drainage density, geomorphology and geology, CN, TDS, slope, elevation and distance 
from major fractures. The brief descriptions of the aforementioned parameters for locating suitable 
sites for dam construction are indicated below: 

Precipitation: Figure 3a depicts the annual total rainfall data obtained from the National Centre 
of Meteorology, UAE, for the period of 2003–2017 to prepare the rainfall map. For Sharjah, the 
recorded amount varied from 73 mm as the minimum annual total to 92 mm as the maximum annual 
total. Precipitation is high in the north-eastern part of the study area. High precipitation zones are 
considered appropriate for identifying suitable sites for dam construction. The inverse distance 
weighted (IDW) interpolation method was applied to identify the spatial layer. The IDW equation is 
as follows: 𝑍 =  ∑ 𝑧 × 𝑑∑ 𝑑  (2) 

where Z0 is the estimation value of variable z in point i, zi is the sample value in point i, di is the 
distance of the sample point to the estimated point, N is the coefficient that determines weight 
according to distance, and n is the total number of predictions for each validation case [33]. 

Hydrology and drainage stream density: Hydrology plays a vital role in understanding the 
structure of available water resources: surface and sub-surface resources. Streams originate from the 
north-eastern part of the UAE and flow towards the western part to join the sea. Thus, first-order 
streams are located at the eastern part, and a higher order of streams is located at the western part 
(Figure 3b). For locating suitable dam sites, first-order streams are generally considered [18]. DSD is 
the total length of streams of all orders divided by the area of the drainage basin and indicates the 
closeness of the spacing of channels [23]. A major indicator of percolation rate is lithology, which 
determines the quality of a drainage network. The structure of a drainage network helps gauge the 
characteristics of a water holding zone [19]. The drainage density of the study area ranges from 0 to 
0.58 per km2 (Figure 3c). The suitability of locating a dam site is directly proportional to the drainage 
density because of its relationship with surface runoff and permeability. A high drainage density 
indicates a high prospect of groundwater and increased suitability for locating a dam site [25]. The 
drainage streams and basins should also be mapped for preparing the drainage density raster layer. 

Geomorphology: This thematic layer has seven classes: Fan deposit, high and low dunes, 
mountain, sand, urban areas and vegetation (Figure 3d). It is important to mention that the urban 
areas class was considered within the geomorphology layer as it describes the physical feature 
(mainly asphalt for roads and concrete for buildings) for the urban centre in Sharjah. Urban areas are 
dominant along the western part of the study area near the shores [8]. The eastern part of the study 
area is mostly covered by fan deposits, whilst the middle part is predominantly covered by low and 
high dunes. 

Geology: The produced geology layer consists of alluvium, gabbro, limestone, metamorphic, 
ophiolite and sand classes (Figure 3e). As the map indicates, most of the study area consists of sand. 
The profusion of alluvium and sand in the study area allows for suitable locations for dam 
construction. 

Curve number: The CN is used to predict direct runoff or retention. The CN depends on the soil 
type, the effects of land use and cover and the hydrogeological condition. For this study, CNs were 
obtained for the mentioned conditions (Figure 3f). A high CN indicates low suitability for locating 
dam sites. 

Total dissolved solids: TDS is a fundamental parameter to assess water quality. A high TDS 
value indicates high turbidity and unsuitability for potable use. Given the high salinity of the region, 
the sea water of the Arabian Gulf represents a major hurdle in its use for potable drinking conditions. 
For the study area, TDS was measured in parts per million (ppm). The TDS values range from 657 to 
2530 ppm for Sharjah (Figure 3g). The map was prepared by referring to the values of TDS from the 
UAE Ministry of Environment and Water (2015). 
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Elevation: A digital elevation model (DEM) with a resolution of 30 m was acquired for Sharjah, 
and the elevation raster ranged from 0 to 413 m (above sea level) (Figure 3h). The DEM influences 
the dam’s best location since it affects the water accumulation and movement [34]. A low elevation 
has been considered suitable for dam site construction since the possibility of accumulating 
precipitated water as well as groundwater is higher at a lower elevation [8,35]. 

Slope: The slope degree parameter affects water velocity for surface and ground water. The 
lower the slope, the higher the possibility of water accumulation. As with elevation, a slope map was 
also obtained from the DEM at a 30 m resolution (Figure 3i). For Sharjah, the slope ranged up to 58 
degrees (Figure 3i). Water velocity is directly proportional to slope. A slope under 5% is suitable for 
the water holding capacity of the proposed dam construction [22]. 

Major fracture Euclidean distance: For the Northern UAE, major fractures are mostly 
concentrated in the mountainous regions (Figure 3j). The stream flow depends on the major fracture 
and moves from higher to lower elevations. A distance of 100 m from the tectonic faults and fractures 
should be at least considered for considering suitable locations for dam construction. Areas with 
faults should be excluded from the consideration of dam site suitability [18]. 
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(g)  (h)  

  
(i)  (j)  

Figure 3. Major thematic layers. (a) Precipitation; (b) Streams & Basins; (c) Drainage Stream Density; 
(d) Geomorphology; (e) Geology; (f) Curve Number; (g) Total Dissolved Solid (TDS); (h) Elevation; 
(i) Slope; (j) Major Fracture Euclidian Distance. 

3.2. Analytical Hierarchal Process 

AHP is one of the MCDM aids. Many researchers have utilised AHP for various domains [36–
38]. Locating a suitable site for dam construction is one such domain where AHP has been applied 
for investigations. Determining the importance of parameters is the main task in AHP. Weight 
determination is discussed below. 
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3.2.1. Assigning Weights to the Parameters 

Weighing the parameters was conducted in a square framework by assigning a value of 1 as its 
diagonal element. The weightage of these parameters was then decided from the eigenvalue and the 
corresponding right eigenvector of the AHP correlation grid [39]. Each parameter was assigned 
weights according to their sub-criteria (Table 2). 

Table 2. Ranks and weights for thematic layers and their subclasses. 

Thematic Layer Thematic Layer Weight Classes Ranks 

Precipitation 20% 

74.21–77.56 1 
77.56–79.65 2 
79.65–81.89 3 
81.89–83.9 4 
83.9–85.61 5 

85.61–87.25 6 
87.25–89.19 7 
89.19–92.77 8 

Drainage Stream Density 20% 

0–0.14 1 
0.14–0.23 3 
0.23–0.32 5 
0.32–0.42 7 
0.42–0.58 9 

Geomorphology 15% 

Fan deposits 9 
High dunes 7 

Sand 6 
Low dunes 5 
Vegetation 4 
Mountains 2 

Urban 1 

Geology 10% 

Alluvium 9 
Sand 7 

Limestone 4 
Opholitie 3 
Gabbro 2 

Metamorphic 1 

Curve Number 10% 

Sand 9 
Faults 7 

Vegetation 6 
Gravel & Urban 4 
Sediment rocks 3 

Desert roads/Tracks 2 
Basements/Highways 1 

Total Dissolved Solids 10% 

658.01–1090.58 9 
1090.58–1479.19 7 
1479.19–1846.67 5 
1846.67–2203.11 3 
2203.11–2530.26 1 

Elevation 5% 

0–55 9 
55–109 7 
109–157 5 
157–203 3 
203–413 1 

Slope 5% 

0–2.69 9 
2.69–5.02 7 
5.02–8.60 5 
8.60–18.05 3 

18.05–57.15 1 
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Major Fracture Euclidean Distance 5% 

684–14,797.18 9 
14,797.18–24,897.98 7 
24,897.98–36,770.96 5 
36,770.96–50,100.38 3 
50,100.38–67,522.27 1 

3.2.2. Consistency Ratio 

The consistency index, randomised index and consistency ratio (CR) were calculated to evaluate 
the consistency of the square matrix. CR should be under 10% to maintain the consistency of the 
matrix [39]. The CR can be derived using the following equations: 

maxCI = 
1
n

n
λ −

−
 (3) 

1.98 ( 1)RI = × −n
n

 (4) 

CICR = 
Random Consistency Index (RI)

 (5) 

where CI is the consistency index, RI is the randomised index, CR is the consistency ratio, and n is 
the order of the compression matrix. Table 3 presents the pairwise comparison matrix of the study. 
The CR was calculated as 2% and thus fulfils the criteria to be considered as a good model. 

Table 3. Pairwise Comparison Matrix. 

 Precipitati
on 

Drainage Geomor
phology 

Geolo
gy 

Curve 
Number 

TDS Elevatio
n 

Slope MFE
D 

Precipitation 1.000 1.000 1.333 2.000 2.000 2.000 4.000 4.000 4.000 
Drainage 1.000 1.000 1.333 2.000 2.000 2.000 4.000 4.000 4.000 

Geomorphology 0.750 0.750 1.000 1.500 1.500 1.500 3.000 3.000 3.000 
Geology 0.500 0.500 0.667 1.000 1.000 1.000 2.000 2.000 2.000 

Curve Number 0.500 0.500 0.667 1.000 1.000 1.000 2.000 2.000 2.000 
TDS 0.500 0.500 0.667 1.000 1.000 1.000 2.000 2.000 2.000 

Elevation 0.250 0.250 0.333 0.500 0.500 0.500 1.000 1.000 1.000 
Slope 0.250 0.250 0.333 0.500 0.500 0.500 1.000 1.000 1.000 

Major Fracture 
ED * 

0.250 0.250 0.333 0.500 0.500 0.500 1.000 1.000 1.000 

* ED: Euclidean Distance. 

3.3. Machine Learning 

ML techniques use computational algorithms and statistical models to develop models without 
any predetermined model. In other words, ML teaches the computer to do what humans naturally 
do, i.e., learn from experience and examples. As the quality of the experience and the examples 
increase, the better the ML achieved models become. ML techniques are of two types: supervised 
learning and unsupervised learning. The former tackles regression and classification problems, and 
the latter deals with clustering problems only. In this paper, we utilised three supervised ML 
techniques to classify the best location to build new dams in Sharjah. The techniques include random 
forest (RF), gradient boosted trees (GBT) and support vector machine (SVM). The RF technique is an 
advanced version of the decision tree method that uses a tree-like model structure for classification 
prediction through a multiple splitting process. The RF is an ensemble ML that consists of multiple 
tree models to improve prediction accuracy. The GBT is an ensemble tree-like model that consists of 
two steps: Firstly, it utilises the subsets of the original database to generate a series of averagely 
performing models. Secondly, it ‘boosts’ their performance by combining them using a certain cost 
function. Finally, the SVM technique uses kernel functions to transform the input data into a high 
dimensional feature space, where linear modelling is then employed to overcome any complex 
nonlinear relationship [40]. SVM is best known for its capacity in classification problems [41]. 
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We established four databases ranging from 1000 to 2500 data sample across the study area to 
train the ML algorithms in this research. The independent parameters are the thematic layers 
developed in this study, and the dependent parameter was the potential groundwater. The 
groundwater potential map (GPM) was developed in an early study for the Northern Emirates [8]. 
The GPM data considered in this study were categorised into three groups: high, medium and low. 
All ML modelling was conducted utilizing the RapidMiner software (https://rapidminer.com/). Initial 
modelling revealed that the database with 2000 data samples attained the best accuracy. Therefore, 
all the results for the ML techniques, described in this section, are based on the 2000-sample database. 

Each ML model has been fine-tuned to achieve its best accuracy. The best RF model has trees of 
100 with a maximum depth of seven. Conversely, the best GBT has trees of 100 with a maximum 
depth of two. Finally, the best-scored SVM had a gamma of 0.001 and C of 100. Overall, RF had the 
best accuracy relative to the other techniques (Table 4). RF reached 76.5% accuracy with a standard 
deviation of ±2.4%. The accuracy rates of the GBT and the SVM were 76% and 72.7%, respectively. 
Table 5 shows the confusion matrix accuracy of the RF technique. The ‘True High’ accuracy reaches 
almost 80%. 

Table 4. Overall accuracy of attempted machine learning (ML) models. 

ML Model Accuracy Standard Deviation 
Random Forest 76.5 ±2.4% 

Gradient Boosted Trees 76 ±0.8% 
Support Vector Machine 72.7 ±1.3% 

Table 5. Confusion matrix of the random forest (RF) model. 

 True “High” True “Medium” True “Low” Class Prediction 
Predicted “High” 103 30 2 76.30% 

Predicted “Medium” 23 205 38 77.07% 
Predicted “Low” 3 33 113 75.84% 
Class Prediction 79.84% 76.49% 73.86%  

Figure 4 presents the weight of each inputted parameter (the thematic layers) with respect to the 
dependent parameter (GPM) according to feature engineering techniques. The weights are generally 
comparable with the AHP weights that are based on the literature and expert opinions. However, a 
key difference occurs. The slope parameter from the ML received zero weight, thereby indicating that 
its presence is unimportant. By contrast, the slope from the AHP attained a 5% weighting. Given our 
knowledge of the study area, we assert that the slope is excluded in the ML weighting process because 
the variation in the slope within the study area is almost negligible. 
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Figure 4. Thematic layer weighting using ML techniques. 

4. Results and Discussions 

Table 6 shows the recommended final weights to generate the DSSM after revising and 
moderating the weights of the ML and the AHP. The revised weighting attempted to balance and 
mitigate any over- or under-estimation of the thematic layers that influence the dam suitability 
location. 

Table 6. Revised parameters weighting of the thematic layers. 

Factor Final Weight 
Precipitation 18 

Drainage 18 
Geomorphology 13 

Geology 10 
Curve Number 12 

TDS 11 
Elevation 9 

Slope 0 
Major Fracture Euclidean Distance 9 

Figure 5 shows the DSSM processed using the revised weights. The DSSM was divided into five 
classes: very high, high, medium, low and very low. Three locations were considered for dam 
construction on the basis of spatial analysis. The first involves the very high areas in the map which 
are mainly located on the north-eastern part of Sharjah. The two other areas are the highly and 
moderately suitable locations. These locations were further investigated through a field visit to 
finalise the location for dam construction. Existing dams located within the study area and their 
surroundings were superimposed over the DSSM to investigate and validate the obtained DSSM 
(Figure 5). Table 7 presents the storage capacity of each existing dam. Given the information in Table 
7 and Figure 5, the following points can be made: 

• The very high zone is located in the north-eastern part of Sharjah. The properties of the input 
parameters include a slope at approximately 3%, elevation at 130 m, sand geology, high dune 
geomorphology, drainage density of 0.21 per km2 and precipitation of approximately 85–90 mm 
for the categorised region. The neighbouring region of this site has already been used for 
constructing the Falajalamala Dam (ID 11) which lies within the Umm Al-Quwain Emirate and 
has a storage capacity of 0.068 million m3. 

• The eastern part of Sharjah has been categorised as a highly suitable location because of its 
satisfactory drainage and geology properties. Conversely, the western part of Sharjah has been 
categorised as a highly or moderately suitable location for dam construction by the AHP model. 

• Three locations were proposed for constructing a dam: Locations A, B and C. Locations A and B 
have been categorised as very highly suitable regions according to the AHP model. Location C 
falls under a highly suitable region for dam construction. 

• The Shokah dam (ID 7) with a storage capacity of 0.275 million m3 has already been constructed 
on the first-order stream of the proposed Location A. Thus, given all the factors, the site was 
proposed at the conjunction of the second- and third-order streams. Location A receives 
approximately 84 mm of rainfall and has a high dune geomorphology and alluvium geology. Its 
drainage density is near to 0.34 per km2, and its TDS ranges within 1400–1430 mg/L. 

• Location B was proposed at the conjunction of the second- and third-order stream. The Koderah 
(ID 10) dam has already been constructed in the adjacent stream, so a parallel conjoint point was 
selected for dam construction. The average rainfall for the proposed location is approximately 
85 mm, the drainage density is 0.44 per km2, TDS is 1550 mg/L and elevation is 122 m. 
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• Location C was proposed at the conjunction of the third- and fourth-order streams which falls 
into a highly suitable region. The area has an observed rainfall of 82 mm, a drainage of 0.4 per 
km2, a high dune geomorphology, and sand as the geological structure. 

Validation was conducted using pre-existing dams to analyse the accuracy of both models (AHP 
and ML) adapted to prepare the DSSM. Dams within Sharjah and the surrounding state border were 
considered. As per the models and the pre-existing dams, 83.3% of the dams fall under high and 
moderate zones, thereby validating our approach and study. Four dams were constructed within the 
Sharjah emirate. Amongst them, three were constructed within moderately suitable regions. 
Moreover, one was constructed within a highly suitable region. This study was conducted and 
validated, so that additional dams within highly and moderately suitable locations can be considered 
within the Sharjah emirate to maintain and fulfil the water needs and in light of sustainable 
development. 

Table 7. Dam storage capacity for accuracy assessment. 

ID Dam Name Emirate Type 
Height 

(m) 
Length 

(m) 
Volume 
(mcm) 

Construction 
Year 

0 Shwaib Dam Abu Dhabi Concrete 11 3000 31 NA 
1 Fili 2 Dam Sharjah Earth Rockfill 2.5 1261 0.125 2002 
2 Fili 1 Dam Sharjah Earth Rockfill 2.5 1536 0.25 2002 
3 Buraq Dam Ras Al-Khaimah Earth Rockfill 9 326 0.5 2001 
4 Nasas Dam Sharjah Earth Rockfill 10 284 0.43 2002 
5 Modenah Dam Ras Al-Khaimah Earth Rockfill 9.6 300 0.438 2002 
6 Al Layat Dam Ras Al-Khaimah Earth Rockfill 5 50 0.058 2001 
7 Shokah Dam Ras Al-Khaimah Concrete 13 107 0.275 2001 
8 Qoshesh Dam Ras Al-Khaimah Earth Rockfill 12 200 0.4 2002 
9 Qasaa Dam Ras Al-Khaimah Earth Rockfill 10.5 490 1 2002 

10 Khoderah Sharjah Earth Rockfill 6 1064 0.276 2013 

11 
Falajalm’ala 

Dam 
Umm Al-
Quwain 

Earth Rockfill 6 675 0.068 2013 
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Figure 5. Dam site suitability map with dams and streams. 

5. Conclusions 

Identifying potential locations for dam construction is an important strategic initiative for water 
conservation in any country, particularly in those located in arid and semi-arid regions. In this study, 
a hybrid algorithm that combines GIS, AHP and ML was developed to identify the best location to 
construct new dams in one of the major cities in the UAE. Nine thematic layers were considered to 
prepare the DSSM, including precipitation, DSD, geomorphology, geology, CN, TDS elevation, slope 
and major fracture. Two approaches were followed to determine the influence of each factor: one 
based on the literature and expert opinion following the AHP techniques and the other based on 
ground truth groundwater mapping following ML techniques. The weighting according to the two 
approaches was moderated into a new revised weighting. 

Precipitation and drainage density are the most influential factors for the DSSM. By contrast, 
slope was the least influential as the variation in the slope across the study area was minimal. The 
developed DSSM was verified using existing dams, and approximately 83.3% of such dams are 
located in high and medium zones. The result of this research provides a guideline for researchers 
and concerned engineers in identifying the best suitable location for new dam construction in the 

350,000 400,000 

350,000 400,000 

27
5,

00
0 

28
0,

00
0 

27
5,

00
0 

28
0,

00
0 



Water 2019, 11, 1880 16 of 18 

 

study area. The developed technique can be utilised alongside traditional approaches to ascertain 
new locations for dam construction as it increases efficiency and saves time and resources. Future 
research could focus on comparing other decision-making techniques versus ML algorithms. 
Moreover, additional work could be implemented to link the optimal capacity of the newly proposed 
dam with GIS and RS. 

Author Contributions: R.A.-R., A.S., A.G.Y., and A.I., developed the concept and the methodology of the study. 
R.A.-R., S.M., and M.B.A.G. conducted the spatial processing to develop the required thematic layers. R.A.-R., 
A.S., A.G.Y., A.I., and S.M. carried out the AHP weighting approach. R.A.-R. and M.A.K. conducted the ML 
techniques. R.A.-R., A.S., A.G.Y., and A.I., contributed in selecting the best location for building new dams. R.A.-
R., A.G.Y., S.M., and M.A.K. prepared and reviewed the manuscript. 

Funding: The project was jointly funded by the University of Sharjah (UoS) and the Sharjah Electricity and Water 
Authority (SEWA), grant number: 1602040133-P under the SEWA Chair for Energy & Water.  

Acknowledgments: The authors would like to thank Prof. Hamid Al Naimy, Chancellor of UoS, and Dr. Rashid 
Alleem, Director of SEWA, for facilitating the study.  

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Veldkamp, T.I.E.; Wada, Y.; Aerts, J.C.J.H.; Döll, P.; Gosling, S.N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; 
Pokhrel, Y.; et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 
21st century. Nat. Commun. 2017, 8, doi:10.1038/ncomms15697. 

2. Al-Ruzouq, R.; Hamad, K.; Shanableh, A.; Khalil, M. Infrastructure growth assessment of urban areas based 
on multi-temporal satellite images and linear features. Ann. GIS 2017, 23, 183–201, 
doi:10.1080/19475683.2017.1325935. 

3. Hoekstra, A.Y.; Chapagain, A.K. Water footprints of nations: Water use by people as a function of their 
consumption pattern. In Integrated Assessment of Water Resources and Global Change: A North.-South. Analysis; 
Springer: Berlin/Heidelberg, Germany, 2007; pp. 35–48, doi:10.1007/978-1-4020-5591-1-3. 

4. Gallego-Ayala, J.; Juízo, D. Strategic implementation of integrated water resources management in 
Mozambique: An A’WOT analysis. Phys. Chem. Earth 2011, 36, 1103–1111, doi:10.1016/j.pce.2011.07.040. 

5. Aldaya, M.M.; Allan, J.A.; Hoekstra, A.Y. Strategic importance of green water in international crop trade. 
Ecol. Econ. 2010, 69, 887–894, doi:10.1016/j.ecolecon.2009.11.001. 

6. The World Bank United Arab Emirates Data. Available online: http://data.worldbank.org/country/united-
arab-emirates (accessed on 30 April 2017). 

7. UAE Ministry of Environment and Water. State of Enviornment Report United Arab Emirates (English Version); 
UAE Ministry of Environment and Water: Dubai, UAE, 2015. 

8. Al-Ruzouq, R.; Shanableh, A.; Merabtene, T.; Siddique, M.; Khalil, M.A.; Idris, A.E.; Almulla, E. Potential 
groundwater zone mapping based on geo-hydrological considerations and multi-criteria spatial analysis: 
North UAE. Catena 2019, 173, 511–524, doi:10.1016/j.catena.2018.10.037. 

9. Shanableh, A.; Al-Ruzouq, R.; Yilmaz, A.G.; Siddique, M.; Merabtene, T.; Imteaz, M.A. Effects of land cover 
change on urban floods and rainwater harvesting: A case study in Sharjah, UAE. Water 2018, 10, 631, 
doi:10.3390/w10050631. 

10. Rizk, Z.S.; Alsharhan, A.S. Water resources in the United Arab Emirates. Dev. Water Sci. 2003, 50, 245–264, 
doi:10.1016/S0167-5648(03)80022-9. 

11. UAE The Cabinet. Mohammed Bin Rashid Launches Five-Decade Government Plan ‘UAE Centennial 
2071′. Available online: https://uaecabinet.ae/en/details/news/mohammed-bin-rashid-launches-five-
decade-government-plan-uae-centennial-2071 (accessed on 18 July 2019). 

12. UAE Government. UAE Vision 2021 Available online: http://www.vision2021.ae/en (accessed on 18 July 
2019). 

13. Li, Z.; Li, W.; Ge, W. Weight analysis of influencing factors of dam break risk consequences. Nat. Hazards 
Earth Syst. Sci. 2018, 18, 3355–3362, doi:10.5194/nhess-18-3355-2018. 

14. Wu, M.; Ge, W.; Li, Z.; Wu, Z.; Zhang, H.; Li, J.; Pan, Y. Improved set pair analysis and its application to 
environmental impact evaluation of dam break. Water 2019, 11, 821, doi:10.3390/w11040821. 

15. Ge, W.; Li, Z.; Liang, R.Y.; Li, W.; Cai, Y. Methodology for establishing risk criteria for dams in developing 
countries, case study of china. Water Resour. Manag. 2017, 31, 4063–4074. 



Water 2019, 11, 1880 17 of 18 

 

16. Jozaghi, A.; Alizadeh, B.; Hatami, M.; Flood, I.; Khorrami, M.; Khodaei, N.; Ghasemi Tousi, E. A 
Comparative Study of the AHP and TOPSIS Techniques for Dam Site Selection Using GIS: A Case Study 
of Sistan and Baluchestan Province, Iran. Geosciences 2018, 8, 494, doi:10.3390/geosciences8120494. 

17. Kumar, M.G.; Agarwal, A. K.; Bali, R. Delineation of potential sites for water harvesting structures using 
remote sensing and GIS. J. Indian Soc. Remote Sens. 2008, 36, 323–334. 

18. Mohammed, A.; Pradhan, B.; Mahmood, Q. Dam site suitability assessment at the Greater Zab River in 
northern Iraq using remote sensing data and GIS. J. Hydrol. 2019, 574, 964–979, 
doi:10.1016/j.jhydrol.2019.05.001. 

19. Jamali, I.A.; Olofsson, B.; Mo, U. Locating suitable sites for the construction of subsurface dams using GIS. 
Environ. Earth Sci. 2013, 70, 2511–2525, doi:10.1007/s12665-013-2295-1. 

20. Tsiko, R.G.; Haile, T.S. Integrating geographical information systems, fuzzy logic and analytical hierarchy 
process in modelling optimum sites for locating water reservoirs. A case study of the debub district in 
Eritrea. Water 2011, 3, 254–290, doi:10.3390/w3010254. 

21. Charabi, Y.; Gastli, A. PV site suitability analysis using GIS-based spatial fuzzy multi-criteria evaluation. 
Renew. Energy 2011, 36, 2554–2561, doi:10.1016/j.renene.2010.10.037. 

22. Sayl, K.N.; Muhammad, N.S. Estimation the physical variables of rainwater harvesting system using 
integrated GIS-based remote sensing approach. Water Resour. Manag. 2016, 30, 3299–3313, 
doi:10.1007/s11269-016-1350-6. 

23. Jamali, I.A.; Mörtberg, U.; Olofsson, B. A spatial multi-criteria analysis approach for locating suitable sites 
for construction of subsurface dams in Northern Pakistan. Water Resour. Manag. 2014, 28, 5157–5174, 
doi:10.1007/s11269-014-0800-2. 

24. Syst, E.; Attribution, C.C.; Weerasinghe, H. Water harvest-and storage-location assessment model using 
GIS and remote sensing. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 3353–3381, doi:10.5194/hessd-8-3353-2011. 

25. Pandey, A.; Chowdary, V.M.; Mal, B.C.; Dabral, P.P. Remote sensing and GIS for identification of suitable 
sites for soil and water conservation structures. Land Degrad. Dev. 2011, 22, 359–372. 

26. Darshdeep, J.P.S.; Litoria, S.P.K. Selection of Suitable Sites for Water Harvesting Structures in Soankhad 
Watershed, Punjab using Remote Sensing and Geographical Information System (RS & GIS) Approach—
A Case Study. J. Indian Soc. Remote Sens. 2009, 37, 21–35. 

27. Das, S.; Paul, P.K. Selection of site for small hydel using GIS in the Himalayan region of India. J. Spat. 
Hydrol. 2006, 6, 18–28. 

28. Ratnam, K.N.; Rao, V.V.; Amminedu, E. Check dam positioning by prioritization of micro-watersheds 
using SYI model and morphometric analysis—Remote sensing and GIS perspective. J. Indian Soc. Remote 
Sens. 2005, 33, 25. 

29. Baban, S.M.J.; Wan-yusof, K. Modelling optimum sites for locating reservoirs in tropical environments. 
Water Resour. Manag. 2003, 17, 1–17. 

30. Sherif, M.; Chowdhury, R.K.; Shetty, A.V. Rainfall and Intensity-Duration-Frequency (IDF) Curves in the 
United Arab Emirates. In Proceedings of the World Environmental and Water Resources Congress, 
Portland, OR, USA, 1–5 June 2014; pp. 2316–2325. 

31. World Population Review Sharjah Population 2019. Available online: 
http://worldpopulationreview.com/world-cities/sharjah-population/ (accessed on 21 July 2019). 

32. Chen, J.; Yang, S.; Li, H.; Zhang, B.; Lv, J. Research on geographical environment unit division based on the 
method of natural breaks (Jenks). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2013, 40, 47–
50, doi:10.5194/isprsarchives-XL-4-W3-47-2013. 

33. Setianto, A.; Triandini, T. Comparison of kriging and inverse distance weighted (IDW) interpolation 
methods in lineament extraction and analysis. J. Appl. Geol. 2013, 5, doi:10.22146/jag.7204. 

34. Mura, J.C.; Gama, F.F.; Paradella, W.R.; Negrão, P.; Carneiro, S.; de Oliveira, C.G.; Brandão, W.S. 
Monitoring the vulnerability of the dam and dikes in Germano iron mining area after the collapse of the 
tailings dam of fundão (Mariana-MG, Brazil) using DInSAR techniques with terraSAR-X data. Remote Sens. 
2018, 10, 1507, doi:10.3390/rs10101507. 

35. Datta, P.S.; Bhattacharya, S.; Tyagia, S.K. 18O studies on recharge of phreatic aquifers and groundwater 
flow-paths of mixing in the Delhi area. J. Hydrol. 1996, 176, 25–36, doi:10.1016/0022-1694(95)02784-X. 

36. Al-Ruzouq, R.; Hamad, K.; Dabous, S.A.; Zeiada, W.; Khalil, M.A.; Voigt, T. Weighted multi-attribute 
framework to identify freeway incident hot spots in a spatiotemporal context. Arab. J. Sci. Eng. 2019, 1–19, 
doi:10.1007/s13369-019-03881-z. 



Water 2019, 11, 1880 18 of 18 

 

37. Li, H.; Ni, F.; Dong, Q.; Zhu, Y. Application of analytic hierarchy process in network level pavement 
maintenance decision-making. Int. J. Pavement Res. Technol. 2018, 11, 345–354, doi:10.1016/j.ijprt.2017.09.015. 

38. Shi, S.J.; Shuo, L.X.; Cui, X.T. The Application of the Analytic Hierarchy Process (AHP) in Mine Geological 
Environment Evaluation. Appl. Mech. Mater. 2013, 416–417, 2020–2024, 
doi:10.4028/www.scientific.net/AMM.416-417.2020. 

39. Al-Ruzouq, R.; Shanableh, A.; Omar, M.; Al-Khayyat, G. Macro and micro geo-spatial environment 
consideration for landfill site selection in Sharjah, United Arab Emirates. Environ. Monit. Assess. 2018, 190, 
147. 

40. Naghibi, S.A.; Ahmadi, K. Application of support vector machine, random forest, and genetic algorithm 
optimized random forest models in groundwater potential mapping. Water Resour. Manag. 2017, 31, 2761–
2775, doi:10.1007/s11269-017-1660-3. 

41. Kenda, K.; Matej, Č.; Bogataj, M.; Senožetnik, M.; Klemen, K.; Pergar, P.; Laspidou, C.; Mladeni, D. 
Groundwater Modeling with Machine Learning Techniques: Ljubljana polje Aquifer. Proceedings 2018, 2, 
697, doi:10.3390/proceedings2110697. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


