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Abstract: As the largest freshwater storage in the world, groundwater plays an important role in
maintaining ecosystems and helping humans adapt to climate change. However, groundwater
dynamics, such as groundwater recharge, cannot be measured directly and is influenced by spatially
and temporally complex processes, models are therefore required to capture the dynamics and
provide scientific advice for decision-making. This paper developed, estimated and compared
the performance of linear regression, multi-layer perception (MLP) and Long Short-Term Memory
(LSTM) models in predicting groundwater recharge. The experimental dataset consists of time series
of annual recharge from the year 1970 to 2012, based on water table fluctuation estimates from
465 bores in the states of South Australia and Victoria, Australia. We identified the factors that
influenced groundwater recharge and found that the correlation between rainfall and groundwater
recharge was strongest. The linear regression model had the poorest fitting performance, with the
root mean squared error (RMSE) being greater than 0.19 when various proportions of training data
were considered. The MLP model outperformed the linear regression in the prediction capability,
achieving RMSE = 0.11 when 80% of training data was considered. The LSTM model was found
to have the best performance, whose root mean squared errors were less than 0.12 when various
proportions of training data were applied. The relative importance of influential predictors was
evaluated using the above three models.

Keywords: groundwater recharge; linear regression; multi-layer perception; Long Short-Term
Memory; influential predictors

1. Introduction

Robust groundwater recharge estimates are a primary requirement for effective management
of water resources and sustainable use of groundwater [1], which plays an important role in the
sustainable development of regional societies and economies [2,3]. Groundwater recharge is one of the
most difficult components of the water balance to estimate since it cannot be directly measured [4,5]
and it is influenced by spatially and temporally complex processes. Models are usually required to
help stakeholders understand groundwater recharge, identify the key processes influencing the rate of
groundwater recharge, and to inform pathways for sustainable water resources management [6].

Previous studies on groundwater recharge have outlined numerous methods for estimating
recharge, including chemical tracers [7–11], physical methods [12–17] and mathematical approaches [18,19].
The most widely used chemical tracer method is the chloride mass-balance method (CMB) [7–10],
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because it is conceptually simple and inexpensive to implement. However, the CMB method cannot
estimate the negative component (groundwater evapotranspiration) of net recharge [1], therefore
cannot be applied to groundwater discharge regions. Physical methods include water balance
estimation (WB) [15–17] and the water-table fluctuation method (WTF) [4,12–14]. The WB method
provides an estimate of net recharge—a combination of recharge to and evapotranspiration from
the groundwater, while the water fluctuation method provides an estimate of gross recharge [20].
These methods provide different estimates of recharge, as they include or neglect factors such as
runoff, evapotranspiration and changes in soil moisture, and represent either instantaneous estimates
or historical averages. In mathematical simulation and statistical methods, linear regression is often
adopted for estimating groundwater recharge [7,18,19]. Crosbie et al. [7] used regression kriging to
predict regional groundwater recharge across the Australian continent. Global regression equations
were applied to data-sparse areas while kriging of regression equation residuals was used for data-dense
areas. Fu et al. [18] also used multiple linear regression models together with 71 climate variables
and 17 non-climate variables to analyze the groundwater recharge in South Australia. Mathematical
simulation models can provide new insights into the factors that affect groundwater recharge.

Multiple linear regression (MLR) is a linear approach for modeling the relationship between input
parameters and resulting metrics. In recent studies, this method is applied to model and analyze
groundwater recharge. Mogaji et al. [21] estimated and predicted groundwater recharge rates based on
the relationship between rainfall and geophysical parameters in the southern part of Perak, Malaysia.
Figura et al. [22] predicted groundwater temperatures in several aquifers in Switzerland based on
the relationship between observed groundwater and regional air temperature. Ebrahimi et al. [23]
simulated groundwater level variations in the Qom plain, Iran based on linear regression, neural
network and support vector machine.

Artificial neural networks (ANNs) enhance the expressive ability of the system based on
the collection of connected nodes called artificial neurons. Shamshirband et al. [24] proposed a
multi-wavelet ANN for forecasting of chlorophyll a concentration. More recently, the ANN method
has been used to solve groundwater-related problems [25–27]. Mohanty et al. [28] applied the ANN
model to the weekly prediction of groundwater levels in various bores based on expert knowledge
and statistical analysis. The ANN was used to predict the groundwater level in a swamp forest in
Singapore based on rainfall and surrounding reservoir levels [29]. Pasandi et al. [30] applied the ANN
to estimating water-table depth in Shibkooh, Iran using various ancillary data, such as aquifer bed
elevation and aquifer thickness.

Recent studies have shown that deep learning has broad prospects in groundwater recharge. Deep
neural networks have been shown to be suitable for groundwater management. Kong-A-Siou et al. [31]
proposed a recurrent multilayer perceptron for predicting the water table level using rainfall and
pumping discharge data. Jiang et al. [32] applied a super-resolution convolutional neural network for
classifying paleovalleys, which are significant in groundwater exploration as productive aquifers are
often formed there. In recent years, computational advances in processing speed and data storage
mean that numerically intensive analyses are now possible at large scales and at a declining cost.
Models based on machine learning [33] and deep learning [34] are widely used in many fields, such as
forest cover projection [34], climate forecasting [35], flood and typhoon forecasting [36]. The typical
regression methods used in these studies, such as linear regression, neural networks, and deep learning,
have potential for improving the performance in predicting groundwater recharge dynamics.

The paper developed, estimated and compared the performance of linear regression, multi-layer
perception (MLP) and Long Short-Term Memory (LSTM) models in predicting groundwater recharge
based on water table fluctuation estimates from 465 bores from the year 1970 to 2012. The main purpose
of this study was to estimate groundwater recharge in an area straddling the South Australian and
Victorian border using the three machine learning methods. Machine learning, especially deep learning
approaches have the potential to improve the non-linear expression ability of a system, not only
improving the performance of the model, but enhancing the stability of the whole model. In Section 2,



Water 2019, 11, 1879 3 of 19

we describe the research domain and datasets used in this research. In Section 3, three time series
models adopted for predicting regional groundwater recharge are presented. In Section 4, we firstly
analyze the correlation coefficients of influential predictors for groundwater recharge estimation.
Subsequently, we examine the efficiency of the three models on temporal prediction of groundwater
recharge. Finally, we measure the relative importance of influential predictors using the three models.
The findings are discussed and summarized in Sections 5 and 6, respectively.

2. Datasets

2.1. Study Area

Our research area is located in the Otway and Murray Basins in south-eastern South Australia,
referred to as the South East (Figure 1). The area is characterized by the tertiary confined sands aquifer
known as the Dilwyn Formation covering an area of 29,000 km2 [4]. It is overlain by the unconfined
Gambier/Murray Group limestone aquifer. The area is relatively flat, with the highest altitude in
the north-east part of the region and land generally sloping downward south and west towards the
coast. The surface in places is undulating owing to the dune/flat systems from Pleistocene marine
transgressions [4].

The region has a typical Mediterranean climate, with hot dry summers and cool wet winters [37].
The highest annual precipitation is in the southern part of the region, gradually decreasing in the inland
area. Annual precipitation is less than annual potential evapotranspiration in almost all parts of the
study area [38]. Leaney et al. [39] found that based on the karstic features of the landscape, any runoff

could quickly infiltrate into the groundwater. Crosbie et al. [4] reported that most of the groundwater
recharge in the region occurred during winter due to the lower potential evapotranspiration and higher
rainfall at that time.
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Figure 1. The study area and 465 groundwater bores (The blue area in the red rectangle in the left panel
represents the study area in Australia; and the borders in the right panel represents the study area,
within which blue points represent the locations of 465 bores).

2.2. Groundwater Recharge and Potential Variable Datasets

In this study, time series data of annual groundwater recharge developed by Crosbie et al. [4] were
used. The groundwater level data in the experiment were evaluated from monthly or semi-annual
measurements and used to estimate groundwater recharge using the water-table fluctuation (WTF)
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method. This method provides an estimate of groundwater recharge through the analysis of water-level
fluctuations in groundwater observation wells [40,41].

The development of the groundwater recharge data used in the paper was fully described by
Crosbie et al. [42] and has been already applied in a few studies, such as [4,20]. It includes recharge
data from 465 groundwater bores, mostly located in South Australia with the remaining few in Victoria.
Figure 1 shows the location of the study area in Australia and the spatial distributions of the 465 bores.
The length of the time series on groundwater recharge varies from 3 to 41 years, based on the length of
the groundwater observation records. The dataset is suitable for regional long term average study
on groundwater recharge, because more than 70% of bores have an observation record of more than
15 years, and these bores are distributed throughout the study area. The atmospheric demand variables
and groundwater extraction dataset were also used for predicting groundwater recharge.

The SILO (Scientific Information for Land Owners) Drill data [43] used in this study consists of
0.05◦ gridded daily data of atmospheric variables across Australia, shown in Table 1. SILO datasets are
constructed from observational records provided by the Bureau of Meteorology (BoM), which have
been processed to infill missing data with interpolated values using smoothing splining and kriging
algorithms. Rainfall, maximum temperature and minimum temperature are directly measured variables,
while actual evaporation and Morton actual evapotranspiration were derived from pan evaporation and
other measured variables [43]. The data were all sampled daily from an interpolated dataset provided
by SILO [43]. All the data can be accessed at https://legacy.longpaddock.qld.gov.au/silo/about.html.

Table 1. Potential variables used in this study.

Data Type Explanation Variables Unit

Spatial-temporal

Regional annual rainfall Rainfall mm
Regional April-October rainfall Rainfall4-10 mm
Regional May-September rainfall Rainfall5-9 mm
Regional annual actual evaporation ET mm
Regional April-October actual evaporation ET4-10 mm
Regional May-September actual evaporation ET5-9 mm
Regional annual maximum temperature Maxtem ◦C
Regional April-October maximum temperature Maxtem4-10 ◦C
Regional May-September maximum temperature Maxtem5-9 ◦C
Regional annual minimum temperature Mintem ◦C
Regional April-October minimum temperature Mintem4-10 ◦C
Regional May-September minimum temperature Mintem5-9 ◦C
Regional annual Morton actual evapotranspiration AnnMact mm
Regional mean wet-spell length MeWS day
Regional max wet-spell length MxWS day
Regional mean dry-spell length MeDS day
Regional max dry-spell length MxDS day
Regional rainfall (≥1.0mm) days annually RD day
Regional rainfall intensity (Rainfall/RD) annually RI mm/day

Temporal Annual regional groundwater extraction Extraction mm

Actual evaporation was derived from Class-A pan evaporation. A monthly (or seasonal)
actual evaporation value was calculated by adding daily pan evaporation in the month (or season).
Similarly, annual actual evaporation was calculated by adding monthly actual evaporation values
over the corresponding year. The Morton actual evapotranspiration (MAET) was calculated by the
complementary relationship between areal potential evapotranspiration (APET) and point potential
evapotranspiration (PPET) in [44]. In Morton’s model [45], APET was estimated using modified
Priestley-Taylor equation [44] based on psychrometric constant, atmospheric pressure, slope of
saturation vapour pressure and net radiation at equilibrium temperature. Furthermore, PPET
was estimated by solving energy and vapour transfer equations simultaneously [44] based on air
temperature, equilibrium temperature, net radiation at air temperature, saturation vapour pressure
and actual vapour pressure respectively.

https://legacy.longpaddock.qld.gov.au/silo/about.html
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In this study, the data from 1970 to 2012 were considered. Maximum temperature and minimum
temperature were aggregated to a monthly average, and rainfall and evaporation were aggregated to
monthly totals. The monthly quantities were used to capture the seasonal features of various predictors
and their impacts on groundwater recharge. The study area in the paper was the same as that in
Fu et al. [18]. Fu et al. analyzed extreme rainfall variables containing 99th percentile of rainfall, 95th
percentile of rainfall and maximum daily rainfall. They found that there was no close relationship
between the above three finer scale predictors and groundwater recharge. Therefore, we did not
select finer scale predictors, except RD (rainfall days greater than 1 mm) and RI (rainfall intensity) for
groundwater recharge analysis. Compared with Fu et al. [18], the novel contribution of the paper was
introducing the machine learning and deep learning methods for predicting groundwater recharge.
In addition, 465 bores in the states of South Australia and Victoria were used in the paper instead of
426 bores only in the state of South Australia in Fu et al. [18].

The potential influential predictors are shown in Table 1. These are yearly time-series from 1970 to
2012 averaged over the study area. How these yearly predictors were calculated is described as follows.
Firstly, daily or monthly rainfall and evaporation values were added up over 12 months (such as Rainfall
and ET) or several months (such as Rainfall4-10 or ET5-9) for each year (from 1970 to 2012) in each
bore. Daily or monthly maximum and minimum temperature values were averaged across 12 months
or several months for each year in each bore. The average and maximum wet-spell as well as dry-spell
days were calculated in terms of corresponding daily values for each year in each bore. Subsequently,
the regional values for these predictors were averaged across all available bores for each year (for early
years, data for some bores are not available) in the case study area. The time series data of influential
predictors were obtained using the same method as that for the groundwater recharge. That is, if only
50 bores have groundwater recharge data for a specific year, then regional influential predictors for that
year were calculated only based on the locations of those 50 bores. This provides spatial consistency
between groundwater recharge values and the corresponding influential predictors. According to [18],
the seasonal rainfalls during the winter period (May to September) and summer period (April to
October) are critical for groundwater recharge prediction in the South East. The seasonal rainfall and
evaporation were included as influential predictors in the analysis, as were estimates of Annual Morton
actual evapotranspiration, mean and maximum wet/dry spell-length days, rainfall days and rainfall
intensity. Fu et al. [18] analysed the impacts of extreme rainfall variables (containing the 99th percentile
of rainfall, and the 95th percentile of rainfall and maximum daily rainfall) on recharge. Their results
showed that these predictors and groundwater recharge were not very relevant. Therefore, we did not
select many extreme rainfall predictors, except RD and RI for groundwater recharge analysis.

The dataset was developed based on measured groundwater extraction [46] from 2009 to 2013.
Groundwater extraction values during the period 1970–2008 were estimated based on the drill date for
the bore, and the assumption that the rate of average groundwater extraction for each bore was constant.

3. Methods

3.1. Linear Regression

In statistics, linear regression is a regression analysis approach for modeling the relationship
between various influential predictors and a resulting variable. That is, a linear model is established to
fit a relationship between the components of the explanatory predictor datasets and resulting variables.
The method of least squares is commonly used when linear regression is applied.

Given the dataset
{
yi, xi1, . . . , xip

}n

i=1
(i is the time index, starting from 1 to n) with p explanatory

predictors (xi1 to xip) and groundwater recharge observations (yi) containing n statistical values (here
n = 43 in our case as our time series data are available from 1970 to 2012, totaling 43 years), the model
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assumes that the relationship between the vector of explanatory predictors and resulting predicted
groundwater recharge is linear. Thus, the model has the following form:

hθ(xi) = θ0 + θ1xi1 + . . .+ θpxip = xi · θ, i = 1, . . . , n (1)

where hθ (xi) is the estimated resulting variable, xi (xi1 to xip) is the explanatory predictors, θ0 is
intercept, and θp is slope coefficients for each explanatory predictor.

In this paper, the explanatory predictors for the linear model are the 20 potential variables listed in
Table 1. The result variable hθ(xi) is the spatially averaged values of groundwater recharge. The whole
dataset have 43 groups of data from year 1970 to 2012. That is, i is the data subscript. The linear
relationship between explanatory predictors and groundwater recharge values are established when
the parameter matrix θ of the model is learned through a training process. The predicted values are
calculated from the learned parameter matrix. The fitting and error results are obtained from the
difference between predicted groundwater recharge using the linear regression model and observed
values of groundwater recharge.

3.2. Multi-Layer Perception Network

Multi-layer perception network (MLP) is a typical representative of feedforward artificial neural
networks. It consists of three parts: an input layer, a hidden layer and an output layer. All of nodes
in the hidden and output layers are neurons using a non-linear activation function. Furthermore,
the hidden layer can be composed of multiple layers of neurons. A supervised learning technique is
applied for training the MLP network, called backward propagation. The multiple layered structure and
non-linear activation function in the MLP network distinguishes it from linear regressions. Non-linear
data relationships can be distinguished by the MLP network.

The MLP network is sometimes referred to as traditional neural network, especially when it only
has a single hidden layer. In a MLP network, all the neurons in the hidden and output layers use
nonlinear activation functions to simulate the action potential of biological neurons. In this paper,
a Rectified Linear Unit (ReLU) function is used for the activation function in all of neurons using
Equation (2). Compared with logistic sigmoid function and hyperbolic tan function, the ReLU has
better performance. It can solve the problems of gradient explosion and gradient disappearance, and
maintains the convergence rate in a stable state.

ReLU(x) =
{

x i f x > 0
0 i f x ≤ 0

(2)

Since the network is fully connected, each node in one layer connects to every node in the next
layer with a certain weight. Therefore, the output c of each neuron is:

c = ϕ
(∑

iwiai + b
)

(3)

where ai and wi are the inputs and weights of the neuron respectively, b is the bias of the current neuron
and ϕ is the activation function ReLU.

In this paper, the MLP network is composed of three layers (an input, one hidden layer and
an output layer) of nonlinearly-activating modes (Figure 2). The input layer has 20 nodes, which
corresponds to the 20 potential influential predictors that are listed in Table 1. There are 100 neurons in
the hidden layer. All of the weights and biases of the linkages between the potential variables and
groundwater recharge values are updated when the parameters of the network are learned based on
the training data. Then the predicted values are calculated based on the learned weights and biases
when the input data is applied. The output layer only had one neuron, which represented the values
of groundwater recharge.



Water 2019, 11, 1879 7 of 19

Water 2019, 11, x FOR PEER REVIEW 7 of 19 

 

In this paper, the MLP network is composed of three layers (an input, one hidden layer and an 
output layer) of nonlinearly-activating modes (Figure 2). The input layer has 20 nodes, which 
corresponds to the 20 potential influential predictors that are listed in Table 1. There are 100 neurons 
in the hidden layer. All of the weights and biases of the linkages between the potential variables and 
groundwater recharge values are updated when the parameters of the network are learned based on 
the training data. Then the predicted values are calculated based on the learned weights and biases 
when the input data is applied. The output layer only had one neuron, which represented the values 
of groundwater recharge. 

 
Figure 2. Structure of MLP network for predicting groundwater recharge. 

At the beginning of the training, network weights and biases were assigned randomly. The 
solver for weight optimization is a stochastic gradient-based optimizer (Adam). The algorithm then 
projected these forward from the input layer to the hidden layer based on Equation (3). The results 
from the hidden layer were propagated to the output layer and the error between value of the 
output layer and the observed groundwater recharge in training data was obtained. By propagating 
the error iteratively back to the network, the connection weights and biases were automatically 
adjusted until the network error reaches a pre-determined value. The predicted values could then be 
calculated using the input values of 20 potential variables based on the trained network parameters. 

3.3. LSTM Model for Regression 

To solve the problem of vanishing gradient in traditional recurrent neural networks, Hochreiter 
and Schmidhuber [47] proposed LSTM, which introduces a new structure called a memory cell to 
develop persistent long-term dependencies. 

The structure of the whole algorithm is composed of one input layer, one output layer and three 
LSTM layers. The process of training and predicting depends on the temporal sequence features of 
the data being predicted. The system has 𝑇  input vectors, 𝑥 ,..., , which represent 𝑡 -year 
groundwater values. Similarly, the system output also has 𝑇 prediction vectors 𝑥 ,...,  indicating 𝑡 -year prediction results. For this study, the temporal sequence features from the regional average 
groundwater recharge was developed based on the 465 bores located in the study area from 1970 to 
2012. 

In order to avoid the proposed model from being overfitted, a method called dropout was used, 
with dropout rate 0.25 applied to the output of each LSTM layer. It was a regularization technique 
for reducing overfitting in the model by preventing complex co-adaptations on training data, and 
improved the accuracy of prediction data. The mean squared error (Equation (4)) was selected as the 
loss function to regularize the training process, where 𝑦  and 𝑦  represent for the predicted values 
and observed values in year 𝑡. 

Figure 2. Structure of MLP network for predicting groundwater recharge.

At the beginning of the training, network weights and biases were assigned randomly. The solver
for weight optimization is a stochastic gradient-based optimizer (Adam). The algorithm then projected
these forward from the input layer to the hidden layer based on Equation (3). The results from the
hidden layer were propagated to the output layer and the error between value of the output layer and
the observed groundwater recharge in training data was obtained. By propagating the error iteratively
back to the network, the connection weights and biases were automatically adjusted until the network
error reaches a pre-determined value. The predicted values could then be calculated using the input
values of 20 potential variables based on the trained network parameters.

3.3. LSTM Model for Regression

To solve the problem of vanishing gradient in traditional recurrent neural networks, Hochreiter
and Schmidhuber [47] proposed LSTM, which introduces a new structure called a memory cell to
develop persistent long-term dependencies.

The structure of the whole algorithm is composed of one input layer, one output layer and three
LSTM layers. The process of training and predicting depends on the temporal sequence features of the
data being predicted. The system has T input vectors, xT=1,...,tT , which represent tT-year groundwater
values. Similarly, the system output also has T prediction vectors xT=1,...,tP indicating tP-year prediction
results. For this study, the temporal sequence features from the regional average groundwater recharge
was developed based on the 465 bores located in the study area from 1970 to 2012.

In order to avoid the proposed model from being overfitted, a method called dropout was used,
with dropout rate 0.25 applied to the output of each LSTM layer. It was a regularization technique
for reducing overfitting in the model by preventing complex co-adaptations on training data, and
improved the accuracy of prediction data. The mean squared error (Equation (4)) was selected as the
loss function to regularize the training process, where ŷt and yt represent for the predicted values and
observed values in year t.

loss =
1
T

T∑
t=1

(
ŷt
− yt

)2
(4)

The internal structure of a memory cell in a LSTM layer is shown in Figure 3. The memory cell is
composed a forget gate fl,t, an input gate il,t, a new memory unit nl,t and an output gate ol,t, where l
and t are the number of LSTM layers and the current time step respectively. Wt

l and Ul,t are the weight
matrices corresponding to the input xk

l,t and previous hidden state hk
l,t−1, and bl,t is the bias vectors on

the memory cell. The superscripts f, i, n and o represent the forget gate, input gate, new memory unit
and output gate respectively.
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The forget gate fl,t is calculated as follows:

fl,t = σ
(
W f

l,t · x
k
l,t + U f

l,t · h
k
l,t−1 + b f

l,t

)
(5)

The logistic sigmoid function 1
1+e−x is applied as the activate function, σ, on the gates.

Similarly, the input gate and output gate are defined as follows:

il,t = σ
(
Wi

l,t · x
k
l,t + Ui

l,t · h
k
l,t−1 + bi

l,t

)
(6)

ol,t = σ
(
Wo

l,t · x
k
l,t + Uo

l,t · h
k
l,t−1 + bo

l,t

)
(7)

The hidden state hk
l,t and output cell state ck

l,t are denoted as follows:

hk
l,t = tanh(ck

l,t) ∗ ol,t (8)

ck
l,t = il,t ∗ nl,t + fl,t ∗ ck

l,t−1 (9)

where ∗ is the Hadamard product of two vectors. The new memory unit, nl,t, can be calculated
as follows:

nl,t = tanh(Wn
l,t · x

k
l,t + Un

l,t · h
k
l,t−1 + bn

l,t) (10)

The three LSTM layers are followed by an output layer in the fully connected structure.
The prediction vector, ŷt, in time, t, can be calculated using Equation (11).

ŷt = σ
(
Wout

· ŷk,t + bout
)

(11)

where Wout and bout are the weight matrix and bias vector in the output layer respectively. A logistic
sigmoid function is used as the activate function in the output layer for predicting groundwater
recharge in year t.

3.4. Model Testing and Comparison

The linear regression, MLP and LSTM models were run three times, trained with 70%, 80%
and 90% of the observation data, then their predictions were compared with 30%, 20% and 10% of
the observation data as a model validation. The statistical measures used for comparing the model
performance were the root mean squared error (RMSE) and coefficient of determination (R2). The RMSE
and R2 were calculated between the predicted groundwater recharge values and observed recharge
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values using Equations (12) and (13), to measure the precision and bias of groundwater recharge
predictions, respectively.

RMSE =

√√ n∑
i=1

(yi − ŷi)
2

n
(12)

R2 = 1−

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi −

1
n
∑n

i=1 yi)
2 (13)

where yi and ŷi are the observed and estimated values respectively and n is the number of the observed
values in the testing data. The R2 should be close to 1 to indicate strong model performance, and
the RMSE should be as close to zero as possible. The two measures are applied for estimating the
prediction of groundwater recharge by the three models. In the statistical analysis, R-squared is a
relative measure of fit. Its advantage is that it can be used to measure the whole trend of fitted data.
As the square root of a variance, RMSE is an absolute measure of fit. It can measure the error between
the whole prediction data and observation data directly. Therefore, in order to ensure the reliability of
the results, the relative indicator R2 and absolute indicator RMSE are used to measure the fitted and
prediction effects together.

The linear regression model and the MLP model were implemented based on the Python packages
StatsModels and scikit-learn, respectively. The LSTM model was built using Tensorflow, which is an
end-to-end machine learning platform in Python. All the modelling, data analysis and visualization
were conducted in the environment of Python 3.5. TensorFlow is an open source machine learning
library based on data flow graphs. It has better computational graph visualizations, and is supported
by Google. As a popular framework, Tensorflow is adopted in the work. The environment Python is
selected in the work owing to its cross-platform processing capability, open source code, presence of
third-party modules and extensive support libraries.

4. Results

The annual time series of regional groundwater recharge was established by averaging the
groundwater recharge estimates temporally for each year and spatially based on data from all available
bores. The three models were then developed to predict groundwater recharge using the full set of
influential predictors. The relative importance of each predictor in predicting groundwater recharge
was measured under the three temporal models. Furthermore, all of weights and biases were
initialized using Xavier initializer. Then, all of the parameters were optimized based on a stochastic
gradient-based optimizer (Adam). The method of initializing and optimizing parameters can ensure
that all of parameters maintain the good performance in training and prediction.

4.1. Correlation Coefficients between Potential Variables and Groundwater Recharge

The time series of annual regional groundwater recharge and potential predictors from 1970 to
2012 were applied to establish the temporal regression models. The Pearson correlation coefficients
between regional groundwater recharge and each influential predictor are shown in Figure 4.

As expected, the correlation coefficient between rainfall and groundwater recharge was the
highest. Annual rainfall had a correlation coefficient of 0.8, rainfall from May to September had a
correlation coefficient of 0.88 and for rainfall from April to October it was 0.9. The rainfall and minimum
temperature had a positive correlation with groundwater recharge, while in contrast, the evaporation
and maximum temperature had negative correlation with groundwater recharge. This could be
because these influential predictors influence the negative component of groundwater recharge,
or evapotranspiration. Almost all the absolute values of correlation coefficients for evaporation,
maximum temperature and minimum temperature were between 0.3 and 0.4.
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Other influential predictors, MeWS, MxWS, RD and RI had positive correlation coefficients, as they
are associated with rainfall and infiltration, while MeDS, MxDS and Extraction had negative correlation
coefficients as they are associated with evapotranspiration processes. The RD correlation magnitude
with groundwater recharge (r = 0.76) was higher than that of RI (r = 0.45). It indicated that groundwater
recharge was a process of gradual accumulation, because at an annual time scale, the number of rainfall
days was more important than rainfall intensity (Figure 4). As expected, the correlation magnitudes
for mean and max Wet-Spell length (r = 0.66, r = 0.63) were higher than that of the mean and max
Dry-Spell length (r = −0.50, r = −0.15), as wet days are likely to result in groundwater recharge than
dry days. Groundwater extraction had a negative correlation coefficient (r = −0.43) with groundwater
recharge. This can be attributed to the fact that groundwater extraction is simply a negative recharge.
Furthermore, it has been shown that lower water tables can lead to lower recharge [42], and this is
consistent with the negative correlation relationship between groundwater extraction and recharge.

4.2. Temporal Prediction of Groundwater Recharge

The time series of regional groundwater recharge based on the average values of groundwater
recharge from 1970 to 2012 are shown in Figure 5a–c, marked as “Observation”. Figure 5a shows the
results from the linear regression method, which was trained with the first 80% of the observed data,
and then predicted groundwater recharge for the last 20% of the time series. Similarly, Figure 5b,c
demonstrate the results from the MLP model and the LSTM model, respectively. Both models were
trained using the first 80% of the observed data and predicted the rest 20% of the time series.

As shown in Figure 5a, there was relatively good fitness and several small mismatches between
the trained data and observation for the linear regression model. However, the fitting performance
between the predicted data and observation was poor, especially from 2010 to 2012, and the mismatch
was serious. That is, the time series’ features obtained from the trained data could not successfully be
applied to the predicted data when the linear regression model was used.

For the MLP model (Figure 5b), the fitness between trained data and observations were better
than that of the linear regression model. The trends in trained data and observations were consistent.
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However, the fitting result between the predicted data and observations was only slightly better
than that of the linear regression model. That is, the MLP method accurately learned the time series
characteristics of the trained data, but it still lacked in aspects of data prediction. This can be attributed
to the over-fitting of learning from trained data based on the MLP method.

Using the LSTM model (Figure 5c), the fitting performance between trained data and observations
was worse than that of MLP model and similar to that of the linear regression model. However,
the fitting result between the predicted data and observation was better than those from the linear
regression and MLP models, especially from 2010 to 2012. The trends between the predicted data
and observation were consistent with those in the LSTM model (Figure 5c), but not consistent with
those in the linear regression and the MLP model. Compared with the insufficient learning of
the linear regression model and the over-fit learning of the MLP model, the time series’ features
learned from the trained data by the LSTM model could be successfully applied for the prediction of
groundwater recharge.
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The linear regression, MLP and LSTM methods were then compared for different percentages of
the observation data being used for training and testing the models (Table 2). In order to compare
the three methods, an error indicator (RMSE) and a fitness indicator (R2) were applied into testing
the whole prediction results. RMSETra and R2

Tra are the error and fitness values for the training data,
RMSEPre and R2

Pre are the error and fitness values for the prediction data, and RMSESum and R2
Sum are

the error and fitness values for the total data containing both the training data and the prediction data.
All of the data for the influential predictors and groundwater recharge observations were divided
into two groups: training data and prediction data. In the experiment, the ratio of training data was
selected as 70%, 80% and 90% respectively.
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Table 2. The trained and predicted groundwater recharge results based on the three models and the
percentage of observation data used to train the models.

Training Data (%)
Linear Regression MLP Model LSTM Model

RMSETra RMSEPre RMSESum RMSETra RMSEPre RMSESum RMSETra RMSEPre RMSESum

70% 0.06 0.20 0.13 0.02 0.19 0.12 0.06 0.12 0.09
80% 0.06 0.19 0.11 0.02 0.11 0.06 0.07 0.10 0.08
90% 0.06 0.20 0.09 0.02 0.13 0.05 0.04 0.11 0.06

Training Data (%)
Linear Regression MLP Model LSTM Model

R2
Tra R2

Pre R2
Sum R2

Tra R2
Pre R2

Sum R2
Tra R2

Pre R2
Sum

70% 0.96 0.46 0.79 0.99 0.49 0.82 0.94 0.77 0.88
80% 0.95 0.44 0.85 0.99 0.82 0.95 0.93 0.84 0.92
90% 0.95 −0.11 0.89 0.99 0.54 0.96 0.98 0.70 0.96

For all the three models, RMSE for all the total dataset ranged from 0.02 to 0.20. For each model,
the RMSE for all the data decreased and the fitness indicator R2 increased when the ratio of training
data to prediction data increased. It also demonstrates that the prediction error for the training dataset
was lower than that for the prediction dataset. The errors for the total dataset produced from the MLP
and the LSTM were similar, and the performance of the linear regression model was slightly inferior to
the two more complex methods.

The three models all presented excellent fitting performance on the training dataset. All fitting
errors (represented by RMSE) were lower than 0.07 and all fitness values (represented by R2) were greater
than 0.9, no matter which ratio of training data was chosen. For the three models, the fitting performance
on the training dataset was obviously better than that on the prediction dataset. Furthermore, compared
with the other two models, LSTM had the minimum differences in both fitting errors and fitness values
between the prediction dataset and the training dataset. This demonstrated that LSTM model has the
higher generalization performance.

Fitting error of the predicted data was the most important factor for comparing the performance
of various regression models. For the linear regression, RMSE was greater than 0.19 when the 70%,
80% and 90% ratios of training data were considered, and the fitness R2 was negative when 90% of the
data was used to train the model. The negative value represented that the fitting performance was
worse than just fitting a horizontal line and linear relationship was not suitable for fitting the data.

For the MLP model, RMSE and R2 were better than that those from the linear regression, with the
fitting error lower than 0.20 for the 70% ratio of training data. The fitting performance was satisfactory
with fitting error RMSE equalling 0.11 when the 80% ratio of training data was considered. The RMSE
values were lower than those of the other two methods for all the three ratios of training data. Also,
all the fitness values were more than 0.7, no matter which ratio of training data was chosen. That is,
the stability of the LSTM model was the best in the three compared methods.

The LSTM model had the best prediction performance in terms of its RMSE values and R2 values
regardless of the proportion of training data chosen. Although the performance of the MLP model was
worse than that of the LSTM model, it still gave a better estimate of groundwater recharge than the
linear regression method for all of three ratios of training data. It demonstrated that compared with
the traditional regression method, deep learning and machine learning methods can greatly improve
the whole performance of groundwater recharge prediction.

4.3. Relative Importance of Influential Predictors

The relative importance of potential influential predictors for predicting groundwater recharge was
investigated for each of the linear regression, MLP and LSTM models. The coefficients of determination
and RMSEs are shown in Figure 6, where influential predictors were excluded one by one from linear
regression, MLP and LSTM models. The variable importance ranking was found to be the same
whether it was determined through RMSE (Figure 6a) or coefficients of determination (Figure 6b).
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Figure 6. RMSE and coefficients of determination (R2) using three models after excluding each potential
influential predictor for the predicted groundwater recharge data.

For the linear regression model, the least important variables were found to be the
minimum temperature (Mintem, Mintem4-10 and Mintem5-9) and Average annual Morton actual
evapotranspiration (AnnMact), and the most important predictors were mean dry spell and wet spell
lengths (MeDS and MeWS) and annual number of rainfall days (RD), in that order. Rainfall data
(Rainfall, Rainfall4-10 and Rainfall5-9) also had an obvious influence. This was unsurprising, because
correlations between groundwater recharge and variables of minimum temperature and annual Morton
actual evapotranspiration were relatively low (See Figure 4), and the correlations in mean wet/dry
spell-length days and rainfall days were significantly high (See Figure 4). Furthermore, it can be
attributed to linear regression model which applies linear relationship between potential predictors and
is consistent with correlation coefficients between corresponding predictors and groundwater recharge.
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For the MLP model, rainfall, maximum wet spell length (MxWS), maximum temperatures
(Maxtem, Maxtem5-9, Maxtem4-10), and evaporation (ET, ET4-10 and ET5-9) were relatively
insignificant variables, while Mintem, Mintem4-10, Mintem5-9 and AnnMact were found the most
important predictors.

For the LSTM model, the least important variables were Maxtem, Maxtem5-9, Maxtem4-10 and
RD. For this model, the most important predictors were AnnMact, ET4-10, Mintem, Mintem5-9, MeDS,
MeWS, Rainfall4-10 and RI. Overall, the RMSEs were lower for the LSTM model, indicating that it
retained its good performance even when a variable had been removed from the inputs.

The relative importance of influential predictors are different for the MLP and LSTM models.
The phenomenon can be attributed to two causes. Firstly, over-fitting can be a problem, especially for
the MLP model. This model relies entirely on the training dataset to develop its prediction algorithms,
which results in its poor performance for the predicted dataset. The generalization ability of the
whole model was therefore reduced and the accuracy of the predictor importance measurement
was also affected. Secondly, the problem of non-convex optimization makes convergence to a local
optimum possible when the parameters of the model are learned and adjusted. This will lead to the
deviation of the predictor importance’s estimation. Finally, different local optimal solutions can lead to
differences in the relative importance of same influential predictor when MLP and LSTM models are
applied respectively.

5. Discussion

In this paper, linear regression, MLP and LSTM models have been used to predict a time series of
annual average groundwater recharge from 1970 to 2012, based on 465 bores in the South East of South
Australia and Victoria. The performance on the three models in predicting groundwater recharge was
assessed using various ratios of trained dataset. The study obtained the following findings.

5.1. Performance and Comparison of Models

Compared with the MLP and linear regression models, the LSTM model showed the best
performance in predicting groundwater recharge in the case study area.

Previous research on using machine learning to understand groundwater processes includes
the use of a MLP model to predict weekly groundwater levels in the Mahanadi Delta, India [28]
and a linear regression model to predict groundwater recharge based on 71 climate variables and
17 non-climate variables also in the South East of South Australia and Victoria [18]. The purpose
of this paper is to find the applicable model for groundwater recharge prediction by comparing the
linear regression model, MLP and LSTM models based on the same data format. According to Fu’s
research [18] in the same study area, seasonal rainfall from May to September and from April to
October are the most important influential predictors for groundwater recharge based on multivariate
linear regression model. Therefore, we calculate the monthly average quantities based on daily
data on various influential predictors from 1970 to 2012, such as maximum temperature, minimum
temperature, rainfall and evaporation. The LSTM model has been used to predict groundwater
heads [48], but until this paper, it has not been used to predict groundwater recharge timeseries. Results
from this study (Section 4) show that the LSTM model consistently obtained the best performance for
annual groundwater recharge prediction compared with MLP and linear regression models.

Research in the field of thermodynamics, energy and fuels also shows that the LSTM model
performs better than MLP network in forecasting aggregated power load and photovoltaic (PV) power
output [49].

The LSTM model is a more complex type of machine learning model that includes three control
units: input gates, output gates, and forget gates. As the information enters the model, the control units
in the LSTM assess each piece of information for which will be retained and which will be forgotten.
The LSTM model can therefore acquire long-term dependencies to solve the problem of gradient vanish
and improve predictions of groundwater recharge.



Water 2019, 11, 1879 15 of 19

The performance of the MLP model was also found to be better than the more simple linear
regression model approach. The MLP model is also known as a feedforward neural network which has
one or more hidden layers between the input layer and the output layer of the network. The trained
parameters in these hidden layers improve the predictive ability of the model.

An important finding was that the performance of the LSTM model appeared to be almost
unaffected for various ratios of trained and prediction dataset were considered. A benefit of this model
is that it may reduce the length of time series data required to train the model, and that its results were
relatively resilient to changes in parameter settings.

In addition, we found that the model fitness declined when predictors that have low correlations
with groundwater recharge were added into the linear regression model. The fitness of the linear
regression model depended on the correlation strength between selected predictors and groundwater
recharge. That is, the model had better fitness when those predictors with higher correlation coefficients
were added into the model. This reflects that the linear regression model was not able to deal with the
non-linear relationship among the predictors. On the contrary, different combinations of influential
predictors had little influence on the fitness of the MLP and the LSTM. That is, compared with the
linear regression model, the two models had better robustness in predicting complex data relationship.
Therefore, the hidden layer in MLP model and the memory unit in LSTM model captured the non-linear
relationship among influential predictors, and improved the robustness of the models.

Traditional time series analysis methods, such as the autoregressive integrated moving average
with explanatory variable (ARIMAX) model, are difficult to capture non-linear relationship. The hidden
layer in MLP model and the memory unit in LSTM model can help improve the non-linear learning
ability of the models.

5.2. Influential Predictors Identification

The relative importance of all predictors to drive the temporal changes in groundwater recharge
was measured using the linear regression, MLP and LSTM models. The results showed that the relative
importance of influential predictors was different for each of the three models.

The most important predictors for the linear regression model were the mean number of days
wet and dry, number of rain days and three rainfall metrics (MeDS, MeWS, RD, Rainfall, Rainfall4-10
and Rainfall5-9). This is consistent with standard hydrogeological understanding of groundwater
recharge, which often estimates recharge as a proportion of rainfall or difference between rainfall and
evapotranspiration [22].

For the MLP model, the important predictors were almost opposite to the hydrogeological
understanding of recharge: minimum temperature and annual evaporation (Mintem, Mintem4-10,
Mintem5-9 and AnnMact), although evaporation is known to decrease net groundwater recharge [42].
Future research is advisable to determine whether these relationships were coincidental or are consistent
across many different locations and climate types.

For the LSTM model, the most important predictors were found to be a combination of
evapotranspiration, minimum temperature, annual and seasonal evaporation, mean number of
dry and wet days, rainfall and rainfall intensity (AnnMact, ET4-10, Mintem, Mintem5-9, MeDS, MeWS,
Rainfall4-10 and RI). The LSTM model had a consistently high performance when any one of the
influential predictors was removed from the analysis and it was less sensitive to these changes in input.
This model appeared to rely on more of the influential predictors to predict groundwater recharge,
therefore was more robust when any of the predictors was removed from the analysis. Again, future
research is required to determine how consistent these important influential predictors are across
multiple locations and climates.

5.3. Implications for Groundwater Management

Accurate evaluation of groundwater recharge is the foundation for equitable and reliable water
resources planning. This research verified that machine learning and deep learning methods can be
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applied to the estimation of groundwater recharge. Out of the three models, the LSTM model had
the most precise groundwater recharge predictions. The results from this study provide groundwater
researchers and managers a valid reference for the selection of appropriate machine learning models in
the future.

This research has explored the groundwater recharge estimation and important drivers for changes
in temporal groundwater recharge in the South East of South Australia and Victoria. The performance
of the models in this study may also inform the choice of data learning techniques for prediction
of groundwater recharge in other places, while the obtained results will be instrumental for the
development of future groundwater management strategies in the region.

Identification of important but unintuitive influential factors, such as Rainfall4-10, MeDS, MeWS,
Mintem and Mintem5-9 can be used to inform monitoring requirements and improve the design of
policy and management plans.

5.4. Advantages, Limitations and Further Research

These experiments for temporal prediction of groundwater recharge clearly demonstrate the
effectiveness and robustness of the deep learning approach. The performance of the LSTM model
appeared to be almost unaffected when various ratios of trained dataset were considered, or when
influential predictors were removed.

Limitations of the study include: non-spatial data sources, short prediction time frames and
quantification of uncertainty. Spatial data inputs have not been used in this paper to predict groundwater
recharge. In future research, spatial data such as soil type, vegetation type, and slope may be used for
improving the model predictions of groundwater recharge. Finally, our research does not yet quantify
the uncertainty in prediction results. Although uncertainty analysis methods have been widely applied
in classical prediction models [50–52], they have not generally been used in machine learning methods,
especially deep learning models. Future work will introduce uncertainty analysis methods into these
models for the uncertainty quantification of model predictions.

In future studies, nature-inspired intelligent algorithms [53,54] and other neural networks [55] will
also be tested in order to further improve the fitness of predicted data. The performance of the models
may also be enhanced by incorporating other environmental data (e.g., soil data) or supplemented
interpolation data [56]. Furthermore, the iterative calculation [57] may also be used better optimize
the model parameters. For this study, the whole observed groundwater recharge data set is divided
into trained and predicted subsets based on various ratios. The trained dataset and predicted dataset
were used for model training and validation respectively. In the future work, longer term predictions
of groundwater recharge may be modelled, which can then be applied for to forecast recharge and
managing regional groundwater more effectively.

6. Conclusions

The linear regression, multi-layer perception and long short-term memory models were used for
the challenging problem of predicting long-term, time-continuous groundwater recharge. The LSTM
model greatly outperformed the MLP and linear regression models when the ratio of the training
dataset to the full dataset (composed of the training dataset and the prediction dataset) was set as
70%, 80% or 90%. In turn, the MLP model outperformed the linear regression model. The results
clearly demonstrate the effectiveness of the three models for various ratios of trained data to predicted
data. The relative importance of potential predictors associated with the observed variation in regional
groundwater recharge was also assessed.
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