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Abstract: Calibration of conceptual rainfall–runoff models (CRRM) for water-resource assessment 
(WRA) is a complicated task that contributes to the reliability of results obtained from catchments. 
In recent decades, the application of automatic calibration techniques has been frequently used 
because of the increasing complexity of models and the considerable time savings gained at this 
phase. In this work, the traditional Rosenbrock (RNB) algorithm is combined with a random 
sampling method and the Latin hypercube (LH) to optimize a multi-start strategy and test the 
efficiency in the calibration of CRRMs. Three models (the French rural-engineering-with-four-daily-
parameters (GR4J) model, the Swedish Hydrological Office Water-balance Department (HBV) 
model and the Sacramento Soil Moisture Accounting (SAC-SMA) model) are selected for WRA at 
nine headwaters in Spain in zones prone to long and severe droughts. To assess the results, the 
University of Arizona’s shuffled complex evolution (SCE-UA) algorithm was selected as a 
benchmark, because, until now, it has been one of the most robust techniques used to solve 
calibration problems with rainfall–runoff models. This comparison shows that the traditional 
algorithm can find optimal solutions at least as good as the SCE-UA algorithm. In fact, with the 
calibration of the SAC-SMA model, the results are significantly different: The RNB algorithm found 
better solutions than the SCE-UA for all basins. Finally, the combination created between the LH 
and RNB methods is detailed thoroughly, and a sensitivity analysis of its parameters is used to 
define the set of optimal values for its efficient performance. 

Keywords: calibration; rainfall–runoff models; multi-start; Latin hypercube; Rosenbrock; water-
resource assessment 

 

1. Introduction 

Hydrological modelling is essential for water-resource assessment (WRA) [1]. Hydrologists have 
come to rely on hydrological models to foresee events that would otherwise be difficult to predict [2]. 
Estimating flows that run in a basin through a drainage system is one of the greatest tools available 
to address hydrological problems [3]. 

Currently, there are many hydrological models that can be used for WRA [4]. Conceptual 
rainfall–runoff models (CRRM) are often used, because they offer simplified catchment-scale 
representations of the transformation of precipitation into river discharge [5]. Their efficient 
calibration is a difficult issue, even for experienced hydrologists [6]. The models are characterised by 
parameters that cannot be directly measured in the field. However, they can be inferred by the so-
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called calibration process [7]. During this phase/process, parameters are estimated indirectly by 
minimizing the discrepancy between direct simulated and observed model outputs [8]. Moreover, 
the success of the application of CRRM depends on the degree of calibration achieved and the choice 
of suitable calibration strategies [9,10]. 

To estimate the parameter values, manual calibration is one option. However, it is a time-
consuming and very laborious phase. The process is sometimes still used [11–13]. However, when 
complex models are used, it is practically impossible to perform a manual calibration to find the best 
possible parameter set. An alternative is to use automatic calibration algorithms [14,15], which make 
model calibration easier and faster. This technique automatically enhances the quality of manual 
calibration, providing a significant improvement [14]. Currently, there are many automatic 
calibration algorithms available. Some are modern or recent algorithms (developed in the last 
decade), and others are traditional or historical algorithms (developed from 1965 until the last 
decade) [16,17]. However, they do not offer the same performance levels [2]. 

During the last decade, several papers comparing optimization algorithms applied to CRRM 
calibration were published to prove or disprove the efficiency of a particular modern or historical 
method [2,16–19]. In studies by Sörensen [20] and Piotrowski et al. [17], they contended that they did 
not consider such an uncontrolled increase in the number of supposedly new algorithms to be a 
positive research trend. In studies by [16,20–30], it was found that, generally, modern algorithms, can 
become completely unreliable on specific problems, even though they perform reasonably on others. 
Furthermore, traditional algorithms, such as the Rosenbrock (RNB) or Nelder–Mead (NM), have 
proven surprisingly efficient compared to modern algorithms. 

The RNB algorithm [31] is a historical technique analysed in many comparisons of optimization 
algorithms since its development until the present [19]. For example, with an internal modification 
made for hydrological models using synthetic error-free data, the method was found to be robust by 
[32], who conducted a study comparing nine different methods for fitting hydrological models. In 
the study of [33] used the technique for illustrating the application of linear rainfall–runoff models in 
14 catchments. Moreover, Liang et al. [34] demonstrated the application of two linear flow-routing 
methods on three rivers in China. 

Also Goswami and O’Connor [18] tried the RNB algorithm and five additional different 
optimization techniques in the calibration of two catchments. They found that the direct-search 
methods (e.g., RNB) were efficient in terms of fewer numbers of objective functions (OF) evaluations 
necessary to find the best solution, making them very fast algorithms. However, in some cases, they 
were trapped in local-optimal solutions. In that study, the RNB algorithm was started sequentially 
from each point of a large sample of points in the parameter space, each aiming to reach the optimum 
[35–37]. By launching it from each point, the computational time consumed was excessive, and the 
algorithm was unable to come out of the local optimum in some cases. The direct-search methods use 
only OF values. Thus, it is not necessary to perform derivatives [31,38–40]. Therefore, it can be applied 
to many cases. However, one of the main problems in these techniques is the presence of multiple 
local solutions that can cause the algorithm to be unable to find the global solution of the problem 
[41]. In this sense, the application of local-search methods has been tried by leveraging the re-
initialization of the algorithm at some randomly selected points [42,43], allowing a roughly 
homogeneous exploration of the sample space [16]. 

Thirty optimization heuristics algorithms were tested by Piotrowski [22] to evaluate artificially 
constructed benchmark functions. Among them were two traditional local-search algorithms (i.e., 
RNB and NM) [39], which were compared with results obtained from the other 28 methods. Both 
algorithms were applied with a re-initialization, depending on the number of OF calls. Interestingly, 
both algorithms performed as well as the modern techniques. In fact, this study suggests that testing 
traditional algorithms as RNB in other fields may be interesting. 

Moreover, Piotrowski et al. [17] evaluated the performance of 33 optimization algorithms (e.g., 
RNB and NM). They analysed the performance versus the speed of each algorithm in the solution of 
22 numerical real-world problems from different fields of science with the maximum number of OF 
calls varying between 5000 and 500,000. They found that the historical algorithms outperformed 
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recent algorithms, even when they were based on the first ones. Moreover, the RNB algorithm was 
more specialized, fast and one of the best for solving hydraulic engineering problems. 

Recently, Piotrowski et al. [16] compared 26 algorithms created from 1970 to the present, 
including a number of modern evolutionary or swarm-intelligence methods and traditional 
techniques such as the RNB algorithm. These methods were used on the calibration of two different 
CRRMs in four catchments located in roughly similar climatic conditions on two continents. It was 
found that, generally, nearly all algorithms performed similarly on each calibration problem, and no 
method could be called superior to others in terms of final performance. It was also shown that the 
historical direct-search methods performed equally well in finding the best solutions as modern 
optimizers. These methods were implemented with a re-initialization at two points selected 
randomly but without any previous analysis. Thus, with the RNB method, after 100 D (where D is 
the dimensionality of the problem) function calls are verified; if, during the last 100 D function calls, 
the solution is improved by more than 1×10−4, then the optimal solution is found. Otherwise, the 
location of the RNB point is randomly re-initialized again from a random starting point. The value of 
the step length is re-set to 0.1 [31], and the coordinates are re-set to the initial system. This 
conceptualization allows the use of randomization resources to better explore the sample space and 
find global solutions without previous analysis of the initial points. 

In summary, in the studies discussed, we found that modern and historical algorithms provided 
similar results in the solution of the same problem. Even RNB proved to be more efficient than some 
modern metaheuristics in finding optimal solutions with higher speed. The study [2] established that 
the best methods were those that converged to a better-quality minimum as rapidly as possible. 
However, the problem with the direct-search methods was that it could be trapped in local-optimal 
solutions if the random re-initialization missed. These methods have been known for many years 
[44], but currently the popularity of so-called metaheuristics is soaring in hydrology [21,45]. 
However, these algorithms have been analysed over the last decade, showing that, at least, some of 
them mimic the traditional methods, lack any true novelty, or are developed without scientific rigor 
[20,22,46,47]. 

Because of complications regarding local-search algorithms and because of the introduction of 
the University of Arizona’s shuffled complex evolution (SCE-UA) method by Duan et al. [9], used to 
locate the global optimum of a CRRM, many researchers in hydrology have employed this for 
parameter optimization [24,48–52]. Some studies have shown that it is a robust and efficient 
algorithm [41], whereas its efficiency has been evaluated by comparing it with many others [2,18,53]. 
In fact, this algorithm has become the method of choice to solve runoff model calibration problems 
[7]. Recently, this technique demonstrated that, in spite of being an algorithm developed in the 1990s, 
its results were efficient and reliable, playing a key role in analysing the relationship between 
calibration time and final performance of several algorithms that calibrate CRRMs [19,54]. 

Based on these studies, we have summarized several key points. There is no algorithm that 
solves all problems correctly and efficiently [21]. Therefore, it is important to explore the behaviour 
of some algorithms in the solution of any problem. Historical algorithms can behave the same or 
better than modern algorithms in solving specific problems and some authors have argued that it 
would be interesting to test these methods in different cases [22]. Finally, we identified that the RNB 
algorithm proposed during the 1960s used with a simple restart method was still competitive and, in 
some cases, better than some recent algorithms [17]. 

Moreover, Chlumecký et al. [6] suggested that a method allowing the exploration of the sample 
space or a selection of random values as starting points could improve results. Therefore, we decided 
to improve the use of RNB with the initial application of a random sampling method (Latin 
hypercube (LH)). This should enable the controlled exploration of the total solution space addressed 
in the problem and select only the best points after a previous OF analysis. The RNB algorithm will 
be re-initialized, but only as many times as necessary from the best sorting points, thereby saving 
considerable computational time. In previous studies in which RNB was used, algorithm re-
initialization at uncontrolled random points was conducted. This re-initialization depended on 
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specific OF call numbers or a pre-defined number of re-sets (one or two), but not from a probability 
analysis of the solution space. 

Therefore, the aim of this paper is to test the ability of a direct-search algorithm, RNB, combined 
with the LH method designing a controlled multi-start strategy for the calibration of CRRMs with 
different complexities in the WRA. We explain the mathematical relationship between the two 
methods, because this aspect has not been addressed in the literature. Moreover, a detailed sensitivity 
analysis of parameters of coupled techniques is made, setting optimal parameter values to solve 
problems of CRRM calibration. To assess the performance of this technique, the SCE-UA algorithm 
is used as a benchmark, because it has proven to be a robust technique in the calibration of CRRMs. 

Finally, the focus in the application of this algorithm is oriented to the applicability of WRA for 
the management of complex systems and not for the analysis of flood events, which are regularly the 
cases that have been more frequently analysed [55,56]. 

2. Materials and Methods 

2.1. Case Study and Data 

The present study is based on data collected from nine headwaters of the Duero and Júcar River 
Basin Districts in Spain (Figure 1). These catchments are located in areas that commonly present 
severe droughts because of climatological conditions and geographical locations [57–59]. The 
catchment areas in the Júcar system are zones characterized by a semi-arid climate [60]. The Duero 
system contains zones characterized by a Mediterranean climate with temperate and rainy winters, 
but very dry and warm summers. Thus, the evaluation of water resources in these exploitation 
systems is an essential action. 

 
Figure 1. Location of the case-study catchments. 

Four basins in the Duero system have the presence of snow (Table 1) that accumulates from late 
autumn to spring, reaching a maximum depth and duration during the winter months. The snowmelt 
begins in the spring and summer when the precipitation is otherwise scarce. Thus, it is important to 
consider the modelling process [61]. 
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Table 1. Summary information about the case-study catchments. 

Case-Study 
Catchments 

Surface 
(km2) 

Average 
Annual  
P (mm) 

Average 
Annual  
PE (mm) 

Average 
Annual  

flow (hm3) 

Presence of 
Snow 

Flow 
System 

1 Cab. del Duero 133.1 755.8 832.9 93.4 No Duero 
2 Rivanuesa 93.2 862.5 776.6 72.3 No Duero 
3 Abión 897.8 581.5 986.3 150.0 No Duero 
4 Cuenca 1005.6 601.9 1057.3 300.7 No Júcar 
5 Pajaroncillo 829.0 589.8 1031.3 161.3 No Júcar 
6 Barrios de Luna 492.1 946.7 760.8 447.6 Yes Duero 
7 Eria 283.0 744.7 858.0 153.0 Yes Duero 
8 Omaña 403.6 793.4 820.9 96.1 Yes Duero 
9 Cab. del Tormes 627.4 813.7 973.5 688.0 Yes Duero 

The climatological, hydrological and morphological characteristics are different in each basin 
(Table 1). Every case-study catchment has a gauging station and a series of observed flows of at least 
10 years of data without the need to complete or extend the data series. In Table 1 we assigned a 
number to each basin. From this point, we refer to them by this number and not by their name. 

To add the least amount of noise to the modelling process, only headwater basins were selected, 
because they are the zones where the runoff data have the minimal anthropogenic alteration, and the 
capacity of the algorithms can be tested homogeneously without noise resulting from the data. 

Daily series of precipitation (P) were obtained from the Spain02 database [62] at a grid resolution 
of 0.2° (approx. 20 km). The State Meteorological Agency and the Meteorology Group of Santander 
in Spain prepared this dataset jointly. Potential evapotranspiration (PE) was calculated using the 
Hargreaves and Samani method [63] and the temperature series obtained from the aforementioned 
database. The observed daily flows were obtained from the Information System of the Discharges 
Yearbook of the Ministry of Agriculture and Fisheries, Food and Environment of the Government of 
Spain [64]. 

2.2. Conceptual Rainfall–Runoff Models 

In this section, we describe three lumped conceptual models (i.e., the French rural-engineering-
with-four-daily-parameters (GR4J) model, the Swedish Hydrological Office Water-Balance 
Department (HBV) model and the Sacramento Soil Moisture Accounting (SAC-SMA) model) used to 
test the design multi-start strategy of a direct-search algorithm during the calibration stage. The 
models involve a configuration of interconnected stores with mathematical transfer functions used 
to direct the movement of water in a basin. Each has a different structural complexity, a different 
number of parameters (4, 8 and 16) and a specific mathematical formulation. Their selection was 
based on their successful application in WRA studies [50,65–68]. The parameter ranges for each 
model are based on experience and the literature review [69–72]. We applied these models using the 
open and freely available software ‘EVALHID’ Water Resources Assessment, version 1.3, [73] 
developed by the Universitat Politècnica de València in Valencia, Spain 

2.2.1. French Rural-Engineering-with-Four-Daily-Parameters (GR4J) Model 

The GR4J model is a lumped, conceptual, daily model developed by [72], belonging to the family 
of soil-moisture accounting models. It performs well even for data within short time intervals ref. [74] 
or practically ungauged catchments [75]. The GR4J model is represented by two tanks: production 
and routing. It is controlled by four parameters (description in Appendix Table A1). For a detailed 
mathematical explanation see [72]. 

2.2.2. Swedish Hydrological Office Water-Balance Department (HBV) Model (With the Snow 
Component) 
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The HBV model [70] is a lumped, conceptual and daily model that simulates discharge in the 
catchment using rainfall, temperature (if applicable) and estimates of potential evaporation. It has 
been used in more than 30 countries under different climatic conditions. The model simplicity of the 
input data, and the robust model structure have demonstrated reliable performance in solving water-
resource problems [76]. 

The model comprises three primary routines: first is snow accumulation and melt, which is 
computed by a simple degree-day method, where a threshold temperature (usually close to 0°) is 
defined at the location above where snow melt occurs [77]. Second is a soil moisture accounting 
routine that computes an index of the wetness and soil moisture storage in a catchment. Third is a 
response routine that transforms excess water from the soil moisture routine to discharge to each sub-
basin. There are two reservoirs connected in series by a constant percolation rate. Generally, the input 
variables are daily P, estimated PE and mean-air temperature when the snow module is applied. The 
model is controlled by eight parameters for rain and two for snow (see parameter description in 
Appendix Table A1). The model equations of HBV (including snow routine) can be found in other 
works [70,77,78]. 

The snow routine described here is used as a model for the four basins with this component. It 
uses, simultaneously, the reduction in the dimensionality of the problem. 

2.2.3. Sacramento Soil Moisture Accounting (SAC-SMA) Model 

The SAC-SMA model [71] is a conceptual water-balance physical model based on the principles 
of water movement in a catchment. It is one of the most widely used rainfall–runoff model [79]. It 
works by using a system of water reservoirs (zones). The basic design incorporates two soil-layer 
structures. Each comprises tension and free-water reservoirs that interact to generate soil moisture, 
and there are five runoff components. The total streamflow is the sum of all partial runoffs. The model 
was configured with 16 calibration parameters described in Appendix Table A1. A detailed 
mathematical analysis of the model can be found in [71]. 

2.3. Optimization Methods 

In this section, the optimization methods used to calibrate CRRMs are described. First, we 
explain in detail the linking of the RNB algorithm to the random sampling method, LH, to create a 
multi-start strategy of a direct-search algorithm. Next, we describe the SCE-UA algorithm that was 
selected as a benchmark method. 

2.3.1. Latin Hypercube (LH) and Rosenbrock (RNB) Combined Algorithm 

LH Sampling Method 

The LH sampling method [80] has been recognized as one of the most efficient, effective and 
strategic techniques to homogeneously reduce a large sample space and to randomly generate a set 
of values with the same probability of occurrence and to reduce the number of simulations of the 
optimization algorithms and computational demand [80–82]. A ‘Latin square’ is a grid containing a 
set of possible solutions in different positions. However, only one sample is possible in each row and 
column. There cannot be rows or columns with more than one sample (Figure 2a). An LH is the 
generalization of this concept to an arbitrary number of dimensions. Thus, only one sample is possible 
in each hyperplane containing it. The sides of the hypercube are parallel to the reference axes, and 
the value range of the distribution of each random variable is divided into n non-overlapping 
segments of equal occurrence probability. Generally, the purpose is to create a convenient division 
of the sample space to consider all possible events proportionally to the real probability of their 
occurrence. LH allows for well-distributed sampling based on the problem dimension. It has been 
used successfully in several cases. LH was used by [81] to generate input samples for a model, 
improving computational efficiency of their methodology. Additionally, it was used to sample the 
full feasible parameter space for a multi-objective evolutionary algorithm [23] and as a generator of 
106 sets of parameters for the Markov chain Monte Carlo algorithm by [83]. Recently, [16] also used 
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this technique to generate the values of the initial calibration parameters of the HBV and GR4J models 
using the DREAM_(ZS) algorithm [7]. 

RNB 

The RNB algorithm [31] is a local-search technique, which does not require derivatives from the 
OF. This algorithm represents an improvement in the axial direction method and if it starts from a 
non-optimal coordinate system, the method can spend a lot of time until convergence. It avoids 
monodimensional optimization in the directions of the coordinate axis and uses a time step for each 
search direction. The search is initiated by using the original coordinate system for the first iteration 
and the system axes that are the parameters to be optimized. Depending on the results, the increments 
are multiplied by the coefficients of advance or setback (i.e., algorithm parameters). If the direction 
is good, a success occurs, and the step size is multiplied by the advance coefficient, typically 3 [31]. 
However, if the search direction is wrong, a failure occurs, and the step size is reduced by half. 
Therefore, the sign changes. This algorithm has the peculiarity of changing the axis when failures 
occur in every search direction tested, and at least a positive result is found, such that the search axis 
is redirected reducing the OF evaluations and efficiently reaching the optimal value. The criteria for 
changing search directions is usually based on successes followed by failures in all directions tested 
(not necessarily consecutively). During the changeover, new axes are selected to coincide with the 
direction between start point (or the previous axes’ optimization point change) and the last best OF 
result (Figure 2b). The change axes are calculated using the Gram–Schmidt process [84]. 

This technique was found to be robust by [32] who compared nine different methods for fitting 
hydrological models. In addition [33] used it for the optimization of linear techniques in modelling 
rainfall–runoff transformations in 14 catchments. Additionally, [34] used it for demonstrating the 
application of two linear-flow routing methods on three rivers in China. Moreover, [85] successfully 
used this method to estimate the parameters of a CRRM and to discuss aspects of the calibration 
process. In 2007, [18] compared the efficiency of this technique with five different algorithms and 
found that, in some cases, this algorithm presents some problems for finding the optimal solution. 
However, it is a fast technique. Also, [22] evaluated the performance of this technique to analyse sets 
of artificially-constructed benchmark problems. The algorithm was found to have weaknesses with 
very large search-space problems. Surprisingly for small sampling spaces, RNB found better results 
than the other 30 algorithms tested. Finally, [16,22] applying an algorithm reset, found that it could 
find results as good as the rest of the 26 tested algorithms. An interesting aspect of these studies was 
the speed of convergence of the algorithm with acceptable results. 

Leveraging the antecedents of previous studies, the selected methods, Latin hypercube and 
Rosenbrock (LHR), were used together to ascertain their efficiency in the calibration of CRRMs. A 
description of this connection is described below. 

Combination Methods 

To use local-search algorithms for global optimization, they are applied as multi-start 
algorithms. Once an algorithm runs, converges and stops, another run is started at a different 
randomly selected initial point [14]. The LH method is used to randomly sample the solution space 
of each parameter to be optimised, creating sets of parameters at each point of the hypercube. These 
points are evaluated and ranked according to the value obtained from the OF. The best points are 
selected to run the RNB algorithm that carries out the parameter optimization process. 

The coupled algorithm begins with the generation of a pseudo-randomized sample conditioned 
by the LH. The uncertainty of the search domain is reduced as the domain size decreases. However, 
to select the LH size it is necessary to consider the dimensionality of the problem. Each point of the 
initial sample is evaluated by the OF and arranged in descending order. At this point, a certain 
number of elements (the best ones of this first step) are selected for use as starting points to launch 
the RNB algorithm (Figure 2). This subroutine searches around the point, evaluating close solutions 
in all directions to improve the OF value. Not every point is tested in every possible direction. Rather, 
it is tested sequentially at each point until it is found that the axes change condition. The best value 
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obtained from the RNB launches is stored and the set of parameters corresponding to the iteration 
are shown as the optimal solution. RNB is launched at least once in any case, but the number of RNB 
launches is conditioned by an RLAUNCH (Rosenbrock’s launches) parameter from the LHR 
algorithm. An important advantage of this first stage is that, to solve the problem, the OF evaluation 
number depends on the size of the LH and not on the number of parameters. 

 
Figure 2. Joint operation of the Rosenbrock (RNB) algorithm and the method of statistical design of 
experiments (Latin hypercube, LH). It shows the first RNB launch, where (a) relates the functioning 
of the LH and (b) indicates the RNB objective. 

A detailed description of the equations and the steps of the proposed method are shown below. 
1. Define the dimension of the LH (LHDIV), number of parameters or variables, Xi, the minimum 

value (Xi min) and the maximum value (Xi max) of the interval defined in each parameter. 
2. Divide the sample space F(x), for each Xi, into n intervals with the same probability of occurrence 

to plot a grid (Figure 2a). The increase between intervals (𝛥𝑛) is calculated in Equation 1. 𝛥𝑛 =  𝑋௜𝑚𝑎𝑥 − 𝑋௜𝑚𝑖𝑛 𝐿𝐻𝐷𝐼𝑉  (1) 
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where n coincides with LHDIV. 
3. For each parameter, Xi, a vector is generated comprising the points, xj, at each intersection of the 

dividing lines of the grid generated by the intervals with axes, where j = 1, ..., (n + 1). Each xj is 
associated with a random number, xk [0,1] to form a vector with the same dimension. The vector, 
step 11, is organized in descending order as a function of xk for each Xi. 

4. The ordered vectors, Xi-ord, allow determining the random sampling of points in the sample 
space, F(x), combining the positions of xj and xk to select a point, xjk. Thus, there is only one point 
in each row and column in F(x) (Figure 2a). 

5. The maximum number of combinations for an LH of n intervals and Xi parameters is calculated 
in Equation 2. 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐿𝐻 =  (𝑛!)௑௜ିଵ (2) 

6. At each point, xjk, determined in F(x), the OF value is calculated, and the points are ranked in 
descending order according to the OF value obtained. 

7. The best points found (xjk-n) in the previous step are the input to the RNB’s algorithm. The number 
of input points for the algorithm is defined by the RLAUNCH parameter, which defines how 
many times RNB will be launched to find the optimal solution of the problem. 

8. The RNB algorithm must define a starting point (Xini) with coordinates (xj(0), xk(0)), a step for each 
direction (hj (0), hk (0)) and the number of RNB launches (RLAUNCH). 

9. It starts from the first set of iterations in the axial search directions, coinciding with the coordinate 
axes of the Xini point: 

𝑒ଵ = ⎣⎢⎢
⎢⎡10...0⎦⎥⎥

⎥⎤ ,  𝑒ଶ = ⎣⎢⎢
⎢⎡01...0⎦⎥⎥

⎥⎤ , … , 𝑒௡ = ⎣⎢⎢
⎢⎡00...1⎦⎥⎥

⎥⎤ (3) 

10. The criterion for changing search directions is usually taken when there have been successes (at 
least one) followed by failures in all directions tested, not necessarily consecutively. In the 
change, a new axis is selected, coinciding with the direction in which the greatest success occurs. 
It is complemented with an orthonormal set for the other axis (Figure 2b). 

11. If it starts from xini, and, after a number of iterations, it is determined that a change of direction 
must be realized with x in the last successful point, the greatest successful direction will be 
determined with the vector showed in Equation 4. 𝑟ଵ = 𝛥𝑥 = 𝑥 − 𝑥௜௡௜ = ሾ𝛥𝑥ଵ  𝛥𝑥ଶ … 𝛥𝑥௡ሿ் (4) 
The remainder of the auxiliary vectors is calculated from Equations 5–7. 𝑟ଶ = ሾ𝛥𝑥ଵ  𝛥𝑥ଶ … 𝛥𝑥௡ିଵ 0ሿ் (5) 𝑟௡ = ሾΔ𝑥ଵ  0 …  0ሿ் (6) r୧ = ൣΔxଵ→୬ି୧ାଵ୘   0ଵ× ୧ିଵ୘ ൧୘ (7) 

12. The new calculated directions have the disadvantage of not being orthonormal. Therefore, this 
characteristic is achieved using the Gram–Schmidt orthogonalization method, which entails 
obtaining a new set of orthonormal vectors. Thus, the first vector, 𝑟ଵ, is simply normalized (Equation 
8). For the rest of the vectors, the corresponding part rendering them non-orthonormal to each 
other (i.e., the projection of one vector on another) is annulled. Then, they are normalised. The 
steps 8 to 12 are repeated. 

𝑒ଵ = 𝑟ଵ|𝑟ଵ| , 𝑒௜ = 𝑤ଵ|𝑤௜| , 𝑤௜ =  𝑟௜ − ෍((𝑟௜்  𝑒௝)௜ିଵ
௝ୀଵ  𝑒௜) (8) 

13. The algorithm stops when one of the convergence criteria established in ERR or MAXN is 
satisfied. These criteria are explained in more detailed below. 

Parameter Description of the Latin Hypercube and Rosenbrock (LHR) Algorithm 



Water 2019, 11, 1876 10 of 27 

The LHR-coupled algorithm is controlled by a set of five parameters and two convergence 
criteria (Table 2). LHDIV controls the OF evaluation number executed by the LH of the initial sample 
space. The RLAUNCH parameter corresponds to the number of RNB algorithm launches using the 
best results of the LH as initial points. The ALPHA coefficient represents the advance magnitude in 
one direction when a positive result occurs. The BETA coefficient represents a direction change and 
a setback or step-reduction coefficient when a search direction failure has occurred. The STEPROS 
parameter defines the initial increments, 𝛥௜ , for each search direction, calculated according to 
Equation 9. 𝛥௜ = 𝑀𝑎𝑥_𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑉𝑎𝑙𝑢𝑒௜ − 𝑀𝑖𝑛_𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑉𝑎𝑙𝑢𝑒௜𝑆𝑇𝐸𝑃𝑅𝑂𝑆  (9) 

ERR stores the increment in each time step. If many failures occur (with no successes) in all 
possible search directions, the increment is multiplied by the advance or setback coefficient to change 
the search direction. Nevertheless, if the increment is very low, the advance or setback step will reach 
zero, indicating that the point is an optimal value. Then, when this increment is less than or equal to 
ERR, the algorithm will converge. 

Generally, the algorithm stop criteria are defined when the algorithm achieves the value defined 
in ERR or when the maximum iteration number defined as MAXN is reached. Finally, the seed value 
marks the randomness of the process. 

The success in the automatic calibration of CRRMs depends largely on the proper selection of 
the algorithm and its assigned parameters. In this paper, to define the value of the algorithm 
parameters, a sensitivity analysis is performed (see Section 3.6). The optimal parameter set for solving 
calibration problems of CRRMs are shown in Table 2. 

Table 2. Set of parameter values for the Latin hypercube and Rosenbrock (LHR) method. 

Number Parameter Name Description Set Value 
1 ALPHA Advance or progress coefficient 3 
2 BETA Setback coefficient −0.5 
3 RLAUNCH RNB launches number 3 
4 LHDIV LH dimension 50 
5 STEPROS Range subdivision parameter 40 
6 ERR Increment in each time step 0.001 
7 MAXN Maximum number of iterations 3000 

2.3.2. University of Arizona’s Shuffled Complex Evolution (SCE-UA) Algorithm 

To benchmark the results obtained from the LHR algorithm, the SCE-UA algorithm developed 
by [9] at the University of Arizona was selected. Its efficiency has been widely recognized worldwide 
in the context of hydrological model calibration. It has a high number of parameters for solving 
optimization problems in water-resource systems [30,50,86]. 

Derived from studies by [9,86] and [51], it was found that the efficiency of the SCE-UA algorithm 
has depended largely on the selection of the algorithm execution parameters. However, a detailed 
analysis of the SCE-UA parameter set is beyond the scope of this study. Therefore, we refer to 
previous studies [9,30,86] to select the parameter set values, where exhaustive analyses were 
performed. 

This algorithm displays certain weaknesses when it is applied to very complex (generally 
distributed) models with a high number of parameters [7,8]. However, this does not affect the scope 
of this analysis. In fact, the National Weather Service River Forecast System’s SAC-SMA model [51,86] 
demonstrated that SCE-UA was an effective, consistent and efficient algorithm for global 
optimization of CRRM parameters [8,9,86,87]. This technique was widely applied for CRRM 
calibration [50,51,67,68,86]. 

2.4. Objective Functions (OF) 
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Automatic optimization techniques require an OF to maximize (or minimize) the given value 
and find the optimal solution. Heretofore, it has not been possible to prove that a specific OF is better 
than others for the calibration of a certain model. However, it is possible to use some specific indices 
for specific problems [88,89]. In this study, to measure the similarity achieved between model output 
and observed data, a combined criterion is applied as an OF [90] (Equation 10). Both algorithms 
maximize this OF [66,77], trying to fit the simulated flows with the observed data through the 
variation of model parameters. 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑂𝐹 (𝜃) =  (𝑤ଵ 𝑁𝑆𝐸 (𝜃) + 𝑤ଶ 𝑙𝑛 𝑁𝑆𝐸 (𝜃) + 𝑤ଷ 𝑟 (𝜃) + 𝑤ସ 𝑀𝑆(𝜃)) (10) 

where θ represents the parameter set of the CRRM, and 𝑤ଵ … 𝑤ସ are the weights for each criteria. In 
this case 𝑤ଵ = 0.25, 𝑤ଶ = 0.25, 𝑤ଷ = 0.25 and 𝑤ସ = 0.25. 𝑁𝑆𝐸  is the Nash–Sutcliffe efficiency [91], 𝑙𝑛 𝑁𝑆𝐸 is a log-transformation of the NSE coefficient [66], 𝑟 is the Pearson’s correlation coefficient 
and 𝑀𝑆 is the mean symmetry measure. Equations (11)–(14) show the mathematical formulation of 
these indices, which were used in similar cases [92,93] with acceptable results. 

We assigned the weights in the OF according to the characteristics evaluated by each index in 
the flow simulation. For WRA, the low flows and the conservation of the mean in the simulated series 
are important parameters for calibration and validation of CRRM [94]. Therefore, some selected 
indices are oriented to the simulation of these values (e.g., in NSE and MS). The NSE criterion tries to 
adjust the high flows in the simulated series with the observed data, and the r index measures the co-
variability of simulated flows with observed data without a bias penalty. 𝑁𝑆𝐸 =  1 −  ൤∑ (ொೞ೔೘ ೔ି ொ೚್ೞ ೔)మ೔ಿసభ∑ (ொ೚್ೞ ೔ି ொത೚್ೞ)మ೔ಿసభ ൨ = f1 (11) 

𝑙𝑛 𝑁𝑆𝐸 =  1 −  ൤∑ (௟௡ ொೞ೔೘ ೔ି௟௡ ொ೚್ೞ ೔)మ೔ಿసభ∑ (௟௡ ொ೚್ೞ ೔ି ௟௡ ொത೚್ೞ ೔)మ೔ಿసభ ൨ = f2 (12) 

𝑟 =  ቎ ∑ (ொೞ೔೘ ೔ିொതೞ೔೘)೔ಿసభ × (ொ೚್ೞ ೔ିொത೚್ೞ)ට∑ (ொೞ೔೘ ೔ିொതೞ೔೘)మ೔ಿసభ × ∑ (ொ೚್ೞ ೔ିொത೚್ೞ)మ೔ಿసభ ቏ = f3 (13) 

𝑀𝑆 = 1 − ቒmax ቀொതೞ೔೘ொത೚್ೞ ; ொത೚್ೞொതೞ೔೘ቁ − 1 ቓଶ
= f4 (14) 

where 𝑄௢௕௦ ௜ and 𝑄௦௜௠ ௜ represent the observed and simulated flow values for the calibration period, 
respectively. 𝑄ത௢௕௦ is the average of the observed flow values for the same period. The best adjustment 
value for each index is the unit (1). The variation range can start from −∞ for NSE, ln NSE and MS. It 
can start, from −1 for r. 

2.5. Calibration and Validation Periods 

Time series from each catchment are divided into the calibration and the validation periods 
according to data availability. The calibration set, roughly 80% of available data, is used during model 
optimization. The validation set is used only to verify the quality of calibrated models on independent 
data. However, until 1980, calibration data were considered a ‘warm-up’ item and were not used to 
compute the OF value. For catchments 1, 2, 3, 4, 5 and 7, the calibration period used was from 1 
October 1980 to 1 September 2002 and the validation period was from 1 October 2002 to 1 September 
2007 (22 years for calibration and 5 for validation). For catchment number 6, the periods spanned 
from 1 October 1995 to 1 September 2005 and 1 October 2005 to 1 September 2007 (10 years for 
calibration and 5 years for validation). For catchment number 8, the periods spanned 1 October 1969 
to 1 September 1988 and 1 October 1988 to 1 September 1993 (19 years for calibration and 5 for 
validation). Finally, for catchment number 9, the periods were 1 October 1950 to 1 September 1970 
and 1 October 1970 to 1 September 1975 (20 years for calibration and 5 for validation). 

3. Discussion and Analysis of Results 

In this section, we discuss the results obtained from the application of a multi-start strategy of a 
direct-search algorithm using SCE-UA as a benchmark algorithm to calibrate CRRMs. 
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3.1. Comparison of the OF Evaluations Number versus Model Complexity 

Measuring the efficiency of an algorithm using the OF evaluations number (iterations) required 
to reach the optimum solution as a comparison parameter facilitates the analysis of the performance 
of two or more algorithms in the solution of the same problem [21]. It is also important to evaluate 
the speed of the algorithms to find an optimal solution, because the best methods are those that 
converge with the better-quality solutions in the minimum possible time [2]. 

To analyse the number of iterations performed by the algorithms, each of the nine case studies 
was conceptualized using three different CRRMs (i.e., GR4J, HBV and SAC-SMA) and calibrated with 
two different optimization techniques (i.e., LHR and SCE-UA), producing 54 different calibration 
scenarios. All experiments were repeated 30 times to consider the randomness of the seed production 
after 1620 calibrations. We did not obviate or set model parameters in the calibration stage to analyse 
the behaviour of the algorithms in front of problems with different numbers of parameters. The 
calibration performed was completely automatic, and the initial parameter values of each model 
corresponded to the mean value of the variation range in every case (see Appendix Table A1). From 
this value, both algorithms were launched under the same modelling conditions and only once in 
each experiment. 

To represent the differences in the number of iterations required for algorithm convergence, we 
show the results in Figure 3. We observe that the performance of LHR improves with the rise in the 
complexity of the CRRM (4, 8 and 16 parameters). 

 
Figure 3. Dispersion and median values in the iteration number required per model type and per 
algorithm to convergence. 

For the 4-parameter model, GR4J, in six of the nine case studies, the LHR displayed better 
behaviour than the SCE-UA by performing fewer iterations to find a solution. In the case of HBV, 
having eight calibration parameters, the LHR was clearly better in six cases. However, for the SAC-
SMA model, having 16 parameters and more complex equations, the LHR performed fewer iterations 
in all cases. As the complexity of the model increases, the LHR algorithm finds the optimal solution 
with fewer iterations than the SCE-UA. Therefore, it is faster. These analyses are necessary because 
as [95] found, studies on the optimization model parameters are recommended to ensure the most 
accurate determination of runoff in the catchments. However, the following section discusses the 
quality of the solutions found by the LHR and SCE-UA algorithms. 

3.2. Comparison of the OF Values 

The OF value reached by an algorithm allows evaluation of the quality of a solution and 
comparing it to others found by different methods to solve the same problem. In this case, we 
compared the OF values reached by the LHR with the SCE-UA algorithm as a benchmark. Figure 4 
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shows the median OF values obtained from the calibration stage (for each case-study by hydrological 
model and for both algorithms), whereas Figure 5 shows the results for the validation stage. 

 
Figure 4. Comparison of the median indices’ values used to calculate the objective functions (OF) 
during the calibration stage for each case-study and for three rainfall–runoff models of different 
complexities. The figure shows Nash–Sutcliffe efficiency (NSE) (a), ln NSE (log-transformation of the 
NSE coefficient) (b), r (c) and MS (mean symmetry measure) (d). Every index is the result of the 
median of 30 simulations in each case-study. 

Figure 4 shows that the median OF values achieved by both algorithms during the calibration 
stage are generally the same in all the study cases for GR4J and HBV. Furthermore, the differences in 
the OF values for the SAC–SMA model are significant, because the LHR found better OF values than 
the SCE-UA in the nine study cases. Thus, the variability of the series is better represented by the set 
of parameters found by the LHR algorithm that that of the SCE-UA. The analysis of the differences 
in the set of parameters found by both algorithms is shown in Section 3.3. 

The calibrations of the nine case studies and the three CRRMs were ‘very good’ or ‘good’, 
according to [96], except in some cases of SAC-SMA, where the calibration was ‘satisfactory’. There, 
lower values of the indices were obtained for the rest of the catchments. We attribute this mainly to 
the complexity of the model. However, it was the best calibration achieved with the conditions 
established to evaluate the performance of both algorithms under the same circumstances. Moreover, 
the results from the validation stage are shown in Figure 5 to demonstrate the capacity of the models 
to represent the processes present in the basins. Generally, we observed that the OF values in the 
validation stage were satisfactory for both algorithms. In basins 2 and 8, the results from SCE-UA 
were slightly better than the results from LHR. 
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Figure 5. Comparison of the median indices’ values used in the validation stage for each case-study 
and for three rainfall–runoff models with different complexities. The figure shows NSE (a), ln NSE 
(b), r (c) and MS (d). Every index is the result of the median of 30 simulations of each case-study. 

An analysis of algorithm efficiency was also performed when a perturbation in the initial 
parameters of the CRRM was added. According to [85], this is an important characteristic in the 
calibration stage. Thus, it was concluded that perturbations in the initial CRRM parameter values did 
not influence the OF value achieved by the algorithms. 

3.3. Comparison of the Effective Parameter Values 

Rarely is there a single solution for a specific problem. ‘Equifinality’ of parameter sets is a 
concept introduced by [97] and [98], who formulated that many different parameter combinations 
gave an acceptable solution of the same problem. Thus, model simulations should be analysed to 
generate a set of confidence parameter into a range determined by the model. 

To establish the valid range of the parameter values for each model, we launched 30 simulations 
for each CRRM and basin with both algorithms. Thus, we considered the randomness of the 
calibration process and each algorithm when searching the optimal solution from different initial 
points in the sample space. If the algorithm converged at the same set of parameters many times from 
different points (seeds), it indicates that it could be an optimal parameter set. 

Figures 6–8 show the optimal solutions found by each algorithm for basin number 5. This 
analysis was performed for the nine case studies. However, the most representative case is shown 
below. 
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Figure 6. Frequency histogram of parameters of the French rural-engineering-with-four-daily-
parameters (GR4J) model for basin 5. 

 
Figure 7. Frequency histogram of parameters of the Swedish Hydrological Office Water-balance 
Department (HBV) model for basin 5. 

The snow parameter values for the four basins are given in Appendix Table A2. Note that, in the 
calibration process described in this paper, the snow parameter was set. The parameters were 
calibrated independently of the 30 simulations for each model, and the snow component was 
considered an independent variable of the rest of the parameters. Therefore, we reduced the 
dimensionality of the calibration problem and tested the algorithms homogeneously in all cases. 

In the histograms of Figures 6 and 7 (GR4J and HBV, respectively), we observed that the 
variability of the solutions found by the LHR algorithm is more widespread than that found by the 
SCE-UA. However, there are also cases where LHR found parameter solutions with minor variations 
from the benchmark algorithm (Figure 6d). We found cases where the parameter variation was 
concentrated in a very short range for 30 repetitions with both algorithms (Figure 7g). 

However, for all the parameter of the GR4J and HBV models, the 30 repetitions were concentred 
in similar ranges with different frequencies. Thus, whereas the mathematical formulation was 
different in both methods, the variability was represented similarly by the algorithms. 

Overall, the solutions found by both algorithms were different in the three CRRMs. However, 
in the results for the SAC-SMA model, the parameters had significant differences. The LHR algorithm 
had less dispersion in the solutions from the 30 simulations than did the SCE-UA for the nine study 
cases. 

Figure 8 shows the frequency histogram of the solutions found by the algorithms in the 
calibration for the SAC-SMA model. It is clear that in most of the parameters, the variability found 
by the LHR algorithm was less than that obtained by solutions with SCE-UA. The LHR plotted 30 
repetitions within a unique range, and there have been cases where it was not possible to identify the 
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range of valid solutions using the SCE-UA algorithm (Figure 8i). This behaviour was observed in at 
least 10 of the 16 parameters calibrated in the SAC-SMA model. Similar conclusions to those 
described in this section were obtained for the other eight. 

 
Figure 8. Frequency histogram of parameters of the SAC-SMA model for basin 5. 

The ranges plotted in Figures 6–8 represent the range where the algorithms found solutions, not 
the total search range of the algorithm, which is given in the Appendix Table A1. 

3.4. Comparison of GR4J, HBV and SAC-SMA Performance 

This analysis was performed to compare the behaviour of different CRRMs in the simulation of 
flows in the same catchment. One may note that in many cases GR4J outperforms HBV and SAC-
SMA. This variability in the behavior of the models was also found in studies such as [99], relating 
this performance also to the basin areas. 

According to the index values in Figure 5, the GR4J model is capable of better simulating the 
low flows in the series, because the value obtained from the ln NSE index is almost always slightly 
higher. The HBV model reflects a high ability to simulate high values better than low flows, because 
the NSE index has better values than does ln NSE. We also identified that the GR4J model had a 
higher capacity to simulate the flows following an extreme rainfall event. Regarding the SAC-SMA 
model, it behaved satisfactorily in all the catchments but has not proved to be the best in any of the 
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cases. This again may be caused by the number of model parameters. Such differences in results are 
not surprising, because, over a decade ago, [100] showed that various CRRMs performed very 
differently for different catchments, even those located in zones with similar climatic conditions [101]. 

3.5. Comparison of the Estimated Runoffs for the Calibration and Validation Periods 

Figures 9 and 10 show the calibration and validation plots per month for catchment 5, 
respectively. The results were analysed for each case-study, using the effective parameter values 
selected in the previous section. We compared the observed flows for each basin with the simulated 
flows estimated from the effective parameters for the validation and calibration stages. Generally, the 
scenario with the least capacity to simulate the measured flows is the SAC-SMA model calibrated 
with the SCE-UA algorithm. It is observed that, for months where flows were high, this scenario 
overestimated values and, when flows were low, it did not have the capacity to represent them. The 
wrong interpretation of the flows measured by this model can also be verified in the OF values 
calculated in Section 3.2. However, when a comparison is made between the scenario of this model 
but calibrated with the LHR algorithm, better performance was observed over the previous scenario 
in both low and high flows. GR4J and HBV represented the variability of measured flows in nearly 
every month independently of the algorithm used to calibrate the model. These results could be 
verified with the validation results (Figure 10). Similar conclusions were obtained for the other eight 
case studies. 
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Figure 9. Comparison of runoff (average year) obtained from the calibration period for catchment 5 
for the three conceptual rainfall–runoff models (CRRMs) and both algorithms. 
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Figure 10. Comparison of runoff (average year) obtained from the validation period for catchment 5 
for the three CRRMs and both algorithms. 

3.6. Sensitivity Analysis of the Parameters of the LHR Algorithm 

One of the fundamental problems in the application of optimization algorithms in the calibration 
of CRRMs consists of the determination of a correct and effective set of parameters to search the OF 
in a reliable and efficient way [102]. A sensitivity analysis of the parameters of the LHR algorithm 
was conducted to determine their impact on the search for the OF. 

The influence evaluation of each parameter on the OF calculation was analysed using 80 
combinations of different parameter sets. Each parameter was attempted with variations between the 
permissible ranges. In each simulation, a unique parameter was variated, whereas the rest retained 
the main value. The analysis was performed for nine catchments. Figure 11 shows the most 
representative cases of this analysis. 

The ALPHA parameter was analysed in a range of values between 0.5 and 10. Figure 11 shows 
that, for very high values of ALPHA (from 7.5–10), high OF values were obtained with a high number 
of iterations. According to previous analyses, this translates into a higher consumption of time. 



Water 2019, 11, 1876 20 of 27 

However, it can be observed that, for very low values of ALPHA (from 0.5–3.5), high OF values are 
reached. In this last range, the OF evaluation number is lower. For average ALPHA values (from 3.5–
7.5), the number of iterations is not very high, but the OF value reached is lower than in the previous 
intervals. The study [31] suggested that this parameter had a value of around 3.0. Based on the 
sensitivity analysis specifically performed for an ALPHA value equal to 3.0, a high OF value, (no the 
highest of all analyses, but acceptable) and a very low number of iterations (the second lowest of all 
analyses) was achieved. 

 
Figure 11. Parameter sensitivity analysis of LHR from 80 algorithm runs. 

Similarly, the BETA parameter was analysed in a range from −0.9–0.1. According to [31], the 
suggested value for this parameter was –0.3. The significant differences shown with the variation of 
this parameter are reflected in the iterations number, rather than in the OF value reached, because 
the latter remains more or less constant according to Figure 11. For values between −0.9 and –0.6, the 
number of iterations increased considerably, and the OF value varied by less than 0.01. For values 
between −0.5 and −0.1, the number of iterations decreased considerably, whereas the OF value 
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reached remained about the same, except for two cases. In the analysis, it was determined that the 
most suitable value for BETA was –0.3, requiring a low number of iterations for reaching a high OF value. 

The number of RNB launches was determined by RLAUNCH. There is a directly proportional 
relationship between this parameter and the number of iterations. The higher the number of launches, 
the greater number of iterations. According to Figure 11, it can be established that for RLAUNCH 
values from 3–5, we get the same OF value, with a different number of iterations. For RLAUNCH 
values greater than 5, the number of iterations increases considerably, but the improvement in the 
OF value achieved does not. For RLAUNCH values less than 1 and 2, the number of iterations was 
smaller but the OF value reached was very low. This determines that the appropriated value of 
RLAUNCH is equal to 3 in cases of WRA. 

LHDIV represents the LH size for initial random sampling. Based on Figure 11, for divisions of 
LH between 40 and 50, the number of iterations was the lowest of all analyses, and the OF value 
achieved was among the highest recorded values. For greater LHDIV , the OF evaluation number 
increased considerably, and the OF value obtained was not necessarily the best. Therefore, the value 
of the selected LHDIV parameter was 50. 

The graph of Figure 11 (corresponding to the STEPROS parameter) shows that the lowest 
number of iterations evaluations is found for a STEPROS equal to 40, whereas the highest OF values 
are found for values between 5.0 and 30. However, the number of iterations increases. For values 
greater than 45 to 100, the number of iterations decreased, compared to the previous interval. Still, 
the OF value is not the best. It has been suggested to use parameter values between 40 and 80. 

MAXN and ERR are the stop criteria of the algorithm, determined according to the dimension 
of the problem to ensure that these do not affect the calculation of the optimal solution. 

This analysis allowed determination of the effective parameters of the LHR algorithm for its 
application in the solution of problems in the calibration of CRRMs for the evaluation of water 
resources shown in Table 2. These parameters are used in the calibration of models used in Section 
3.5. 

4. Conclusions 

In this study, a traditional local-search algorithm coupled with a random sampling method as a 
designer and optimizer of a multi-start strategy was tested. The combination was compared to an 
evolutionary algorithm for the calibration of three CRRMs with different complexities (HBV, GR4J 
and SAC-SMA) for nine headwater basins located in potential drought areas of Spain, with different 
climatic conditions for the WRA. 

We observed that the combination of the local search algorithm, RNB, coupled with an efficient 
random sampling method, LH, which allows prior inspection and evaluation of the launch points of 
the RNB algorithm, works efficiently in the estimation of the optimal parameters of different CRRMs. 
When comparing the results of the LHR algorithm with those obtained by the evolutionary algorithm, 
SCE-UA, we observed that, for models with high complexities, such as the SAC-SMA model, the LHR 
algorithm found significantly better solutions than the SCE-UA, an algorithm widely used in the 
solution of this type of problems. For models like GR4J and HBV, having relatively inferior 
complexities than those of SAC-SMA, the algorithm achieved solutions at least equal to those found 
by the reference algorithm. 

We joined the conclusions of studies of [6,16,17,19], in which it was argued that algorithms 
catalogued as traditional or historical, could work efficiently to solve actual problems if they are used 
correctly. The evaluation of the behaviour of a local-search algorithm improved with the random 
sampling method, in the calibration of the main rainfall–runoff models used in the WRA, was 
considered. Surprisingly, this algorithm gave positive results and, in the nine cases of the SAC-SMA 
model, LHR was the best. 

It was also observed that the selection of the type of model for simulation of flows in a basin 
played an important role, because the same model can behave very differently in each case. In fact, 
the complexity of hydrological models affected the results obtained, depending on the optimization 
technique selected. Finally, we confirmed that for a flow simulation with a given model, distinct 
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optimization methods perform differently for different catchments. Hence, it is recommended that a 
series of repetitive tests with different starting values of parameters by each optimization method be 
undertaken for deciding the most appropriate optimization method. In this case, after a sensitivity 
analysis of parameters of the LHR algorithm, it was possible to establish the set of optimal values to 
use for the calibration of CRRMs. 
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Appendix 

Table A1. Description of the parameters for each CRRM and ranges for the optimization algorithms. 

Type Parameter (Units) Description Min. Max. 
GR4J  

 

X1 (mm) 
Maximum capacity of the 

production store 
100 1200 

X2 (mm/day) Groundwater exchange coefficient  –5 3 

X3 (mm) 
One day ahead maximum 

capacity of the routing store 
20 300 

X4 (days) 
Time base of unit hydrograph 

UH1 
0.5 5.8 

HBV  

Soil parameters 

Betha (dimensionless) 
Shape coefficient of recharge 

function 
1 6 

FC (mm) 
Maximum water storage in the 

unsaturated zone store 
30 650 

PWP (mm) 
Soil moisture value above which 

actual evaporation reaches 
potential evaporation 

30 650 

Groundwater 
near the surface 

parameters 

Lmax (mm) 
Threshold parameter for extra 

outflow from upper zone 
0 100 

K0 (day–1) 
Additional recession coefficient of 

upper groundwater store 
0.001 1 

K1 (day–1) 
Recession coefficient of upper 

groundwater store 
0.001 1 

Deep 
groundwater 
parameters 

K2 (day–1) 
Recession coefficient of lower 

groundwater store 
0.001 1 

Kperc (mm d–1) 
Maximum percolation to lower 

zone 
0.001 1 

 
Snow  

parameters 
TT (°C) Threshold temperature –1.5 2.5 

DD (mm °C–1 day–1) Degree-day factor 0 30 
SAC-SMA  

Surface 
parameters 

PCTIM (decimal 
fraction) 

Impervious fraction of the 
watershed area  

0 0.1 
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ADIMP (decimal 
fraction) 

Additional impervious area 
(decimal fraction) 

0 0.5 

RIVA (decimal 
fraction) 

Riparian vegetation area  0 0.2 

Soil parameters 

UZTWM (mm) 
Upper zone tension water 

maximum storage  
10 500 

UZFWM (mm) 
Upper zone free water maximum 

storage  
10 500 

UZK (day–1) 
Upper zone free water lateral 

depletion rate  
0.1 0.9 

REXP (dimensionless) 
Exponent of the percolation 

equation  
1 5 

ZPERC 
(dimensionless) 

Maximum percolation rate  1 250 

Groundwater 
parameters 

PFREE (decimal 
fraction) 

Fraction of water percolating from 
upper zone directly to lower zone 

free water storage  
0 0.9 

LZTWM (mm) 
Lower zone tension water 

maximum storage  
5 700 

LZFPM (mm) 
Lower zone free water primary 

maximum storage  
5 500 

LZFSM (mm) 
Lower zone free water 

supplemental maximum storage  
5 500 

RSERV (decimal 
fraction) 

Fraction of lower zone free water 
not transferrable to lower zone 

tension water  
1 0.9 

LZPK (day–1) 
Lower zone primary free water 

depletion rate  
0.0001 0.6 

Table A2. Snow parameter values resulting from the independent calibration process for the basins 
with snow influence. 

Case-study Catchments 
Threshold temperature  

TT 
(°C) 

Degree-day factor  
DD  

(mm °C–1 Day–1) 
6 0 10.05 
7 0 11.72 
8 0 4.49 
9 0 15.22 
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