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Abstract: Bacterial communities play essential roles in multiple ecological processes, such as primary
production and nutrient recycling in aquatic systems. However, although the composition, diversity
and function of bacterial communities have been well studied, little is known about the interactions
and co-occurrence characteristics of these communities, let alone their seasonal patterns. To investigate
the seasonal variations of bacterial community interactions, we collected water samples from four
seasons in Lake Taihu and applied network analysis to reveal bacterial community interactions.
Bacterial community networks were non-random in structure, and interactions among bacterial taxa
in the networks varied markedly in different seasons. The autumnal bacterial network was the largest
and most complex among obtained networks, whereas the spring correlation network was the simplest,
having no module hubs or connectors. The important species of the networks were the dominant
bacterial phyla/classes (e.g., Alphaproteobacteria and Bacteroidetes), although their relative abundance
varied among seasons. The relationships between species and measured environmental variables
changed over seasons; fewer environmental factors were correlated with bacterial species in the
spring bacterial network, while we observed a greater number of species-environment correlations in
the winter network. Our study highlights the seasonal differences in bacterial community interactions
and expands our understanding of freshwater microbial ecology in systems affected by aquaculture.

Keywords: network analysis; bacterial community interactions; seasonal variation; aquaculture;
Lake Taihu

1. Introduction

China is the world’s largest producer of aquatic animals, its aquacultural output, which represents
approximately 60% of global production [1]. Lake Taihu is a representative site of freshwater
aquaculture within China. Aquaculture contributed 45% of the agricultural gross domestic product
for the Taihu Lake watershed [2], and the majority of Eastern Lake Taihu has been covered with
aquaculture nets to expand the area of aquaculture since 2006 [3]. Owing to the rapid development of
aquaculture in Eastern Lake Taihu, large quantities of waste materials (e.g., feces, residual feed and
antibiotics) have degraded water quality [4] and influenced the biogeochemical processes mediated by
microorganism [5]. Meanwhile, antibiotic pollution generated further influences the distribution of
antibiotic-resistant bacteria [6].
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Bacterial communities in aquatic systems play essential roles in the ecological processes
of water bodies, including in primary production and nutrient recycling [7,8]. Understanding
interactions (e.g., competition, predation, mutualism and parasitism) between bacterial taxa [9] and
isolating the relationships between bacterial communities and environmental forcing factors (e.g.,
seasonality [10–12] and nutrient concentrations [13,14]) in freshwater ecosystems is an essential theme
in microbial ecology [15]. Numerous studies have been performed to evaluate the composition and
diversity of bacterial communities, which have shown that microorganism assemblages are seasonally
dependent [16–19]. However, most of these studies were centered on the variation of diversity or
composition of bacterial communities, whereas the complex interactions between bacterial taxa and
the seasonal co-occurrence/co-exclusion patterns of lacustrine bacterial communities remain largely
unknown. Furthermore, co-occurrence relationships among bacterial taxa across seasons may provide
valuable insights into the ecological mechanism underlying the response of microbes to environmental
change [20].

The rapid development of high-throughput sequencing technologies has favored network analysis
and the exploration of complex correlations of bacterial communities [21–23]. In an ecological network,
each object (species or gene) is described as a node, and the pairwise relationship is described as
an edge [24,25]. A series of network topological parameters can be used to characterize properties
of the constructed network, such as modularity, clustering coefficient, network diameter, average
path length, graph density and average degree. Moreover, although some co-occurring bacteria may
not interact directly with each other, network analysis could provide effective insight into potential
interactions among bacteria taxa owing to the available network analysis is correlation-based [9]. In the
present study, 32 aquaculture-influenced water samples from Eastern Lake Taihu across four seasons
(i.e., spring, summer, autumn and winter) to investigate the interactions between bacterial taxa and
apply network analysis elucidate the relationships between bacterial interactions and environmental
variables. The following scientific questions were addressed: (i) Do the interactions among bacterial
taxa vary remarkably in different seasonal bacterial groups affected by aquaculture activities? (ii) Do
individual Operational Taxonomic Units (OTUs) play different topological roles in the seasonal bacterial
community networks? (iii) Do the relationships between bacterial species and environmental variables
change over seasons?

2. Materials and Methods

2.1. Sample Collection and Measurement of Physicochemical Variables

We collected 32 water samples from a pair of zones in Eastern Lake Taihu, China (i.e., grass-crab
zone (GC) and grass-crab-fish zone (GCF)) in four seasons (i.e., autumn, October 2015; winter, January
2016; spring, April 2016; summer, August 2016—eight water samples were collected during each
season). Both zones have been subjected to long-term aquaculture. Details of the location and the
distribution of the sampling sites were shown in Figure 1. We collected water samples at 0.5 m
below the surface water. We measured physicochemical properties of water samples (including water
temperature (T), pH and dissolved oxygen (DO)) in situ using a water quality sonde (YSI 6600, Yellow
Springs, OH, USA). Other environmental variables such as chlorophyll-a (Chla), total nitrogen (TN),
total phosphorus (TP), ammonia nitrogen (NH4

+-N), nitrate nitrogen (NO3
−-N) and nitrite nitrogen

(NO2
−-N), were measured in the laboratory following previous methods [14]. Dissolved organic

carbon (DOC) and water transparency were examined as described in a previous study [26].

2.2. DNA Extraction, Polymerase Chain Reaction (PCR) Amplification and Illumina Sequencing

The methods of DNA extraction, amplification and Illumina MiSeq sequencing followed those of
a recent study [26]. The raw sequencing data were deposited in the National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) database (accession number: SRP155498).
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Only OTUs that appeared in at least six samples in each group were selected to improve the network 
reliability [12,39]. The relative proportion of sequence numbers helped in the subsequent correlation 
analysis, as the sequence numbers of obtained individual OTUs obtained varied markedly among 
the different samples [40]. In each group, we constructed a pair of correlation matrices based on the 
relative abundance of the OTUs of each sample. We used the ‘Hmsic’ package in R statistical software 
(v.3.3.1) [41] to calculate both the correlation (R matrix) and significance matrices (P matrix) by 
computing all possible pairwise Spearman’s correlations among all OTUs in each group. We 

Figure 1. Location map of sampling sites in Eastern Lake Taihu. GC, grass-crab zone; GCF,
grass-crab-fish zone.

2.3. Sequence Data Processing and Statistical Analysis

Raw reads of the bacterial 16SrRNA gene were processed using Quantitative Insights Into
Microbial Ecology (QIIME) v.1.9 (http://qiime.org) [27]. We discarded any reads had a quality criterion
with a quality score < 25 or a sequence length shorter than 100 bp for 16S amplicon reads using
Trimmomatic [28]. Only those trimmed sequences that had overlapped lengths longer than 10 bp and a
mismatch density lower than 0.25 were jointed using FLASH (http://ccb.jhu.edu/software/FLASH/) [29].
We identified chimeras and then used UCHIME in the de novo mode to remove them [30]. After the
pre-processing of the obtained sequences, 979255 quality sequences were obtained for the 16S
rRNA. Operating taxonomic units (OTUs) were clustered at 97% sequence similarity by using
the UCLUST (pick_otus.py) [31] in QIIME, and we selected representative sequences by using
VSEARCH (pick_rep_set.py) [32]. The ribosomal database project (RDP) classifier assigned taxonomic
classifications and obtained taxonomic information based on 80% bootstrap cut-off threshold [33,34].
We aligned and filtered representative sequences using the Python Nearest Alignment Space Termination
(PyNAST) algorithm [35] against a bacterial SILVA v.132 database of 16S rRNA genes [36], and the
phylogenetic tree was constructed in FastTree [37]. The final OTU table was generated based on the
clustering results and we excluded suspicious OTUs (sequence number < 2) that occurred in only
one sample [38]. With the minimum numbers of sequences in one sample being 22,136 for the 16S
rRNA gene, subsampled sequences were used for subsequently all OTU-based network analyses.
We analyzed relative abundance of bacteria taxa and diversity of bacterial communities based on the
final OTU table, following a recent study [27].

2.4. Seasonal Network Construction and Characterization

All water samples were divided into four groups (i.e., spring, summer, autumn and winter).
Only OTUs that appeared in at least six samples in each group were selected to improve the network
reliability [12,39]. The relative proportion of sequence numbers helped in the subsequent correlation
analysis, as the sequence numbers of obtained individual OTUs obtained varied markedly among
the different samples [40]. In each group, we constructed a pair of correlation matrices based on
the relative abundance of the OTUs of each sample. We used the ‘Hmsic’ package in R statistical
software (v.3.3.1) [41] to calculate both the correlation (R matrix) and significance matrices (P matrix) by
computing all possible pairwise Spearman’s correlations among all OTUs in each group. We maintained
only strong correlations (Spearman’s rank correlation coefficient, r > 0.9 (or r < −0.9)) and statistically

http://qiime.org
http://ccb.jhu.edu/software/FLASH/


Water 2019, 11, 1868 4 of 17

significant (p ≤ 0.001) results to construct the networks [9,12,42]. The node connectivity (i.e., number
of edges connected to a node) was plotted against the probability P(k) that a node would have that
degree in the network. We used three methods (i.e., power law, exponential law and truncated law) to
fit the degree distribution of the four seasonal networks [43].

The constructed correlation matrix was transformed into a Cytoscape dataset in R and we
then generated topological networks. Network visualization was completed in Cytoscape v.3.6.1
(https://cytoscape.org) [44,45]. Other important information, including nodes (OTUs), edges (positive
or negative interactions), modules and weights, was also imported into Cytoscape. We divided
each seasonal network into modules by fast greedy modularity optimization [46]. The topological
characteristics of seasonal networks were described by modularity, clustering coefficient, average
path length, network diameter, average degree and graph density. We calculated these parameters
using the ‘igraph’ package in R. We used these same parameters to compare our observed networks
with random networks [47]. The network parameters of each random network were the average and
standard deviation of 1000 random networks. Significant differences between the topological indices
of the observed and random networks for each group were determined using a Z-test in R [12].

2.5. Topological Roles of Individual Nodes

We used a pair of parameters (i.e., within-module connectivity (Zi) and connectivity among
modules (Pi)) to describe the topological roles of individual nodes (OTUs) [48]. The distribution
of nodes in the networks was visualized in Sigmaplot (v.12.5). Nodes could be separated into four
subcategories based on the values of Zi and Pi: (i) peripheral nodes (Zi ≤ 2.5, Pi ≤ 0.62); (ii) connectors
(Zi ≤ 2.5, Pi > 0.62); (iii) module hubs (Zi > 2.5, Pi ≤ 0.62); (iv) network hubs (Zi > 2.5, Pi > 0.62) [41].

2.6. Relationships between Bacterial Networks and Environmental Variables

Environmental variables were integrated into the seasonal networks to explore the relationships
between the distribution of nodes (species) and the network and environmental variables. To improve
the reliability of species-environment networks, we considered only statistically significant (p < 0.01)
and robust (r ≥ 0.6 or r ≤ −0.6) correlations. We visualized the species-environment networks using
Cytoscape v.3.6.1 [45].

3. Results

3.1. Network Structure of Bacterial Communities in Different Seasons

Although we constructed four seasonal networks based on species-species correlations using
identical thresholds, we found marked differences in the network size of the bacterial communities.
Specifically, the largest network (905 nodes and 1696 edges) and the smallest network (243 nodes
and 225 edges) occurred in autumn and spring, respectively, while the summer and winter networks
were similar and moderate in size (Table 1 and Figure 2). Additionally, we observed remarkable
differences of bacterial community alpha diversity, with the highest values in autumn and lowest in
spring (Figure S1). Furthermore, significant difference of beta diversity of bacterial community was
found in different seasons (Analysis of Variance (ANOVA): p < 0.001, r = 0.4933; Figure S2). Topological
indices, modularity and the clustering coefficient for the 4 seasonal networks were greater (p < 0.001)
than those of random networks based on Z-tests (Table 1). Moreover, the average path length and the
network diameter of the spring and autumn networks were, respectively, lower and higher than those
of the random networks; however, average path length and network diameter of the summer and
winter networks were more similar to those of random networks (Table 1). The degrees of distribution
of the 4 constructed networks had a best fit with the truncated power law, coefficients of 0.9955, 0.9984
and 0.9936 for the spring, summer and autumn groups, respectively; the winter network had a best fit
by exponential law, with a coefficient of 0.331 (Figure S3).

https://cytoscape.org
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The five phyla/classes including Actinobacteria, Alphaproteobacteria, Bacteroidetes, Betaproteobacteria
and Gammaproteobacteria dominated (having a percentage of nodes >5%) in the four bacterial networks
(Figure 3 and Table S1). These bacterial phyla/classes varied remarkably in different seasons (Figure 3).
Other phyla (e.g., Aminicenantes, Cloacimonetes and Lentisphaerae) only appeared in a single season (Table
S1). Among the five dominant phyla/classes, Bacteroidetes maintained a relatively high abundance
between seasons. Additionally, Cyanobacteria were the most abundant in the summer (Figure 3).
Moreover, we observed the relative abundance of most phyla/classes varied markedly across seasons
(Figure S4).
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Figure 2. Species-species association network divided by modules for the spring (A), summer (B),
autumn (C) and winter (D) bacterial communities. Only correlations between species that were
statistically significant (p < 0.001) and strong (r > 0.9 or r < −0.9) are shown by the solid blue lines
(positive correlations) and dotted pink lines (negative correlations), respectively. Correlations solely
between pairs of operating taxonomic units (OTUs) are not shown. Different bacterial phyla/classes are
represented by different colors, and the number on each node refers to the ID number of each OTU.



Water 2019, 11, 1868 6 of 17

Table 1. Topological properties of the empirical networks of bacterial communities and their associated random networks in different seasons.

Empirical Network Random Network

Groups Number
of nodes Number of edges Modularity Clustering

coefficient

Average
path

length

Network
diameter

Average
degree

Graph
density

Modularity
(SD)

Clustering
coefficient

(SD)

Average
path length

(SD)

Network
diameter

(SD)

Positive Negative

Spring 243 225 0 0.931 a 0.193 a 2.492 a 8 a 1.852 0.008 0.773 (0.016) 0.007 (0.009) 7.488 (0.573) 18.536
(2.400)

Summer 482 521 64 0.852 a 0.251 a 6.445 b 17 b 2.427 0.005 0.699 (0.009) 0.005 (0.004) 6.604 (0.166) 15.627
(1.365)

Autumn 905 1594 102 0.739 a 0.177 a 6.994 a 22 a 3.748 0.004 0.540 (0.004) 0.004 (0.002) 5.240 (0.033) 11.322
(0.792)

Winter 435 440 68 0.851 a 0.196 a 6.723 b 17 b 2.320 0.005 0.714 (0.010) 0.005 (0.004) 6.759 (0.193) 16.230
(1.530)

SD, standard deviation. a Significant difference (p < 0.001) between the empirical network and the random network. b Significant difference (p > 0.05) between the empirical network and
the random network.
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Figure 3. The percentage (%) of OTUs/nodes in each phylum/subphylum in the four seasonal networks
of bacterial communities. Only phyla/classes that appeared in four seasonal species-species association
networks are presented.

3.2. Co-Occurrence/Co-Exclusion Patterns in the Different Seasonal Networks

The modularity values of the four seasonal networks (spring: 0.931, summer: 0.852, autumn: 0.739,
winter: 0.851) were all > 0.4, indicating that all the networks had modular structures. Therefore, we
divided the species-species association networks by module to explore the co-occurrence/co-exclusion
patterns within the different seasonal bacterial communities. The species-species association networks
differed clearly between seasons (Figure 2 and Table S2). All species-species networks contained more
positive correlations (positive edges) than negative correlations (negative edges). The autumn network
contained the most positive correlations and the highest average degree, followed by the summer
and winter networks (Figure 2 and Table 1). We observed the highest modularity value in the spring
network, although this network had no negative correlations.

3.3. Topological Roles of Individual Nodes in Different Seasonal Networks

The topological roles of the OTUs identified in the four seasonal networks are detailed in Figure 4.
Most OTUs (spring: 100%, summer: 98.8%, autumn: 97.5%, winter: 98.4%) were peripherals, with
the majority of their links inside their modules. Among these peripherals, most (99.2%, 91.1%, 79.8%
and 90.4% for spring, summer, autumn and winter, respectively) had no links to other modules
(i.e., Pi = 0). We found no module hubs and connectors in the spring network and all the seasonal
networks lacked network hubs (Figure 4). For the summer network, we observed three module
hubs and three connectors (Figure 4). As well, we found 21 module hubs and two connectors
in the autumn network, as well as five module hubs and two connectors in the winter network
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(Figure 4). Most of these module hubs and connectors belonged to the five dominant phyla/classes
(i.e., Actinobacteria, Alphaproteobacteria, Bacteroidetes, Betaproteobacteria and Gammaproteobacteria; Table 2);
we observed some other phyla/classes occurring in relatively low proportion (i.e., Acidobacteria,
Chloroflexi, Deltaproteobacteria, and Gemmatimonadetes) or some emerging phyla (i.e., Cloacimonetes
and Lentisphaerae) associated to module hubs or connectors. Although Bacteroidetes maintained a
relatively higher proportion in summer, module hubs in the summer network were mainly attached to
Alphaproteobacteria (denovo3272 and denovo0386) (Table 2). In contrast, some module hubs of autumn
and winter networks were affiliated with the phylum Bacteroidetes (autumn: denovo3266, denovo4788,
denovo6589, denovo9608 and denovo10588; winter: denovo3884) (Table 2).
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Figure 4. Zi-Pi plot showing the distribution of OTUs based on their topological roles. Each symbol
represents an OTU in the spring (A), summer (B), autumn (C) or winter (D) bacterial group. The
topological role of each OTU was determined according to the scatterplot of within-module connectivity
(Zi) and among-module connectivity (Pi).
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Table 2. Module hubs and connectors in the species-species association networks. k, p, c, o, f and g represent kingdom, phylum, class, order, family and
genus, respectively.

Season Type of Point Number of Node OTU ID Number of Module Mean Abundance (%) Phylum/Class Lowest Taxonomic Rank

Summer Module hubs 1 denovo3272 B8 0.006 Alphaproteobacteria g__Sphingorhabdus
2 denovo4293 B1 0.013 Unclassified k__Bacteria
3 denovo10386 B6 0.003 Alphaproteobacteria f__Sphingomonadaceae

Connectors 4 denovo830 B1 0.014 Chloroflexi g__Oscillochloris
5 denovo7514 B2 0.095 Deltaproteobacteria g__Labilithrix
6 denovo12061 B3 0.030 Alphaproteobacteria f__Acetobacteraceae

Autumn Module hubs 7 denovo113 C9 0.002 Proteobacteria_unclassified p__Proteobacteria
8 denovo1308 C24 0.035 Gammaproteobacteria o__Chromatiales
9 denovo1615 C10 0.002 Lentisphaerae g__Oligosphaera

10 denovo3226 C6 0.009 Bacteroidetes g__Fluviicola
11 denovo3806 C33 0.010 Unclassified k__Bacteria
12 denovo4788 C14 0.002 Bacteroidetes p__Bacteroidetes
13 denovo6589 C7 0.010 Bacteroidetes g__Terrimonas
14 denovo7064 C23 0.009 Betaproteobacteria c__Betaproteobacteria
15 denovo8549 C29 0.089 Acidobacteria o__Gp6
16 denovo8853 C8 0.014 Unclassified k__Bacteria
17 denovo9608 C14 0.002 Bacteroidetes p__Bacteroidetes
18 denovo9867 C9 0.005 Cloacimonetes c__Candidatus_Cloacamonas
19 denovo9976 C13 0.003 Chloroflexi f__Caldilineaceae
20 denovo10529 C8 0.005 Unclassified k__Bacteria
21 denovo10588 C8 0.017 Bacteroidetes p__Bacteroidetes
22 denovo10876 C12 0.005 Gemmatimonadetes g__Gemmatimonas
23 denovo10885 C34 0.005 Unclassified k__Bacteria
24 denovo11435 C8 0.003 Alphaproteobacteria f__Caulobacteraceae
25 denovo11533 C9 0.002 Unclassified k__Bacteria
26 denovo11626 C11 0.006 Chloroflexi f__Anaerolineaceae
27 denovo11710 C23 0.003 Gammaproteobacteria c__Gammaproteobacteria

Connectors 28 denovo715 C10 0.009 Unclassified k__Bacteria
29 denovo5057 C3 0.003 Bacteroidetes o__Cytophagales

Winter Module hubs 30 denovo95 D3 0.018 Gammaproteobacteria c__Gammaproteobacteria
31 denovo2361 D4 0.315 Betaproteobacteria f__Methylophilaceae
32 denovo2444 D16 0.004 Unclassified k__Bacteria
33 denovo3884 D15 0.003 Bacteroidetes f__Chitinophagaceae
34 denovo13572 D3 0.087 Actinobacteria o__Actinomycetales

Connectors 35 denovo3821 D24 0.623 Alphaproteobacteria f__Rhodobacteraceae
36 denovo9640 D4 0.004 Alphaproteobacteria g__Caulobacter
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3.4. Relationships between Species and Environmental Variables in Different Seasons

We added the measured environmental variables to the four seasonal networks (solid blue
and dotted pink edges represent positive and negative correlations, respectively) to explore the
relationships between species interactions and environmental variables within the different seasons
(Figure S5). Fewer environmental factors affected summer and spring bacterial groups, particularly
in the summer species-environment network, while we observed more correlations between species
interactions and environmental variables in the autumn and winter networks (Figure S5). Although
many environmental factors appeared in the summer network, only a few environmental factors—DO,
T and Chla—correlated strongly with species. Additionally, the summer network demonstrated
a greater number of correlations between different environmental variables. The winter network
contained the highest number of significant (p < 0.01) correlations (40 positive and 71 negative links)
(Table S3). Moreover, the spring and autumn networks contained more positive links (38 and 29 for
spring and autumn, respectively) than negative links (nine and 12 for spring and autumn, respectively).

4. Discussion

4.1. Interactions among Bacterial Taxa in the Correlation Networks Varied Remarkably between Seasons

The biodiversity of a bacterial community includes not only the number and abundance of taxa,
but also the complex interactions among the various bacteria [41,49]. In the present study, the significant
variations observed between the four seasonal networks indicated the markedly variable interactions
among bacterial taxa depending on the season (Figure 2). We observed the fewest interactions (edges)
in spring and highest number of interactions in the autumn (Table 1). These findings contrast to those
of a previous study [12] that found the greatest number of associations in summer and fewest in winter.
Seasonal changes in aquacultural activities may explain the unique interactions between bacterial
taxa in Eastern Lake Taihu. Generally, juvenile aquacultural species polyculture (i.e., crab, fish and
shrimp) only occurs in spring; all adult aquatic products are harvested in autumn. Thus, various
forms of water treatment and disinfection are carried out during larviculture (spring). In autumn,
however, aquacultural species received a greater amount of food, and there is also increased human
activity happen in Eastern Lake Taihu as aquatic products are harvested at this time. Our results
observations do match, however, those of by previous studies [50,51] that found that in sites subjected
to intense aquacultural activities, fewer intensive bacterial interactions occurred in spring and that
these networks became more complex in autumn.

Modularity, an important indicator of network complexity [49], can reflect the diversity of habitat
and the clustering of closely related species [52]. We recorded the highest modularity values for
the spring bacterial network and the lowest values in autumn (Table 1); therefore, the springtime
bacterial community network has more complex correlations within modules, whereas the autumnal
bacterial community network has more complex correlations among modules. As such, the autumnal
bacterial groups may be more stable than bacterial groups in the other three seasons as a response to
environmental change, as indicated by previous results [53]. In addition, the lower average path length
and network diameter of the spring bacterial network, possibly due to the network being smallest
in the spring, suggested that species were interconnected via very short paths. This pattern could
favor the quick and more effective transfer of information (i.e., gives the impression of communication
between bacteria) relative to other seasonal networks [54]. In addition, positive correlations dominated
all species-species networks (Table 1 and Figure 2). Previous studies have suggested that species tend to
have more positive interactions under eutrophic conditions because of reduced competition for nutrients
among species sharing similar ecological niches [12,43,55]. Thus, given the current eutrophication of
Lake Taihu [56,57], the favorable nutrient status for bacterial communities and decreased nutrients
could explain the dominance of positive interactions in our study [58]. However, these correlations
changed markedly between seasons, and therefore, may also reflect both variable nutrients abundance
and changes in the dominant aquaculture activities of the different seasons (Table 3).
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Table 3. Environmental characteristics of water samples collected from Eastern Lake Taihu under aquaculture conditions for each season.

Season T (◦C) pH DO (mg/L) SD (m) Chla (µg/L) TN (mg/L) TP (mg/L) DOC (mg/L) NH4
+-N (mg/L) NO3−-N (mg/L) NO2−-N (mg/L)

Spring 17.19 ± 0.11 8.84 ± 0.60 7.57 ± 0.96 1.26 ± 0.23 2.30 ± 2.38 0.80 ± 0.15 0.072 ± 0.045 7.35 ± 0.86 0.074 ± 0.038 0.165 ± 0.138 0.010 ± 0.004
Summer 31.60 ± 1.02 8.23 ± 0.40 4.02 ± 1.24 0.38 ± 0.11 59.05 ± 26.72 1.25 ± 0.54 0.127 ± 0.035 5.52 ± 1.19 0.021 ± 0.008 0.279 ± 0.078 0.003 ± 0.002
Autumn 19.61 ± 0.13 8.25 ± 0.25 7.43 ± 0.59 0.42 ± 0.10 7.98 ± 3.25 0.64 ± 0.07 0.031 ± 0.005 9.86 ± 2.28 0.058 ± 0.019 0.067 ± 0.029 0.004 ± 0.002
Winter 3.36 ± 0.36 7.96 ± 0.11 7.19 ± 0.79 0.61 ± 0.34 6.47 ± 2.01 1.16 ± 0.22 0.025 ± 0.006 11.32 ± 2.84 0.099 ± 0.026 0.456 ± 0.142 0.006 ± 0.004

T, water temperature; DO, dissolved oxygen; SD, Secchi depth; Chla, chlorophyll a; TP, total phosphorus; DOC, dissolved organic carbon; TN, total nitrogen; NO3
−-N, nitrate nitrogen;

NH4
+-N, ammonia nitrogen; NO2

−-N, nitrite nitrogen.
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4.2. Different Topological Roles of Individual OTUs Observed in Bacterial Community Networks

Individual species (OTUs) have various topological roles in the network [48]. In accordance
with previous studies [40,43,59], individual OTUs in our study could be separated into four types of
topological nodes in a network. However, most OTUs were peripheral OTUs, having the majority
of their links inside their associated modules [41] (Figure 4). Moreover, both connectors and module
hubs played vital topological roles in the network and were associated with the modular nature of the
network [49]. Our results further revealed that not only topological roles of individual OTUs varied
over the seasons, but also modular nature significantly changed across different seasons. These findings
were fully supported by previous studies [12,60]. In addition, we observed an increase in the number
of connectors and module hubs in the autumn network. This pattern indicated that species were more
tightly linked in the autumn, thereby maintaining a more stable bacterial network [53]. On the contrary,
no module hubs or connectors were found in the spring network. This absence suggests that the spring
network could fragment more easily and be more vulnerable to the collapse of the entire network [49].
Meanwhile, the observation of only positive correlations in the spring bacterial communities may also
reflect this instability, as previous work has shown that more negative correlations within ecological
communities enhance the stability of networks under disturbed conditions [43,49].

Most module hubs and connectors were assigned to the five dominant phyla/classes (i.e.,
Actinobacteria, Alphaproteobacteria, Bacteroidetes, Betaproteobacteria and Gammaproteobacteria) (Table 2).
These bacteria adapt easily to environmental change, as shown by their high relative proportions
(Figure 3) [40]. It is worth noting that Alphaproteobacteria are ubiquitous in freshwater lakes
and competitive at utilization of nutrients, as well as capable of degrading complex organic
compounds [61,62]. Therefore, OTUs of this phylum occupied important topological roles in the
summer, autumn and winter bacterial networks, possibly due to the eutrophication of the eastern
portion of Lake Taihu. Additionally, literatures have recorded that Bacteroidetes showed strong
correlations with high concentrations of dissolved organic carbon (DOC) [61,63], which indicated that
Bacteroidetes possessed higher activity under high DOC concentrations. Therefore, OTUs assigned
to Bacteroidetes were more likely to be positioned as module hubs or connectors in the autumn and
winter networks due to the relatively higher DOC concentrations in both of these seasons (Table 3);
subsequently, no Bacteroidetes OTUs acted as module hubs or connectors in the summer bacterial
network when the lowest DOC concentrations were recorded (Table 3).

4.3. Relationships between Species and Environmental Variables Varied between Seasons

The effects of environmental variables on bacterial communities are well known [64–67]; however,
relationships between species interactions and environmental variables remain unclear. In Lake Taihu,
relationships between species networks and environmental variables dramatically changed between
seasons (Figure S5), an observation consistent with previous studies [8,12,68,69]. In addition, we
observed that fewer environmental variables correlated strongly with bacterial species in the spring
than in the other seasons. One of the possible reasons may be attributed to the simpler network
in spring.

Our present study was carried out in a shallow and eutrophic lake [4]. This makes it relatively
easy to have strong hydrological mixing, especially in the summer when rainfall events are more
frequent [70]. Hence, although similar networks were found in summer and winter, the relationships
between species interactions and environmental variables varied remarkably in summer and winter.
This difference may reflect the more homogeneous environmental conditions in summer related to
these more frequent and strong rainfall-related hydrological disturbance in the summer [71]. Moreover,
higher concentrations of TN and TP in the summer also weaken environmental filtering [58], thereby
decreasing the environmental dependence of species. This lower dependence leads to fewer significant
relationships between species interactions and environmental variables in summer. On the contrary,
we observed more negative correlations in the species-environment association network in winter,
especially for those associations that involved temperature. Lower temperatures in winter reduce the
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growth, maintenance and survival rates of microbes [72]; in turn, the environmental dependence of
species increases. Only the seasonal scale was considered in this study, thereby ignoring the effects of
aquaculture on interactions among bacterial taxa. Additionally, given that this study was carried out
in only one year, a multi-year assessment is valuable to explore the effects of aquaculture activities on
bacterial species interactions.

5. Conclusions

Here, we demonstrated that network structures and co-occurrence patterns varied remarkably
between seasons in a freshwater system subjected to a strong aquacultural influence (Eastern Lake Taihu,
China). We observed stronger and more complex interactions in the autumn network and a simpler
bacterial network in the spring. The topological roles of individual OTUs changed over the seasons,
although the dominant phyla/classes maintained key roles in different seasons. We also revealed that
the relationships between species and environmental variables changed markedly over the seasons.
Fewer environmental factors were correlated with bacterial species in spring, while we observed
fewer correlations in the summer species-environment association network and a greater number of
relationships between species and environmental factors in winter. Our findings highlight the effects
of seasonality on bacterial community interactions and provide a basis for a more comprehensive
understanding of the effects of aquacultural activities on freshwater ecosystems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/9/1868/s1,
Figure S1: Diversity (A) and richness (B) of the bacterial communities across seasons. Different letters above
columns show the remarkable differences based on one-way ANOVA with Duncan’s comparisons (p < 0.05).
Figure S2: Non-metric multidimensional scaling analysis (NMDS) of bacterial community composition for
each season (A) and each zone (B) based on the weighted UniFrac distance. Difference was tested based on
999 permutations using ‘anosim’ functions in R. Figure S3: The OTU connectivity distributions of bacterial
community networks in different seasons as fitted by power-law, exponential-law and truncated power-law
models (A, spring; B, summer; C, autumn; D, winter). The x-axis is the node connectivity. The y-axis is the number
of nodes under a given connectivity. The values on both axes are log-transformed. Rsqr values represent the degree
of the fitting models (undetermined fitting value found are shown by ‘Error’). Figure S4: The relative abundance of
dominant bacterial phyla/classes for each season. Phyla/classes with a relative abundance of >0.5% are presented,
whereas those with relative abundance <0.5% were included in the ‘others’ group. The height of each bar denotes
the average relative abundance of each phylum. Asterisks above bars represent significant differences from the
Kruskal-Wallis H-test. * p < 0.05; ** p < 0.01; *** p < 0.001. Figure S5: Species-environment network of bacterial
communities in spring (A), summer (B), autumn (C) and winter (D). Only correlations between species that
were statistically significant (p < 0.001) and strong (r > 0.9 or r < −0.9) are shown by solid blue lines (positive
correlations) and dotted pink lines (negative correlations), respectively. Only correlations between environmental
factors and species interactions that were significant (p < 0.01) are shown. Correlations between pairs of OTUs and
OTUs uncorrelated to any environmental variables are not shown. Different bacterial phyla/classes are represented
by different colors, and the number on each node represents the ID number of each OTU. T, water temperature;
DO, dissolved oxygen; SD, Secchi depth; Chla, chlorophyll a; TN, total nitrogen; TP, total phosphorus; DOC,
dissolved organic carbon. Table S1: The percentage (%) of OTUs/nodes in the bacterial networks assigned to each
phylum/subphylum for each season. Table S2: The top 10 correlations of the species-species association network
in the present study. Table S3: The number of positive/negative links between environmental variables and species
interactions in species-environment association network of the different seasons.

Author Contributions: Conceptualization, D.Z. and Y.L.; Methodology, X.C. and C.J.; Software, X.C. and Y.L.;
Validation, Y.L., D.Z. and J.Z.; Formal Analysis, C.J. and Y.L.; Investigation, C.J. and Y.L.; Writing—Original Draft
Preparation, Y.L.; Writing—Review and Editing, D.Z. and J.Z.; Supervision, D.Z.; Funding Acquisition, D.Z. and
J.Z.

Funding: This research was funded by the National Key R&D Program of China (2016YFC0402710), the
National Natural Science Foundation of China (31730013, 41621002, 41571108, 41671078 and 41871096), the
National Key Technology R&D Program (2015BAD13B01), the Key Research Program of Frontier Science, CAS
(QYZDJ-SSW-DQC030), the Natural Science Foundation of Jiangsu Province (BK20181311), the Fundamental
Research Funds for the Central Universities (2018B43414) and the Belt and Road Special Foundation of the State
Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (2018490211).

Acknowledgments: We thank Huiming Xu and Xiaowei He for sample collection and water filtration.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.mdpi.com/2073-4441/11/9/1868/s1


Water 2019, 11, 1868 14 of 17

References

1. FAO. The State of World Fisheries and Aquaculture 2018—Meeting the Sustainable Development Goals.
2018. Available online: http://www.fao.org/3/i9540en/I9540EN.pdf (accessed on 12 July 2018).

2. Cai, C.; Gu, X.; Ye, Y.; Yang, C.; Dai, X.; Chen, D.; Yang, C. Assessment of pollutant loads discharged from
aquaculture ponds around Taihu Lake, China. Aquac. Res. 2013, 44, 795–806. [CrossRef]

3. Fang, Y.; Li, H.; He, H. Dynamic Monitoring of Lake Reclamation in the Taihu Lake and Lake Enclosure
Culture of the East Taihu Lake in Recent 30 Years. Resour. Environ. Yangtze Basin 2012, 21, 121–126.

4. Qin, B.; Xu, P.; Wu, Q.; Luo, L.; Zhang, Y. Environmental issues of lake Taihu, China. In Eutrophication of
Shallow Lakes with Special Reference to Lake Taihu, China; Springer: Berlin/Heidelberg, Germany, 2007; pp. 3–14.

5. Wu, Y.; Xiang, Y.; Wang, J.; Zhong, J.; He, J.-Z.; Wu, Q.L. Heterogeneity of archaeal and bacterial
ammonia-oxidizing communities in Lake Taihu, China. Environ. Microbiol. Rep. 2010, 2, 569–576. [CrossRef]
[PubMed]

6. Yin, Q.; Yue, D.; Peng, Y.; Liu, Y.; Xiao, L. Occurrence and Distribution of Antibiotic-resistant Bacteria and
Transfer of Resistance Genes in Lake Taihu. Microbes Environ. 2013, 28, 479–486. [CrossRef]

7. Grossart, H.-P.; Ploug, H. Microbial degradation of organic carbon and nitrogen on diatom aggregates.
Limnol. Oceanogr. 2001, 46, 267–277. [CrossRef]

8. Jiao, N.; Herndl, G.J.; Hansell, D.A.; Benner, R.; Kattner, G.; Wilhelm, S.W.; Kirchman, D.L.; Weinbauer, M.G.;
Luo, T.; Chen, F.; et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon
storage in the global ocean. Nat. Rev. Genet. 2010, 8, 593–599. [CrossRef] [PubMed]

9. Weiss, S.; Van Treuren, W.; Lozupone, C.; Faust, K.; Friedman, J.; Deng, Y.; Xia, L.C.; Xu, Z.Z.; Ursell, L.;
Alm, E.J.; et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision.
ISME J. 2016, 10, 1669–1681. [CrossRef]

10. Gilbert, J.A.; Field, D.; Swift, P.; Newbold, L.; Oliver, A.; Smyth, T.; Somerfield, P.J.; Huse, S.; Joint, I. The
seasonal structure of microbial communities in the Western English Channel. Environ. Microbiol. 2009, 11,
3132–3139. [CrossRef]

11. Gilbert, J.A.; Steele, J.A.; Caporaso, J.G.; Steinbrück, L.; Reeder, J.; Temperton, B.; Huse, S.; McHardy, A.C.;
Knight, R.; Joint, I. Defining seasonal marine microbial community dynamics. ISME J. 2012, 6, 298–308.
[CrossRef]

12. Zhao, D.; Shen, F.; Zeng, J.; Huang, R.; Yu, Z.; Wu, Q.L. Network analysis reveals seasonal variation of
co-occurrence correlations between Cyanobacteria and other bacterioplankton. Sci. Total Environ. 2016, 573,
817–825. [CrossRef]

13. Nelson, C.E. Phenology of high-elevation pelagic bacteria: The roles of meteorologic variability, catchment
inputs and thermal stratification in structuring communities. ISME J. 2009, 3, 13–30. [CrossRef] [PubMed]

14. Zhao, D.; Cao, X.; Huang, R.; Zeng, J.; Xu, H.; Wang, S.; He, X.; Yu, Z.; Shen, F. The heterogeneity of
composition and assembly processes of the microbial community between different nutrient loading lake
zones in Taihu Lake. Appl. Microbiol. Biotechnol. 2017, 101, 5913–5923. [CrossRef] [PubMed]

15. Jones, A.C.; Hambright, K.D.; Caron, D.A. Ecological patterns among bacteria and microbial eukaryotes
derived from network analyses in a low-salinity lake. Microbial Ecol. 2018, 75, 917–929. [CrossRef] [PubMed]

16. Kandel, P.P.; Pasternak, Z.; Nahum, O.; Van Rijn, J.; Jurkevitch, E. Abundance, diversity and seasonal
dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol. Ecol. 2014, 89,
149–161. [CrossRef] [PubMed]

17. Wang, L.; Li, T. Effects of seasonal temperature variation on nitrification, anammox process, and bacteria
involved in a pilot-scale constructed wetland. Environ. Sci. Pollut. R. 2015, 22, 3774–3783. [CrossRef]
[PubMed]

18. Denef, V.J.; Fujimoto, M.; Berry, M.A.; Schmidt, M.L. Seasonal Succession Leads to Habitat-Dependent
Differentiation in Ribosomal RNA:DNA Ratios among Freshwater Lake Bacteria. Front. Microbiol. 2016, 7, 32.
[CrossRef]

19. Giovannoni, S.J.; Vergin, K.L. Seasonality in Ocean Microbial Communities. Science 2012, 335, 671–676.
[CrossRef]

20. Williams, R.J.; Howe, A.; Hofmockel, K.S. Demonstrating microbial co-occurrence pattern analyses within
and between ecosystems. Front. Microbiol. 2014, 5, 358. [CrossRef]

http://www.fao.org/3/i9540en/I9540EN.pdf
http://dx.doi.org/10.1111/j.1365-2109.2011.03088.x
http://dx.doi.org/10.1111/j.1758-2229.2010.00146.x
http://www.ncbi.nlm.nih.gov/pubmed/23766227
http://dx.doi.org/10.1264/jsme2.ME13098
http://dx.doi.org/10.4319/lo.2001.46.2.0267
http://dx.doi.org/10.1038/nrmicro2386
http://www.ncbi.nlm.nih.gov/pubmed/20601964
http://dx.doi.org/10.1038/ismej.2015.235
http://dx.doi.org/10.1111/j.1462-2920.2009.02017.x
http://dx.doi.org/10.1038/ismej.2011.107
http://dx.doi.org/10.1016/j.scitotenv.2016.08.150
http://dx.doi.org/10.1038/ismej.2008.81
http://www.ncbi.nlm.nih.gov/pubmed/18784755
http://dx.doi.org/10.1007/s00253-017-8327-0
http://www.ncbi.nlm.nih.gov/pubmed/28523397
http://dx.doi.org/10.1007/s00248-017-1087-7
http://www.ncbi.nlm.nih.gov/pubmed/29110066
http://dx.doi.org/10.1111/1574-6941.12342
http://www.ncbi.nlm.nih.gov/pubmed/24749684
http://dx.doi.org/10.1007/s11356-014-3633-x
http://www.ncbi.nlm.nih.gov/pubmed/25263418
http://dx.doi.org/10.3389/fmicb.2016.00606
http://dx.doi.org/10.1126/science.1198078
http://dx.doi.org/10.3389/fmicb.2014.00358


Water 2019, 11, 1868 15 of 17

21. Ings, T.C.; Montoya, J.M.; Bascompte, J.; Blüthgen, N.; Brown, L.; Dormann, C.F.; Edwards, F.; Figueroa, D.;
Jacob, U.; Jones, J.I. Ecological networks–beyond food webs. J. Anim. Ecol. 2009, 78, 253–269. [CrossRef]

22. Poulin, R. Network analysis shining light on parasite ecology and diversity. Trends Parasitol. 2010, 26, 492–498.
[CrossRef]

23. Proulx, S.; Promislow, D.; Phillips, P. Network thinking in ecology and evolution. Trends Ecol. Evol. 2005, 20,
345–353. [CrossRef] [PubMed]

24. Bascompte, J. Networks in ecology. Basic Appl. Ecol. 2007, 8, 485–490. [CrossRef]
25. Montoya, J.M.; Pimm, S.L.; Solé, R.V. Ecological networks and their fragility. Nature 2006, 442, 259–264.

[CrossRef] [PubMed]
26. Zeng, J.; Lin, Y.; Zhao, D.; Huang, R.; Xu, H.; Jiao, C. Seasonality overwhelms aquacultural activity in

determining the composition and assembly of the bacterial community in Lake Taihu, China. Sci. Total
Environ. 2019, 683, 427–435. [CrossRef] [PubMed]

27. Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.;
Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data.
Nat. Methods 2010, 7, 335–336. [CrossRef] [PubMed]

28. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics
2014, 30, 2114–2120. [CrossRef] [PubMed]
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