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Abstract: Sudden floods in the medium and small watershed by a sudden rainstorm and locally
heavy rainfall often lead to flash floods. Therefore, it is of practical and theoretical significance to
explore appropriate flood forecasting model for medium and small watersheds for flood control
and disaster reduction in the loess region under the condition of underlying surface changes. This
paper took the Gedong basin in the loess region of western Shanxi as the research area, analyzing the
underlying surface and floods characteristics. The underlying surface change was divided into three
periods (HSP1, HSP2, HSP3), and the floods were divided into three grades (great, moderate, small).
The paper applied K Nearest Neighbor method and Fireworks Algorithm to improve the Extreme
Learning Machine model (KNN-FWA-ELM) and proposed KNN-FWA-ELM hybrid flood forecasting
model, which was further applied to flood forecasting of different underlying surface conditions and
flood grades. Results demonstrated that KNN-FWA-ELM model had better simulation performance
and higher simulation accuracy than the ELM model for flood forecasting, and the qualified rate was
17.39% higher than the ELM model. KNN-FWA-ELM model was superior to the ELM model in three
periods and the simulation performance of three flood grades, and the simulation performance of
KNN-FWA-ELM model was better in HSP1 stage floods and great floods.

Keywords: loess region; medium and small watershed; flood forecasting; k nearest neighbor method;
fireworks algorithm; extreme learning machine; hybrid approach

1. Introduction

In recent years, with the improvement of hydrological data acquisition technology and the
development of artificial intelligence computing, data-driven flood forecasting models have gained
increasing attention [1–8]. The development of intelligent computing has gone through three important
stages. The first stage witnessed the emergence of mathematical statistics information technology based
on Bayes theory. “Black box” models represented by artificial neural network emerged in the second
stage, and, in the third stage, machine learning methods were discovered. With the improvement of
computer technology, machine learning has gained increasing application fields, including the field of
hydrology and water resources [9–15]. In the aspect of flood forecasting, machine learning can provide
methods for constructing a data-driven high-speed flood forecasting model that can reflect the nonlinear
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mechanism of flood process in watersheds. By now, the typical machine learning methods mainly
include support vector machine (SVM), BP neural network, artificial neural network (ANN), adaptive
neuro-fuzzy inference system (ANFIS), deep learning, and extreme learning machine (ELM) [16].
Hadi et al. [17] made a comparison of the applicability between three data-driven models-ANN,
ANFIS, and SVM to flood discharge simulation in three different watersheds. The results show that, in
all the watersheds, both ANN model and ANFIS model simulate floods more accurately than SVM
does; ANN model and ANFIS model have similar simulation process, but the former performs better;
among all the models, ANN is the best in peak discharge simulation; the simulation accuracy of
the models are reduced by the factors, such as small area, steep slope, flood fluctuation, and so on.
He et al. [18] compared river discharge forecasting results in the typical semiarid hilly region between
three data-driven models-ANN, ANFIS, and SVM, and the results indicate that SVM model boasts
better forecasting performance than ANN and ANFIS model. Taormina et al. [19] combined ELM with
Binary-coded Discrete Fully Informed Particle Swarm Optimization (BFIPS) to select an optimal input
data set for rainfall-runoff simulation. Lima et al. [9] evaluated the forecasting accuracy and calculation
speed of the discharge forecasting of ELM and ANN trained by Gradient Descent Algorithm, and the
results suggest that ELM and ANN have similar performance, and the former shows faster calculation
speed than the latter except for large data sets with multiple predictor variables. Lima et al. [20]
selected two small watersheds in Colombia as a study area, used online sequence extreme learning
machine model to make daily runoff simulation and forecasting in the watersheds, and compared it
with online sequence multiple linear regression model. The result is that online sequence extreme
learning machine is easily superior in forecasting to online sequence multiple linear regression model.
Wang et al. [21] combined BP neural network model with Xin’anjiang hydrological model, which
was used for Anding River watershed flood forecasting. The results show that the improved flood
forecasting model can effectively decrease the calibration time of BP neural network and improve flood
forecasting accuracy. Kong et al. [22] proposed a method for flood forecasting by integrated extreme
learning machine based on similarity matching. The method can adaptively select appropriate ELM
construction integration for different test samples, thus improving flood forecasting accuracy. Liu [23]
applied parallel extreme learning machine model to flood forecasting in Wei River and the Hanjiang
River watersheds, rendering satisfactory forecasting results and high operational efficiency. Evidently,
it is applicable to flood forecasting in the foregoing watersheds. Kan et al. [24] combined artificial
neural network with K Nearest Neighbor (KNN) method, constructed a flood forecasting model based
on coupled machine learning, and applied it to flood forecasting in Tunxi River watershed. The results
show that the model has high forecasting accuracy and reliability. Extreme learning machine [25] is a
single hidden layer feed-forward neural network model characterized by simple construction, fast
training speed, strong generalization, stable learning performance, and capability of avoiding local
minimum values to some extent. Therefore, the method is favored by scholars in related fields, and
has been widely applied in evapotranspiration forecasting [26], wind power forecasting [27], medium
and long-term rainfall forecasting [28], drought forecasting [29,30], and many other fields.

As the economy and society develop, human activities impose ever-increasing influence on the
natural environment. The loess region, with inherently fragile natural environment vulnerable to
the long-run inappropriate human activities, has to face serious water loss and soil erosion. Due to
complex topographical and geomorphological conditions and frequent storm rainfall, the loess region
has become a place frequently threatened by flash flood disaster. Therefore, the storm flood in the
loess region is very typical and representative and thus has aroused extensive attention from scholars.
Wang et al. [31] conducted a statistical analysis on the data of rainfall floods in the four typical small
watersheds of the loess region—Shejiagou watershed, Zizhou Tuanshangou watershed, Chabagou
watershed, and Liujiagou watershed—and drew the conclusion that the flood in the loess region
features high, short-duration, rapidly rising, and falling peak. Zhang et al. [32] constructed lumped,
semi-distributed, and fully-distributed rainfall-runoff models for Gushanchuan watershed of the loess
region based on LCM (Liu Changming Model) applicable to the excess infiltration runoff generation of
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the loess plateau and compared and analyzed the simulation accuracy and calculation efficiency of
the models. The results show that the fully-distributed model has the highest simulation accuracy,
the lumped model has the highest calculation efficiency, and the semi-distributed model also renders
high calculation efficiency while ensuring high simulation accuracy. Li [33] analyzed the change
trend of the storm floods in Chabagou watershed, made flood simulation in the watershed based on
multi-water source Time Varying Gain Model, used the parameters before and after the change of the
underlying surface to simulate and analyze the floods of different grades, and estimated the influence
of the change of the underlying surface on the flood. The results indicate that as the underlying
surface of the watershed changes, the peak discharge and the flood volume become attenuated, and
the peak discharge is attenuated more than the flood volume. The change of the underlying surface
has an obvious peak clipping effect on moderate and great floods and attenuation effect on small
floods. Yang [34] made flood simulation in Beiyu River watershed based on HEC-HMS (Hydrologic
Engineering Center-Hydrological Model System) model, and the results tell that vegetation restoration
can effectively improve the runoff generation conditions of the watershed and reduce peak discharge,
which has an important guiding significance for flood control and disaster mitigation in watersheds.
Feng [35] selected 20 floods in Chabagou watershed, constructed multiple linear regression model, BP
neural network model, and detrended cross-correlation analysis (DCCA) method, and constructed a
combined BP neural network model based on Multiple Linear Regression-Detrended Cross Correlation
Analysis (MLR-DCCA) to forecasting flood discharge. The results indicate that the combined model
has better simulation effect and higher simulation accuracy than the single model.

According to the current research status, scholars have achieved some research achievements
in the flood forecasting model and flood simulation in medium and small watershed of the loess
region, but there are still some issues that need to be clarified: (1) The research on flood forecasting
in medium and small watershed in the loess region mostly concentrates on statistical methods and
process-driven hydrological models, and most of the existing data-driven flood forecasting models do
not consider the impact of underlying surface changes. The research results reflecting the impact of
the underlying surface of medium and small watershed in the loess region on flooding and the flood
forecasting are relatively scare; (2) There are several articles in the literature on flood forecasting using
a single machine learning model, but in the actual flood forecasting process, there is a lack of single
machine learning methods. In the flood forecasting of a medium and small watershed in the loess
region, the research on data-driven hybrid models obtained by combining different machine learning
methods and achieving complementary advantages is less. Based on the extreme learning machine,
this paper discussed its shortcomings in flood forecasting and used intelligent optimization algorithm
and machine learning method to improve it. A hybrid flood forecasting model was proposed and
applied to the flood forecasting of a medium and small watershed in the loess region. By comparing the
simulated flood forecasting results of the hybrid and single model under different underlying surface
conditions and flood characteristics, the applicability of the hybrid model in a medium and small
watershed of the loess region was evaluated, and its advantages in flood forecasting were explored.
The conclusions of the paper could provide significant guidance for the actual flood forecasting in a
medium and small watershed in the loess region, which has important theoretical significance and
practical value.

2. Study Area

2.1. Characteristics of Underlying Surface

2.1.1. Geographical Position

Gedong basin is located in the northeast of Fangshan County of Lvliang City of Shanxi Province,
with geographical coordinates of 111◦03′ to 111◦35′ east longitude and 37◦38′ to 38◦11′ north latitude,
and area of about 724 km2, as shown in Figure 1. It is a typical medium and small watershed.
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geomorphological types in Gedong basin, namely denudated and eroded high and medium 
mountain, denudated and eroded high mountain, ridge loess hill, hilly loess hill, and sedimentary 
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2.1.2. Topographical and Geomorphological Conditions

Gedong basin is located in the loess plateau in the northwest of Shanxi Province, where the soil
is loose, the storm rainfall and heavy rainfall mostly occur in summer and autumn, and the rainfall
converging in a short time easily forms highly-erosive surface runoff and contributes to the thousands
of gullies in the loess plateau. It features frequent rainfall storms, fast flow, and steep slopes.

According to the survey of the relevant geological disasters in the watershed, there are five
geomorphological types in Gedong basin, namely denudated and eroded high and medium mountain,
denudated and eroded high mountain, ridge loess hill, hilly loess hill, and sedimentary valley, of
which the loess hill accounts for 40% of the total area of the watershed, so Gedong basin is a typical
loess region.

The Digital elevation map, slope type, slope aspect, and slope gradient can well reflect the
topographical features of the watershed, as shown in Figures 2–5, respectively.
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From the digital elevation map, it is evident that the basin is high in the east and north and low in
west and south generally. The slope type can be described and quantified by the curvature of slope
surface: the curvature of liner slope and the convex slope is equal to or greater than 0, while that
of concave slope and stepped slope is smaller than 0. According to slope type analysis, the slopes
in the watershed are mainly concave and stepped. The basin is mainly represented by shady slope
(0◦–22.5◦ and 337.5◦–360◦, 22.5◦–67.5◦, 67.5◦–112.5◦, 112.5◦–157.5◦) and sunny slope (157.5◦–202.5◦,
201.5◦–247.5◦, 247.5◦–292.5◦, 292.5◦–337.5◦). In the loess region, compared with the shady slope, the
sunny slope has poor water conditions, which are not suitable for vegetation growth, which makes
the erosion severe and breaks the terrain. Therefore, the slope of the sunny slope is steeper than the
shady slope. From the slope aspect analysis, the sunny slope accounts for about 60%, and the shady
slope accounts for about 40%. It can be seen that the Gedong basin is dominated by a sunny slope, the
terrain is relatively fragmented, and the slope is steep. From the slope gradient analysis, it is known
that the part with slope gradient of 0–6◦ accounts for 15% of the total area of the basin, that of 25–55◦

accounts for 5%, and that of 6–15◦ and 15–25◦ accounts for 45% and 35%, respectively, which suggests
the basin is dominated by the part with a slope gradient of 6–15◦ and 15–25◦. In general, the basin
terrain is relatively fragmented, and the slope is steep.

2.1.3. Soil and Land Use

The soil type in Gedong basin is simple, mainly composed of clay loam and sandy loam. The
remote sensing images were used to invert the land use of the basin above Gedong Hydrological
Station, respectively, in 1987, 1990, 1996, 2003, 2007, and 2012, mainly including forestland, grassland,
cultivated land, construction land, and lands for other purposes (Figure 6). The area and percent of
land-use types are shown in Table 1.

It can be seen in Table 1 that the land use of the basin is mainly used as forestland and then
grassland and cultivated land. From 1987 to 2012, the area of forestland and grassland showed an
increasing trend, while that of cultivated land constantly decreased. Compared with 1987, the percent
of forestland and grassland increased by 17.73% and 6.78%, respectively, and that of cultivated land
decreased by 23.64% in 2012, which indicated that the land use in the basin changed significantly and
the policy of returning cultivated land to forestland and grassland made remarkable progress.
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Table 1. Different land-use types and their percentage of the total area.

Land Use Type
1987 1990 1996

Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage (%)

Forestland 313.56 43.31 333.33 46.04 334.13 46.15
Grassland 124.96 17.26 130.46 18.02 142.34 19.66

Cultivated land 255.43 35.28 242.32 33.48 220.60 30.47
Construction land 3.48 0.48 5.14 0.71 5.57 0.77

Other land 26.57 3.67 12.74 1.75 21.36 2.95

Land Use type
2003 2007 2012

Area (km2) Percentage (%) Area (km2) Percentage (%) Area (km2) Percentage (%)

Forestland 393.28 54.32 410.80 56.74 441.93 61.04
Grassland 158.41 21.88 159.42 22.02 174.05 24.04

Cultivated land 149.43 20.64 128.22 17.71 84.27 11.64
Construction land 13.18 1.82 18.17 2.51 23.53 3.25

Other land 9.70 1.34 7.39 1.02 0.22 0.03

The analysis of the underlying surface characteristics of the basin, relevant data, and field survey
showed that the building of artificial terraces was started from the early 1960s and probably completed
in 1979. Artificial terraces are strip-shaped platform-like or sectioned wave layer-like cultivated land
built along the contour line, an effective way to water loss and soil erosion control in sloping cultivated
land, playing a significant role in water storage, soil conversation, and yield increase. The land on the
hillside is mostly built into stair-like sections (Figure 7), which is favorable to increase the infiltration
of surface runoff and reduce soil erosion on slopes, thereby improving site conditions and increasing
agricultural production gain. The terraced area is 76.75 km2, accounting for 10.6% of the total area of
the basin.

In the basin, a small area of afforestation appeared from 1980 to 2000, after which the policy of
returning cultivated land to forestland and grassland was implemented, and the large-scale afforestation
has been initiated. Ren et al. [36] analyzed the flood evolution characteristics in different periods of
Gedong basin and found that the characteristics of the underlying surface changed little from the 1980s
to the 1990s. Therefore, according to the implementation of soil and water conservation measures in
the basin, land use, and related literature, the Hydrologic Surface Period is divided into 1964–1979,
1980–2000, and 2001–2016, which are represented by HSP1, HSP2, and HSP3, respectively.
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Figure 7. Terraces in Gedong basin.

2.2. Meteorological and Hydrological Characteristics

2.2.1. Meteorological Characteristics

The basin is characterized with warm temperate continental arid and semi-arid monsoon climate
with obvious seasonal changes where the spring is low-temperature, dry, and windy, the summer
is short, warm, hot, and much rainy, the autumn is cool with a pleasant climate, and the winter is
long, dry, and cold. Its average annual temperature is 8.7 ◦C, coldest in January with average monthly
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temperature of −9.5 ◦C and extreme low temperature of −28.6 ◦C (January 19, 1998), and hottest in July
with average monthly temperature of 21.3 ◦C and extreme high temperature of 35.6 ◦C (June 22, 2005).
Its average frost period is 160 days, and maximum frozen soil is 90 cm to140 cm deep.

2.2.2. Hydrological Characteristics

In the Gedong basin, the average annual rainfall is 363.8 mm, of which July and August account for
more than 80%. According to the historical statistical data of Gedong Hydrological Station, the average
annual runoff is 109 million m3. The hydrological data of the basin from 1964 to 2016 was sourced
from Lvliang Branch of the Hydrology and Water Resources Survey Bureau of Shanxi Province. There
are six rainfall gauging stations (i.e., Kai-Fu station, Ma Fang station, Ji Cui station, Wen Jiazhuang
station, Shang Yangwan station, and Guo Jiazhuang station) and one runoff gauging station (Ge Dong
station) distributed in the basin, as shown in Figure 8.
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2.2.3. Flood Frequency Distribution Characteristics

Flood recurrence interval N (years) is the reciprocal of flood frequency, that is, N = 1/P, and
flood frequency refers to the cumulative frequency of peak discharge. Flood recurrence interval or
flood frequency can scientifically reflect the probability of flood occurrence and eliminate an influence
factor-area of the watershed, which can hereby be used as a unified index for flood grading in
watersheds. According to the Standard for Flood Control (GB50201-2014) enacted by the Ministry
of Water Resources and the Ministry of Housing and Urban-Rural Development of the People’s
Republic of China, a flood can be classified into five grades by flood recurrence interval as an index.
The classification results are shown in Table 2.

Table 2. Classification of flood grade.

Flood Grade Flood Recurrence Interval (Year) Flood Frequency (%) Flood Type

1 <5 >20 small
2 5–10 10–20 moderate
3 10–50 2–10 great
4 50–100 1–2 extraordinary
5 >100 <1 abnormal
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Based on the studies by Ren et al. [36], the observed data was supplemented and improved.
According to the above-mentioned national standard for flood control and the latest standard of flood
frequency classification based on hydrological analysis of the Hydrology and Water Resources Survey
Bureau of Shanxi Province, the frequency distribution curve of 46 floods in Gedong basin from 1964 to
2016 was revised. The results are shown in Figure 9.
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It is known from the figure that there were 0 flood in the recurrence interval of more than 100 years,
0 flood in the occurrence interval of 50 to 100 years, four floods in the occurrence interval of 10 to 50
years, four floods in the occurrence interval of 5 to 10 years, and 38 floods in the occurrence interval of
less than 5 years. According to the historical floods of Gedong basin and based on Table 2 and Figure 9,
the 46 floods were classified into small, moderate, and great floods, of which small floods had peak
discharge of less than 180 m3/s, moderate floods 180–350 m3/s, and great floods more than 350 m3/s.

3. Materials and Methods

3.1. Principle of ELM

ELM, proposed by Professor Huang from the Nanyang Technological University of Singapore in
2004 [25], is a single hidden layer feed-forward neural network model. Compared with traditional
neural network models, ELM is a nonlinear neural network model capable of randomly obtaining the
input weight and offset and then calculating the output weight, which means that the output weight
changes as the input weight and offset change [25,37–39]. This is the reason that ELM is faster in
learning and better in generalization than any traditional neural network. The structure of the ELM is
shown in Figure 10.

ELM establishment assumes there are N arbitrary samples (Xi, ti), of which Xi = [xi1, xi2, . . . ,xin] ∈
Rn, ti = [ti1, ti2, . . . ,tin]T

∈ Rn, then an ELM model containing M hidden layer nodes can be expressed
as:

M∑
i=1

βig(ωi ·Xi + ϕi) = O j j = 1, 2, · · · , N (1)

where βi is the output weight; g(x) is the activation function of ELM; ωi = [ωi1, ωi2, . . . ,ωin]T is the
input weight; ωi · Xi is the inner product of ωi and Xi; ϕi is the offset of the i-th hidden layer unit; O j is
the output value of ELM model.
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The ultimate goal of the ELM model is to minimize the error between the output value O j and the
measured value tj, which is expressed by the formula below:

N∑
j=1

‖O j − t j‖ = 0 (2)

That is, find βi, ωi, and ϕi to make the following equation true:

M∑
i=1

βig(ωi ·Xi + ϕi) = t j j = 1, 2, · · · , N (3)

The above formula can be similar to a single hidden layer neural network, expressed as the
matrix below:

Hβ = T (4)

where H is the output of the single hidden layer node; β is the output weight; T is the ideal output value.
The output matrix H of the single hidden layer node is defined as:

H =


g(ω1x1 + ϕ1) · · · g(ωMx1 + ϕM)

...
. . .

...
g(ω1xN + ϕ1) · · · g(ωMxN + ϕM)

 (5)

It can be seen that the input weight ωi and offset ϕi of the ELM model are generated randomly.
Once the two values are determined, the output matrix H of the hidden layer can be determined, and
ELM model can be converted into a linear system like Hβ = T to be solved, that is, the output weight
β = H−1T.

3.2. Principle of Fireworks Algorithm

Fireworks Algorithm (FWA), proposed by Tan and Zhu in 2010 and inspired by the natural
phenomenon that fireworks explosion produces sparks [40], is a new type of swarm intelligence
optimization algorithm with advantages in simulation accuracy and convergence performance. Similar
to other optimization algorithms, it aims to find a solution to the optimization problems with constraints,
but it provides a new way to find the solution, that is searching the solution according to the random
explosion process of fireworks in a local space [41]. FWA mainly consists of explosion operator,
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mutation operator, mapping rule, and selection strategy. Its basic principle is: firstly, assume that the
number of fireworks at the beginning is N, evaluate the merit of each of the N fireworks, and determine
the number of sparks generated by the explosion of each firework and the explosion magnitude of each
firework. Secondly, introduce a mutation operator to generate variant sparks to diversify the algorithm.
Thirdly, select a certain number of fireworks (including explosion sparks and Gaussian sparks) as the
next generation of fireworks to pass down the excellent information. Finally, select the location of the
sparks after the explosion of the fireworks. The flow of the fireworks algorithm is shown in Figure 11.
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3.3. Principle of K Nearest Neighbor Method

K nearest neighbor method is a nonparametric statistical method mainly used for sample
classification or regression [42]. Its basic principle is assuming that most samples in a feature space
fall into a category, then k values of most similar samples in the feature space also belong to the
category. The specific algorithm has two steps: (1) for a specific sample set, make measurement by a
certain distance, and determine the value of k; (2) in the determined KNN method, make classification
according to the category which most samples belong to. The flow of the k nearest neighbor method is
shown in Figure 12.

3.4. The Construction of the KNN-FWA-ELM Model

The application of the ELM model to flood forecasting in medium and small watershed of the
loess region has the following shortcomings: (1) the ELM model randomly generates input weight
and offset, and then calculates output weight, but the randomly generated input weight and offset are
not necessarily optimal, which may result in a large error in model simulation; (2) the ELM model
forecasts the discharge at the corresponding late time based on the rainfall at each rainfall gauging
station at the current time and the rainfall at each rainfall gauging station and the observed discharge
at a certain early time, which means the ELM is incapable of continuous flood forecasting during the
absence of the observed data.

To make up for the shortcomings of the ELM model in the flood forecasting of a medium and small
watershed in the loess region and further improve the forecasting ability of ELM model, this paper
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improved the ELM model and proposed and constructed a data-driven hybrid model. In the hybrid
model, the fireworks algorithm was used to optimize the input weight and offset, and the k nearest
neighbor method was applied to predict the error of the discharge at the runoff gauging station and to
achieve continuous flood forecasting when the observed data was missing and to correct the simulation
results when the observed data was complete, improving the simulation and prediction accuracy.Water 2019, 11, x FOR PEER REVIEW 12 of 31 
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3.4.1. Model Parameters Setting

Based on the observed data of 46 floods in the Gedong basin from 1964 to 2016, the KNN-FWA-ELM
and ELM models were employed to simulate the floods of 14, 18, and 14 in HSP1, HSP2, and HSP3,
respectively. To obtain the desired simulation results, 10, 13, and 10 floods were randomly selected
as the training set, and the remaining 4, 5, and 4 floods were used as the testing set in three periods.
According to the observed floods data, the time interval was set to 5 min. The number of iterations
was set to 1000 by trials and tests.

In KNN-FWA-ELM model, the activation function needed to be selected. The activation function
was based on the actual flood process in the basin and was determined empirically. As the Sigmoid
function (Equation (6)) can handle both large and small signals in the network, the Sigmoid function
was selected as the activation function of KNN-FWA-ELM model.

f (x) =
1

1 + e−x (6)

The determination of the number of hidden layer nodes directly affects the mapping ability of
the network. If the number of nodes is too small, the information obtained by the network from the
sample is insufficient, making it difficult to reflect the sample law of the training set. Conversely, if the
number of nodes is too large, the irregular content of the training set may be learned, resulting in
over-fitness. It can be known from the literature [43] that the number of hidden layer nodes can be
determined by Equation (7).
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L = round[
√

k + m + rand(1− 10)] (7)

where L is the number of hidden layer nodes; k is the number of model input factors; m is the number
of model output factors. Specifically, the number of hidden layer nodes is determined by the following
steps:

(1) Set fewer hidden layer nodes;
(2) Train and test the sample set;
(3) Gradually increase the number of hidden layer nodes and use the same sample set for training

and testing;
(4) Compare the training and testing results of different hidden layer nodes, and obtain the number

of hidden layer nodes when the error is the smallest.

With the above procedure, the number of the KNN-FWA-ELM model was obtained according to
the Root Mean Squared Error (RMSE) curve. The root mean squared error curve is shown in Figure 13.
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Since the KNN-FWA-ELM model randomly generated input weight and offset, the result of each
run changed after determining the number of hidden layer node. To obtain a desired and stable
output, multiple runs were required to average. After many trials and tests, it was determined that
KNN-FWA-ELM model needed to be run 30 times.

3.4.2. Input and Output of the Model

In flood forecasting, the rainfall and the characteristics of the underlying surface are key influencing
factors for discharge simulation and forecasting at the outlet of the basin, of which the rainfall is
the main driving force for runoff generation in the basin, mainly including rainfall at each rainfall
gauging station at time t and that at a certain early time; the characteristics of the underlying surface of
the watershed is another key factor influencing the runoff generation because the data-driven model
inherently cannot take into account the characteristics of the underlying surface of the basin; early-stage
discharge, which is the discharge at the outlet at a certain early time, is employed to represent the
conditions of the underlying surface of the basin. In short, the foregoing influence factors were used as
the input data of the model and the discharge at the outlet at a certain late time corresponding to time t
as the output data of the model to drive the model for flood simulation and forecasting.

The period by which the rainfall and discharge are shifted to a certain early time as the input
data of the model and the period by which the discharge is shifted to a certain late time as the output
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data of the model (∆T) have a significant influence on model stability and forecasting accuracy. A too
short period will render limited information acquired by the model and low simulation accuracy of the
model; while too long period will lead to redundant information and the model over-fitting. In view of
this, the partial mutual information (PMI) method [44–46] is applied, and the input factors for flood
forecasting are screened to determine ∆T. The specific screening process is as follows:

(1) Based on the analysis of the characteristics of the floods in HSP1, HSP2, and HSP3, obtain the
average lag time of the floods in three periods, which is 1.07 h, 1.60 h, and 2.37 h, respectively,
and ensure the maximum value of the ∆T is slightly larger than the average lag time of the floods
in three periods, respectively.

(2) Use the rainfall at each rainfall station at time t, at a certain early time, and the discharge at the
outlet at time t as the input variables of the model, and ensure the maximum value of the period
by which the rainfall shifted to a certain early time is the maximum value determined in the
previous step.

(3) Set the foregoing input variables as the input data and the discharge at the outlet at a certain late
time corresponding to time t as the output data, make the iterative calculation by PMI method,
and obtain the screened input variables, of which the difference between the corresponding time
and time t is ∆T.

In the paper, ∆T was 0.92 h (55 min), 1.50 h (90 min), and 2.25 h (135 min) in three
periods, respectively.

3.4.3. Data Normalization

Thirteen input factors and 1 output factor of the model were obtained according to the procedures
described in Section 3.4.2. Since different input and output factors have different dimensions and units,
which affects the simulation and results analysis, it is necessary to standardize the data to eliminate
the adverse influence. The data normalization adopted in the paper was min-max standardization
by which each original data was linearly converted and the value of it was mapped to [0,1]. The
conversion formula is as follows:

X̂ =
X −min

max−min
(8)

where X is the original data; X̂ is the normalized data; min is the minimum value in the original sample
data; max is the maximum value in the original sample data.

3.4.4. Model Construction

Based on the rainfall and discharge data, which are processed for normalization, the ELM model
was applied to forecast the discharge at the outlet of the basin. The model is constructed as follows:

QS(t + ∆t) = MELM

[
P(t), P(t− 1), · · · , P(t− ∆t)

Q(t− 1), Q(t− 2), · · · , Q(t− t)

]
(9)

where Qs(t + ∆t) is the simulated discharge at time t + ∆t; P is the rainfall at time t and at a certain
early time; Q is the discharge corresponding to the rainfall at the early time.

KNN method is used for discharge error forecasting at the outlet of the basin. Firstly, select the
error value of the forecasted discharge as a feature vector, and based on the feature vector at a certain
time, select k samples most similar to the feature vector from the historical sample set, where the similar
samples are determined by the minimum Euclidean distance between the feature vectors. Then, make
inverse distance weighting (IDW) of the discharge errors of the selected similar samples and obtain the
discharge error forecasting value at the outlet of the basin. The modeling method is as follows:
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Es(t + ∆t) = MKNN


Qs(t + ∆t)

P(t), P(t− 1), · · · , P(t− ∆t)
Q(t− 1), Q(t− 2), · · · , Q(t− ∆t)

 (10)

where Es(t + ∆t) is the simulated discharge error at time t + ∆t.

Q(t + ∆t) = QS(t + ∆t) + Es(t + ∆t) (11)

where Q(t + t) is the simulated discharge at time t + ∆t of KNN-FWA-ELM model.
In the flood forecasting of KNN-FWA-ELM model, FWA is applied to select the optimal input

weight and offset for the model after multiple iterations according to explosion process of fireworks,
form a new matrix H by the optimal weight and offset, and finally calculate the output weight matrix,
so as to optimize the parameters and improve the forecasting accuracy and generalization performance
of the model. In the initial calculation of KNN, the observed discharge data is used as the early-stage
discharge of model input; as the calculation continues, the simulated discharge can be used as the
early-stage discharge of model input in the subsequent calculation. By performing this loop simulation,
the information of the early-stage discharge can be effectively used, and the simulated value of
early-stage discharge value, instead of the observed value, can serve as the input data of the model,
which is favorable to the continuous flood forecasting. The specific modeling process is shown in
Figure 14.
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3.4.5. Evaluation Indexes for Forecasting Performance

There are many performance indices for evaluating the model’s performance [47]. Since each
statistical index has its disadvantages, various indices should be used for evaluating the model
performance effectively [48,49]. To evaluate the performance of the hybrid KNN-FWA-ELM model,
the peak flood error (∆Q), the peak current difference (∆h), the coefficient of determination (R2),
Nash–Sutcliffe efficiency coefficient (NS), root mean squared error (RMSE), mean squared relative error
(MSRE), and mean absolute relative error (MARE) were used as the evaluation indicators in this study,
which have been widely and commonly used for evaluating the performance of flood forecasting and
hydrological simulation. The formulas are defined as follows (Equations (12)–(18)), respectively.

∆Q =
Qs −Qo

Qo
× 100% (12)
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where ∆Q is the peak flood error (%); Qs is the simulated discharge (m3/s); Qo is the observed discharge
(m3/s).

∆h = hspeak − hopeak (13)

where ∆h is the peak current difference (h); hspeak is the simulated peak current time (h); hopeak is the
observed peak current time (h).

R2 =

(
T∑

t=1
(Qt

s −QS)(Qt
o −Qo))2

T∑
t=1

(Qt
s −QS)

2 T∑
t=1

(Qt
o −Qo)

2
(14)

NS = 1−

T∑
t=1

(Qt
s −Qt

o)
2

T∑
t=1

(Qt
o −Qo)

2
(15)

where Qt
s is the simulated discharge at time t (m3/s); Qt

o is the observed discharge at time t (m3/s); Qs is
the average of simulated discharge (m3/s); Qo is the average of observed discharge (m3/s).

RMSE =

√√√√ n∑
i=1

(Qs,i −Qo,i)
2

n
(16)

MSRE =
1
n

n∑
i=1

(Qs,i −Qo,i)
2

Q2
o,i

(17)

MARE =
1
n

n∑
i=1

∣∣∣Qs,i −Qo,i
∣∣∣

Qo,i
(18)

where Qs,i is the ith simulated discharge (m3/s); Qo,i is the ith observed discharge (m3/s).

4. Results and Discussion

4.1. The Flood Forecasting of ELM Model

A total of 46 floods in 1964–2016 were selected for simulation, and the simulation results by
the ELM model in HSP1, HSP2, and HSP3 were obtained, respectively. The simulation results are
summarized in Table 3.

Table 3. Evaluation of flood simulation results by ELM (extreme learning machine) model.

Periods Data Set Flood
Events ∆Q/% ∆h/h NS R2 RMSE/m3/s MSRE MARE Qualified or

Not

HSP1

Training 19640716 −19.21 −0.33 0.83 0.91 2.86 0.05 0.17 Qualified
Training 19670822 −34.43 −0.42 0.60 0.63 85.43 0.48 0.65 Not qualified
Training 19680727 −7.15 −0.17 0.78 0.78 5.19 0.67 0.56 Qualified
Training 19690728 −17.24 −0.25 0.79 0.79 4.39 0.04 0.16 Qualified
Training 19700809 −19.18 −0.08 0.86 0.89 36.59 3.15 0.92 Qualified
Training 19710815 −10.27 −0.50 0.81 0.82 7.30 1.16 0.57 Qualified
Training 19720719 −18.69 0 0.82 0.83 15.19 6.09 1.04 Qualified
Training 19730716 −32.93 0.25 0.64 0.75 11.92 4.64 1.92 Not qualified
Training 19760728 −19.55 −1.50 0.72 0.83 9.08 1.01 0.46 Qualified
Training 19780717 −29.89 0 0.69 0.85 19.51 17.63 2.66 Not qualified
Testing 19650707 −5.93 −0.17 0.70 0.94 3.67 2.19 1.09 Qualified
Testing 19660816 −10.89 −0.75 0.83 0.88 19.88 2.02 0.86 Qualified
Testing 19770705 −7.58 −0.25 0.81 0.86 10.26 0.37 0.53 Qualified
Testing 19790723 −16.01 −0.67 0.83 0.85 4.37 0.30 0.39 Qualified
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Table 3. Cont.

Periods Data Set Flood
Events ∆Q/% ∆h/h NS R2 RMSE/m3/s MSRE MARE Qualified or

Not

HSP2

Training 19800820 −34.75 −0.17 0.66 0.66 0.62 0.15 0.29 Not qualified
Training 19840701 −23.62 0.42 0.67 0.69 5.69 0.70 0.61 Not qualified
Training 19850805 −14.02 −0.42 0.76 0.79 10.40 36.65 1.43 Qualified
Training 19860729 −3.33 −0.50 0.68 0.80 22.72 6.55 4.27 Not qualified
Training 19880723 −17.22 0 0.66 0.74 53.29 1.48 0.89 Not qualified
Training 19910915 −15.80 −0.50 0.80 0.84 15.62 131.22 4.93 Qualified
Training 19920802 −51.04 0.25 0.65 0.70 3.82 2.92 1.49 Not qualified
Training 19940715 −12.87 −0.33 0.82 0.84 2.54 0.26 0.42 Qualified
Training 19950801 −10.67 −0.67 0.84 0.87 8.02 2.43 1.16 Qualified
Training 19960809 −19.96 −0.42 0.65 0.67 11.11 2.13 0.74 Not qualified
Training 19970729 −27.15 0.33 0.64 0.72 6.92 1.38 1.06 Not qualified
Training 19990721 −12.76 −0.17 0.71 0.74 9.20 0.61 0.61 Qualified
Training 20000704 −28.59 −0.25 0.76 0.82 12.05 7.41 2.39 Not qualified
Testing 19810620 −17.70 −1.75 0.72 0.74 6.60 0.28 0.44 Qualified
Testing 19820815 −16.70 −0.42 0.70 0.70 7.05 1.89 0.69 Qualified
Testing 19870630 −10.68 −0.25 0.72 0.81 7.92 8.11 2.14 Qualified
Testing 19890722 −8.84 −0.25 0.81 0.91 4.41 0.18 0.30 Qualified
Testing 19980713 −23.91 0 0.69 0.71 20.36 0.81 0.69 Not qualified

HSP3

Training 20010826 −14.62 0.17 0.32 0.36 6.02 2.84 1.61 Not qualified
Training 20030607 −18.50 −0.58 0.79 0.81 3.81 1.68 0.67 Qualified
Training 20040812 −18.34 −0.25 0.72 0.87 3.60 1.79 0.71 Qualified
Training 20050812 −14.09 −0.25 0.80 0.80 6.00 2.28 1.07 Qualified
Training 20071006 −9.67 −0.50 0.79 0.86 4.74 1.14 0.32 Qualified
Training 20090907 −14.99 −0.42 0.73 0.81 5.22 1.04 0.15 Qualified
Training 20110814 −22.72 0 0.05 0.51 0.86 0.08 0.22 Not qualified
Training 20130811 −11.30 0 0.74 0.85 6.57 1.23 0.66 Qualified
Training 20140709 −17.32 2.42 0.36 0.71 2.66 0.13 0.34 Not qualified
Training 20160815 −11.87 −0.07 0.78 0.79 9.23 1.21 0.69 Qualified
Testing 20020627 −24.65 −0.17 0.87 0.90 100.38 0.49 0.52 Not qualified
Testing 20060814 −6.28 −0.25 0.79 0.84 4.25 2.23 1.11 Qualified
Testing 20120731 −6.75 −0.75 0.72 0.75 2.60 2.08 0.18 Qualified
Testing 20150802 −9.13 0 0.72 0.73 11.80 1.18 0.72 Qualified

∆Q is the peak flood error; ∆h is the peak current difference; NS is the Nash–Sutcliffe efficiency coefficient; R2 is the
coefficient of determination; RMSE is the root mean squared error; MSRE is the mean squared relative error; MARE
is the mean absolute relative error.

The Table 3 shows that, among the 46 floods simulated by ELM model, the absolute of ∆Q of
35 floods was within 20%, rendering the overall qualified rate as 76.09%, with the variation range
of [3.33, 19.55]; the absolute of ∆h of 46 floods was within 3h, rendering the overall qualified rate as
100%, with the variation range of [0, 2.42]; the NS of 32 floods was above 0.7, rendering the overall
qualified rate as 69.57%, with the maximum value of 0.87; the R2 of 40 floods was above 0.7, rendering
the overall qualified rate as 86.96%, with the maximum value of 0.94. The variation range of RMSE of
all the floods was [0.62, 100.38]; the variation range of MSRE of all the floods was [0.04, 131.22]; the
variation range of MARE of all the floods was [0.15, 4.93]. When ∆Q, ∆h, NS, R2, RMSE, MSRE, and
MARE were all put into consideration, a total of 30 simulated floods were acceptable, rendering the
overall qualified rate as 65.22%.

In HSP1, HSP2, and HSP3, the simulation qualified rate of the floods was 78.57%, 50%, and
71.43%, respectively, and the average ∆Q of the acceptable simulated floods was −13.79%, −13.34%,
and −12.08%, respectively, indicating that ∆Q of the simulated floods gradually decreased from 1964 to
2016. The average ∆h of the acceptable simulated floods was −0.42 h, −0.53 h, and −0.32 h, respectively,
which meant that ∆h of the simulated floods in three periods was all negative, and the absolute of
∆h of the simulated floods in HSP3 was the smallest. The average NS of the acceptable simulated
floods was 0.80, 0.76, and 0.76, respectively, suggesting that the simulation in HSP1 was the most
reliable. The average R2 of the acceptable simulated floods was 0.85, 0.80, and 0.81, respectively,
showing that the linear correlation between the simulated values and the observed values in HSP2

was slightly lower than that in the other two periods. The average RMSE of the acceptable simulated
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floods was 10.80, 7.97, and 5.79, respectively, showing that the deviation between simulated values
and the observed values gradually decreased and the simulation got better and better in three periods
from 1964 to 2016. The average MSRE of the acceptable simulated floods was 1.55, 20.18, and 1.59. The
average MARE of the acceptable simulated floods was 0.61, 1.35, and 0.63. According to the Standard
for Hydrological Information and Hydrological Forecastinging (GB/T 22482-2008), this simulation
reached class C, indicating that the ELM model was applicable to flood forecasting in medium and
small watersheds of the loess region. Overall, the simulation performance of the ELM model on floods
in three periods was best in HSP1, followed by HSP3 and HSP2.

4.2. The Flood Forecasting of KNN-FWA-ELM Model

A total of 46 floods in 1964–2016 were selected for simulation, and the simulation results in HSP1,
HSP2, and HSP3, respectively, were obtained by KNN-FWA-ELM model. The simulation results are
shown in Table 4.

Table 4. Evaluation of flood simulation results by KNN-FWA-ELM model.

Periods Data Set Flood
Events ∆Q/% ∆h/h NS R2 RMSE/m3/s MSRE MARE Qualified or

Not

HSP1

Training 19640716 −13.67 −0.33 0.91 0.91 2.04 0.02 0.09 Qualified
Training 19660816 −2.27 −0.42 0.86 0.90 18.06 1.43 0.61 Qualified
Training 19670822 −8.58 −0.50 0.89 0.95 43.18 0.31 0.49 Qualified
Training 19680727 −6.25 0 0.84 0.84 4.35 0.40 0.39 Qualified
Training 19690728 −13.33 −0.42 0.84 0.85 3.79 0.04 0.12 Qualified
Training 19710815 −8.26 0 0.85 0.85 6.54 0.68 0.30 Qualified
Training 19720719 −15.87 0 0.86 0.86 13.59 4.36 0.73 Qualified
Training 19730716 −20.55 0.17 0.69 0.81 10.95 4.59 1.90 Not qualified
Training 19760728 −14.96 −1.58 0.85 0.89 6.60 0.81 0.35 Qualified
Training 19790723 −11.15 −0.58 0.85 0.88 4.05 0.25 0.28 Qualified
Testing 19650707 −2.70 −0.17 0.87 0.94 2.40 0.74 0.74 Qualified
Testing 19700809 −2.09 −0.08 0.88 0.91 32.72 2.01 0.75 Qualified
Testing 19770705 −3.42 0 0.86 0.89 8.65 0.31 0.40 Qualified
Testing 19780717 −8.24 −0.50 0.82 0.93 14.88 8.78 1.35 Qualified

HSP2

Training 19800820 −9.43 −0.17 0.70 0.71 0.58 0.13 0.26 Qualified
Training 19820815 −9.07 −0.50 0.74 0.75 6.54 1.88 0.65 Qualified
Training 19840701 −21.65 0.33 0.69 0.70 5.55 0.65 0.60 Not qualified
Training 19850805 −11.33 −0.33 0.83 0.84 8.83 33.29 1.33 Qualified
Training 19860729 −2.91 −0.33 0.79 0.90 18.20 5.70 1.05 Qualified
Training 19880723 −1.03 −0.08 0.84 0.87 36.44 0.68 0.49 Qualified
Training 19910915 −13.32 −0.25 0.85 0.90 13.23 118.65 4.41 Qualified
Training 19920802 −34.51 0 0.67 0.79 3.76 1.48 0.99 Not qualified
Training 19940715 −3.90 −0.25 0.87 0.87 2.22 0.24 0.36 Qualified
Training 19950801 −4.13 −0.33 0.87 0.88 7.08 2.00 1.06 Qualified
Training 19960809 −9.40 −0.33 0.70 0.70 10.36 1.85 0.68 Qualified
Training 19970729 −27.05 0.08 0.68 0.80 6.50 1.36 1.03 Not qualified
Training 19990721 −1.95 0 0.76 0.79 8.32 0.58 0.59 Qualified
Testing 19810620 −9.36 −1.33 0.81 0.82 5.36 0.24 0.39 Qualified
Testing 19870630 −1.01 0 0.82 0.85 6.30 8.03 2.12 Qualified
Testing 19890722 −1.50 −0.33 0.88 0.91 3.52 0.09 0.23 Qualified
Testing 19980713 −6.13 −0.08 0.81 0.83 15.93 0.69 0.59 Qualified
Testing 20000704 −21.09 −0.17 0.83 0.85 10.18 7.38 2.35 Not qualified

HSP3

Training 20020627 −20.07 −0.08 0.71 0.75 73.07 0.47 0.51 Not qualified
Training 20030607 −4.21 −0.08 0.85 0.85 3.38 1.52 0.51 Qualified
Training 20040812 −8.15 0 0.86 0.88 2.57 1.67 0.68 Qualified
Training 20050812 −3.88 −0.17 0.84 0.87 5.27 1.98 0.90 Qualified
Training 20060814 −2.33 −0.25 0.85 0.85 3.69 1.95 0.91 Qualified
Training 20071006 −3.75 −0.25 0.86 0.88 4.04 1.13 0.26 Qualified
Training 20090907 −5.64 −0.25 0.78 0.85 4.72 0.96 0.13 Qualified
Training 20110814 −21.11 −0.08 0.25 0.68 0.76 0.07 0.17 Not qualified
Training 20140709 −12.44 4 0.45 0.73 2.46 0.11 0.31 Not qualified
Training 20150802 −7.69 0.08 0.80 0.81 9.97 0.96 0.68 Qualified
Testing 20010826 −4.99 0.08 0.73 0.82 3.88 2.57 1.30 Qualified
Testing 20120731 −4.06 −0.67 0.85 0.86 1.91 2.06 0.18 Qualified
Testing 20130811 −5.86 0 0.82 0.91 5.49 1.18 0.50 Qualified
Testing 20160815 −5.34 −0.17 0.86 0.86 7.47 1.15 0.53 Qualified
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The Table 4 shows that, among the 46 floods simulated by KNN-FWA-ELM model, the absolute
of ∆Q of 39 floods was within 20%, with the overall qualified rate 84.78% and the variation range of
[1.01, 15.87]; the absolute of ∆h of 45 floods was within 3 h, with the overall qualified rate 97.83% and
the variation range of [0, 1.58]; the NS of 40 floods was above 0.7, rendering the overall qualified rate
as 86.96%, with the maximum value of 0.91; the R2 of 44 floods was above 0.7, rendering the overall
qualified rate as 95.65%, with the maximum value of 0.95. The variation range of RMSE of all the floods
was [0.58, 43.18]; the variation range of MSRE of all the floods was [0.02, 118.65]; the variation range of
MARE of all the floods was [0.09, 4.41]. When ∆Q, ∆h, NS, R2, RMSE, MSRE, and MARE were all put
into consideration, a total of 38 floods were acceptable, rendering the overall qualified rate as 82.61%.

In HSP1, HSP2, and HSP3, the simulation qualified rate of the floods was 92.86%, 77.78%, and
78.57%, respectively, and the average ∆Q of the acceptable simulated floods was −8.52%, −6.03%, and
−5.08%, respectively, indicating that ∆Q of the simulated floods gradually decreased from 1964 to 2016.
The average ∆h of the acceptable simulated floods was −0.35 h, −0.31 h, and −0.15 h, respectively,
indicating that the average ∆h of the simulated floods in three periods was all negative, and the
absolute of ∆h of the simulated floods was the smallest in HSP3. The average NS of the acceptable
simulated floods was 0.86, 0.81, and 0.83, respectively, suggesting that the simulation was the most
reliable in HSP1. The average R2 of the acceptable simulated floods was 0.89, 0.83, and 0.86, respectively,
showing that the linear correlation between the simulated values and the observed values in HSP1 was
higher than that in the other two periods. The average RMSE of the acceptable simulated floods was
12.37, 10.21, and 4.76, respectively, showing that the deviation between the simulated values and the
observed values gradually decreased and the simulation got better and better in three periods from
1964 to 2016. The average MSRE of the acceptable simulated floods was 1.55, 12.43, and 1.56. The
average MARE of the acceptable simulated floods was 0.51, 1.01, and 0.60. According to the Standard
for Hydrological Information and Hydrological Forecastinging (GB/T 22482–2008), this simulation
reached class B, indicating that the KNN-FWA-ELM model was applicable to flood forecasting in a
medium and small watershed of the loess region. In summary, the simulation performance of the
KNN-FWA-ELM model on floods in three periods was best in HSP1, followed by HSP3 and HSP2.

4.3. Comparison and Analysis of Simulation Results Between KNN-FWA-ELM Model and ELM Model

4.3.1. Comparison and Analysis of Simulation Results of All Floods

Based on the simulation qualified rate, ∆Q, ∆h, NS, R2, RMSE, MSRE, and MARE, a comprehensive
comparison of the simulation results of 46 floods in 1964–2016 between KNN-FWA-ELM and ELM
model was carried out, and the results are summarized in Table 5.

Table 5. Comparison of all flood simulation results between KNN-FWA-ELM and ELM model.

Evaluation Index
ELM Model KNN-FWA-ELM Model

1964–2016 1964–2016

Qualified rate/% 65.22 82.61
∆Q/% −13.08 −6.61
∆h/h −0.42 −0.28
NS 0.77 0.83
R2 0.82 0.86

RMSE/m3/s 8.28 9.37
MSRE 7.15 5.56
MARE 0.84 0.72

Table 5 shows that the flood simulation qualified rate of each of the two models was higher
than 60%, suggesting the simulation results were all acceptable, and the simulation qualified rate of
KNN-FWA-ELM model was 17.39% higher than that of the ELM model, and the peak flood simulation
value of two models were generally negative. The absolute of ∆Q of KNN-FWA-ELM model was
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6.47% less than that of the ELM model. The peak current time of the two models was early, and the
absolute of ∆h of KNN-FWA-ELM model was 0.14 h shorter than that of the ELM model. According to
the values of NS, the simulation reliability of KNN-FWA-ELM model was 7.79% higher than that of the
ELM model. The R2 of each model was good, but that of KNN-FWA-ELM model was 4.88% higher
than the ELM model. According to the values of RMSE, the deviation between the simulated values
and the observed value of the ELM model was smaller than that of KNN-FWA-ELM model. The MSRE
and MARE of KNN-FWA-ELM model was 22.24% and 14.29% lower than that of the ELM model,
respectively. Tables 3 and 4 show that the ELM model had a lower great flood simulation qualified rate
(19660816, 19670822, 19700809, and 19880723 were the great floods, the qualified rate of the ELM model
and KNN-FWA-ELM model for great floods simulation was 50% and 100%, respectively). During the
great flood process, the overall fluctuation was large, and the flood peak discharge was high. There
would be a large deviation between the simulation and the observed value at a certain time, and the
RMSE is sensitive to the extraordinarily large or small deviation in the simulation process, resulting in
the large value of RMSE. Therefore, the values of RMSE of the ELM model were smaller than that of
KNN-FWA-ELM model. In general, KNN-FWA-ELM model had better simulation results and higher
simulation accuracy than the ELM model.

A comparison of the simulated floods with the observed ones between KNN-FWA-ELM and ELM
model was carried out to demonstrate the differences between the two models, and the results are
illustrated in Figure 15.

Figure 15 illustrates that the simulated floods of both KNN-FWA-ELM model and the ELM model
showed fluctuations from the observed floods, and KNN-FWA-ELM model fitted better than that of the
ELM model. Such fluctuation is related to the random parameter generation of the data-driven model,
and the change of underlying surface conditions have a different level of effects on the flooding process.

It can be seen that in the ELM model, input weight and offset randomly determined might not be
optimal; while with regard to KNN-FWA-ELM model, FWA was set to find the optimal values of input
weight and offset and KNN method was employed to make the full use of early discharge data, which
could correct the simulation results if the observed discharge data are completed and give continuous
forecasting if the observed discharge data are absent, thus reducing the instability and improving the
simulation accuracy. According to the comparison between the KNN-FWA-ELM model and the ELM
model (as shown in Table 5) and the aforementioned analysis, it is evident that the KNN-FWA-ELM
model performed better in simulation than the ELM model.

4.3.2. Comparison of Simulation Results of Floods in Different Periods

In this section, a comparison of the simulation results in HSP1, HSP2, and HSP3 was conducted.
The average evaluation values of the two models in three periods are shown in Table 6.

Table 6. Comparison of all flood simulation results in different periods.

Evaluation Index
ELM Model KNN-FWA-ELM Model

HSP1 HSP2 HSP3 HSP1 HSP2 HSP3

Qualified rate/% 78.57 50.00 71.43 92.86 77.78 78.57
∆Q/% −13.79 −13.34 −12.08 −8.52 −6.03 −5.08
∆h/h −0.42 −0.53 −0.32 −0.35 −0.31 −0.15
NS 0.80 0.76 0.76 0.86 0.81 0.83
R2 0.85 0.80 0.81 0.89 0.83 0.86

RMSE/m3/s 10.80 7.97 5.79 12.37 10.21 4.76
MSRE 1.55 20.18 1.59 1.55 12.43 1.56
MARE 0.61 1.35 0.63 0.51 1.01 0.60
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It can be seen from Table 6 that the simulation qualification rate of KNN-FWA-ELM model was
higher than that of the ELM model, which increased by 18.19%, 55.56%, and 9.99%, respectively,
in HSP1, HSP2, and HSP3. The absolute of ∆Q of KNN-FWA-ELM model was smaller than that of
the ELM model, which decreased by 38.22%, 54.80%, and 57.95%, respectively. The absolute of ∆h of
KNN-FWA-ELM model was smaller than that of the ELM model, shortened by 0.07 h, 0.22 h, and 0.17 h,
respectively. The reliability of KNN-FWA-ELM model was higher than that of the ELM model, with an
increase of 7.50%, 6.58%, and 9.21%, respectively. The R2 of KNN-FWA-ELM model was higher than
that of the ELM model, with an increase of 4.71%, 3.75%, and 6.17%, respectively. In the two periods of
HSP1 and HSP2, the RMSE of KNN-FWA-ELM model was greater than that of the ELM model due to
the distribution of great floods and the low qualified rate of ELM model for the simulation of great
floods. In HSP3, the RMSE of KNN-FWA-ELM model was 17.79% lower than that of the ELM model.
In the two periods of HSP2 and HSP3, the MSRE of KNN-FWA-ELM model was 38.40% and 1.89%
lower than that of the ELM model, respectively. The MSRE is a good efficiency index for moderate
data values. In HSP2, the MSRE of some flood events was relatively large; this is because, during
the moderate-flow process of these events, there is a big difference between the simulated value and
the observed value. The MARE of KNN-FWA-ELM model was smaller than that of the ELM model,
which decreased by 16.39%, 25.19%, and 4.76%, respectively. Compared with HSP2 and HSP3, the
great floods are predominantly distributed in HSP1, according to the relevant literature reports [50].
The flow velocity of the great floods is stable, the nonlinear characteristics are weak, and the rest two
periods are given priority to with moderate and small floods. The flood magnitude is relatively small,
and the nonlinear characteristics are strong, leading to slightly poor simulation results.

To measure the simulation performance of KNN-FWA-ELM model, eight evaluation indexes were
adopted. They were qualified rate, ∆Q, ∆h, NS, R2, RMSE, MSRE, and MARE. The comparison between
KNN-FWA-ELM model and the ELM model are given in Table 6. Depending on the aforementioned
analysis, it is concluded that the hybrid KNN-FWA-ELM model could achieve better-simulated results
with significant improvement based on eight statistical evaluation indexes for flood forecasting in
HSP1, HSP2, and HSP3, with HSP1 as the top performance.

4.3.3. Comparison of Simulation Results of Floods Under Different Grades

Based on the division of flood grades in Section 2.2.3, KNN-FWA-ELM model and the ELM model
were compared and analyzed for simulation results of great, moderate, and small floods in 46 floods
from 1964 to 2016.

The simulation performance of the two models on great floods is shown in Table 7.

Table 7. Comparison of great flood simulation results.

Evaluation Index ∆Q/% ∆h/h NS R2 RMSE/m3/s MSRE MARE Qualified or Not

ELM model

19660816 −10.89 −0.75 0.83 0.88 19.88 2.02 0.86 Qualified
19670822 −34.43 −0.42 0.60 0.63 85.43 0.48 0.65 Not qualified
19700809 −19.18 −0.08 0.86 0.89 36.59 3.15 0.92 Qualified
19880723 −17.22 0 0.66 0.74 53.29 1.48 0.89 Not qualified
Average1 −15.04 −0.42 0.85 0.89 28.24 2.59 0.89 -

KNN-FWA-ELM
model

19660816 −2.27 −0.42 0.86 0.90 18.06 1.43 0.61 Qualified
19670822 −8.58 −0.50 0.89 0.95 43.18 0.31 0.49 Qualified
19700809 −2.09 −0.08 0.88 0.91 32.72 2.01 0.75 Qualified
19880723 −1.03 −0.08 0.84 0.87 36.44 0.68 0.49 Qualified
Average 1 −3.49 −0.27 0.87 0.91 32.60 1.11 0.59 -

1 The average value in Table 7 is obtained from the qualified flood events.

It can be seen in Table 7 that the qualified rate of the ELM model and KNN-FWA-ELM model for
great floods simulation was 50% and 100%, respectively. Compared with the ELM model, the average
∆Q of KNN-FWA-ELM model was reduced by 76.80%. The average ∆h of KNN-FWA-ELM model
was shortened by 0.15 h. The average NS and R2 were improved by 2.35% and 2.25%, respectively.
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The average RMSE of KNN-FWA-ELM model was greater than that of the ELM model. The average
MSRE and MARE of KNN-FWA-ELM model were smaller than that of the ELM model, decreasing by
57.14% and 33.71%, respectively. In summary, the KNN-FWA-ELM model had a better simulation
performance on the great floods than the ELM model.

The simulation performance of two models on moderate floods is shown in Table 8.

Table 8. Comparison of moderate flood simulation results.

Evaluation Index ∆Q/% ∆h/h NS R2 RMSE/m3/s MSRE MARE Qualified or Not

ELM model

19720719 −18.69 0 0.82 0.83 15.19 6.09 1.04 Qualified
19780717 −29.89 0 0.69 0.85 19.51 17.63 2.66 Not qualified
19860729 −3.33 −0.50 0.68 0.80 22.72 6.55 4.27 Not qualified
19980713 −23.91 0 0.69 0.71 20.36 0.81 0.69 Not qualified
Average1 −18.69 0 0.82 0.83 15.19 6.09 1.04 -

KNN-FWA-ELM
model

19720719 −15.87 0 0.86 0.86 13.59 4.36 0.73 Qualified
19780717 −8.24 −0.50 0.82 0.93 14.88 8.78 1.35 Qualified
19860729 −2.91 −0.33 0.79 0.90 18.20 5.70 1.05 Qualified
19980713 −6.13 −0.08 0.81 0.83 15.93 0.69 0.59 Qualified
Average 1 −8.29 −0.23 0.82 0.88 15.65 4.88 0.93 -

1 The average value in Table 8 is obtained from the qualified flood events.

It can be seen in Table 8 that the qualified rate of the ELM model and KNN-FWA-ELM model for
moderate floods simulation was 25% and 100%, respectively. The KNN-FWA-ELM model reduced the
average ∆Q by 55.64% compared with the ELM model. The absolute of average ∆h of KNN-FWA-ELM
model was greater than that of the ELM model. The average reliability of the two models was the
same. The average R2 of KNN-FWA-ELM model was 6.02% higher than that of the ELM model. The
average RMSE of KNN-FWA-ELM model was 3.03% greater than that of the ELM model. The average
MSRE and MARE of KNN-FWA-ELM model were smaller than that of the ELM model, which were
decreased by 19.87% and 10.58%, respectively. Overall, it could be concluded that KNN-FWA-ELM
model was better than the ELM model in simulating moderate floods.

There were 38 small floods in the basin from 1964 to 2016. The simulation performance of the two
models on small floods is shown in Table 9.

Table 9. Comparison of small flood simulation results.

Evaluation Index ELM Model KNN-FWA-ELM Model

Qualified rate/% 71.05 78.95
∆Q/% −12.74 −6.80
∆h/h −0.43 −0.29
NS 0.77 0.83
R2 0.82 0.85

RMSE/m3/s 6.54 5.44
MSRE 7.53 6.25
MARE 0.83 0.71

It can be seen in Table 9 that the qualified rate of KNN-FWA-ELM model for small floods
simulation increased by 11.12% compared with the ELM model. The average ∆Q of KNN-FWA-ELM
model decreased by 46.62%. The average ∆h of KNN-FWA-ELM model was shortened by 0.14 h.
The average NS and R2 of KNN-FWA-ELM model increased by 7.79% and 3.66%, respectively. The
average RMSE, MSRE, and MARE of KNN-FWA-ELM model were lower than that of the ELM model,
which were decreased by 16.82%, 17%, and 14.46%, respectively. The above results demonstrated that
KNN-FWA-ELM model performed better than the ELM model in simulating small floods.

Based on the eight statistical evaluation indexes and the aforementioned analysis, it is evident
that KNN-FWA-ELM model had better simulation performance for great, moderate, and small floods
than the ELM model, and the KNN-FWA-ELM model for great floods simulation performance was
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better due to the steady flow velocity of the great floods and the weak nonlinear characteristics of the
flood process. While the magnitude of the moderate and small floods was relatively small, and the
nonlinear characteristics were strong. Therefore, KNN-FWA-ELM model got preferable simulation
performance on great floods. This is consistent with previous research of machine learning flood
forecasting model [24].

5. Conclusions

In this study, a novel hybrid KNN-FWA-ELM approach, in which k nearest neighbor method,
fireworks algorithm, and extreme learning machine are integrated, was proposed for flood forecasting
in a medium and small watershed of loess region. This integrated approach could increase the
robustness of flood forecasting results. We finally have drawn the following conclusions.

For the special topography, micro-geomorphology, vegetation, and other underlying surface
conditions of the loess region, the advantages and disadvantages of the ELM model in the flood
forecasting of typical medium and small watershed in the loess region were analyzed. To realize
model parameter optimization and continuous flood forecasting, MATLABR2016b was used as the
platform to self-program, and the ELM model was improved by using fireworks algorithm and k
nearest neighbor method. FWA was adopted to find the optimal values of input weight and offset,
and KNN method was employed to make the full use of early discharge data. A hybrid data-driven
model (KNN-FWA-ELM) for flood forecasting in a medium and small watershed in the loess region
was proposed and established, and the changes of the underlying surface characteristics of the basin in
different periods were considered in the input and output of the model.

The KNN-FWA-ELM and ELM models were applied to the Gedong Basin, and the floods in
different periods and different grades were simulated. The qualified rate, ∆Q, ∆h, NS, R2, RMSE,
MSRE, and MARE were employed to measure the flood simulation results of the two models.
The performance comparison of their simulated results in the present study demonstrated that the
qualified rate of KNN-FWA-ELM model was 82.61%, and the ELM model was 65.22%; the absolute
of ∆Q of KNN-FWA-ELM model was 6.47% less than that of the ELM model; the absolute of ∆h of
KNN-FWA-ELM model was 0.14 h shorter than that of the ELM model; the higher values of the NS
and R2 indicated that KNN-FWA-ELM model gave a better performance than the ELM model; the
smaller values of MSRE and MARE indicated the high simulation precision of KNN-FWA-ELM model.
In short, the developed hybrid KNN-FWA-ELM model could provide a significant improvement in
flood forecasting.

Depending on the performance comparison of the two models in HSP1, HSP2, and HSP3,
it is concluded that KNN-FWA-ELM model could achieve better-simulated results with significant
improvement based on eight statistical evaluation indexes for flood forecasting and demonstrate the
best performance on HSP1.

Based on the eight statistical evaluation indexes and the performance comparison of the two
models for great, moderate, and small floods, it is evident that KNN-FWA-ELM model had better
simulation performance and gave the best results for great floods.

The proposed hybrid KNN-FWA-ELM model obtained a good flood forecasting result in a medium
and small watershed of loess region in our study, but there are drawbacks, such as the number of the
hidden layer nodes were determined by a human. In our future studies, we will determine the number
of optimal hidden layer nodes through the ELM itself by changing the nodes dynamically, and we
will compare the simulated flood forecasting results of the hybrid KNN-FWA-ELM model and the
hydrological model under different underlying surface conditions and different flood grades. We will
also apply this hybrid model to other medium and small watershed of loess region in China. In short,
the developed hybrid model could provide a significant improvement to flood forecasting.
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