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Abstract: A port’s operating capacity and the economic performance of its concessions are intimately
related to the quality of its operational conditions. This paper presents an analytical methodology
for estimating the movements of a moored vessel based on field measurements and forecast data,
specifically including ship dimensions and meteorological and maritime conditions. The methodology
was tested and validated in the Outer Port of Punta Langosteira, A Coruña, Spain. It was determined
that the significant wave height outside the port, and the ratio of the vessel’s length divided by its
beam (L/B), are the variables that most influence movements. Furthermore, heave and surge are
the movements with a better value of the coefficient of determination (R2 values of 0.71 and 0.67,
respectively), the sway (R2 = 0.30) and roll (R2 = 0.27) being the worst when using the available
forecast variables of the Outer Port of Punta Langosteira. Despite their low R2 values, sway and roll
models are able to estimate the main trends of these movements. The obtained estimators provide
good predictions with assumable error values (root mean square error—RMSE and mean absolute
error—MAE), showing their potential application as a predictive tool. Finally, as a consequence, the
A Coruña Port Authority has included the results of the methodology in its port management system
allowing them to predict moored vessel behavior in the port.

Keywords: ship motions; in-situ observations; port operation; transfer functions; meteorological and
ocean conditions; vessel dimensions

1. Introduction and Objectives

In one respect, the quality of port operations can be defined by the maxim “the better a vessel’s
stay in port, the greater the economic returns”. An important aspect that affects this process is the
movements of the moored vessels. These movements are divided into three rotations (roll, pitch, and
yaw) and three linear displacements (heave, surge, and sway). Each of these degrees of freedom is
dependent on many variables, including climatic conditions, the vessel load cargo configuration, the
vessel type, its location in the dock, the available defenses (fenders, bollards, etc.), and the mooring
system employed [1].

On the other hand, decisions relating to the number of mooring lines, the ropes material (steel
wire, synthetic fiber ropes, etc.), and the mooring arrangement depend on harbor pilot considerations,
the mooring service providers, the mooring equipment on the berths, and the vessel captain. Finally,
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the vessel’s cargo configuration during operations modifies its center of gravity. This variation is
difficult to ascertain with precision and would require a continuous record [2].

At present, there are a number of general recommendations regarding threshold values for
movements during vessel loading and unloading operations [3,4]. Although these regulations establish
movement criteria for safe working conditions, they do not clearly specify what type of statistical
value of the movement they refer to (maximum, average or significant motion amplitudes). Moreover,
because they are general recommendations, their specific application to each individual port requires a
separate study [5].

Studies relating to operational capacity are traditionally conducted using three methodologies:
numerical models, physical models, and field campaigns. Small-scale physical models [6–8] allow the
simplified reproduction of port characteristics, vessel dimensions, mooring configuration, and different
climatic conditions, but do not permit the accurate analysis of the variation in cargo configuration
which occurs during operations. In addition, for a physical model to be reliable, it is important to
assure that the model is accurate and realistic, which is achieved by costly construction and intense
calibration [9,10]. On the other hand, although the advancement of numerical models facilitates the
analysis of the behavior of a moored vessel and the influence on it of the mooring configurations or the
effect of passing ships with lower computational and economic costs [11–13], these tools also have
similar limitations as the physical models, such as the disadvantage of not reproducing the variations
experienced by the position of the vessel’s center of gravity during the cargo operation. Therefore,
using these two methodologies it is possible to analyze a specific loading condition (ship fully loaded,
ballasted, etc.) but not the continuous variation of the same. Finally, studies conducted through field
campaigns allow a comprehensive analysis of this process and its influence on the dynamic behavior
of moored vessels. However, the current measurement techniques and data processing technology
have limitations in terms of accuracy, the resolution of the instrumentation, temporary data logging,
information storage, and computational cost. Nevertheless, at present there are studies in which some
of the degrees of freedom are analyzed, together with the equations that define them and the loads
that moored vessels are subjected to in specific situations, such as the swell generated by a vessel
navigating in the port [14,15].

The objective of the present work was the development of an analytical methodology to predict
the movements of moored vessels based on the data available by the Port Authority forecast and the
vessel movements measured in a field campaign. This methodology has been applied and validated at
the facilities of the Outer Port of Punta Langosteira, in A Coruña, Spain (Figure 1a). Each of the degrees
of freedom was correlated to climatic variables and vessel dimensions, by means of multivariate linear
approximation (transfer functions). These results allowed the A Coruña Port Authority to develop
a management system to determine the port’s operating capacity, based on forecast data. With this
system, it will be possible to evaluate the quality of the port’s operational facilities, determine the ideal
working windows, and optimize the use of the port’s spaces. Furthermore, this methodology could be
exportable to other ports if an analysis of the influential and available forecast variables is made, as
well as a record of the movements of the moored vessels. Despite the influence of mooring lines on the
behavior of vessels at berth, the mooring system information (material, initial pretension, and mooring
arrangement) was not introduced as a variable to obtain the transfer functions, since no forecast data
on these parameters would be available to subsequently feed the obtained models. In addition, as
a results of the characteristics and layout of the port mooring equipment, vessels use two mooring
arrangements (Figure 1b): 4-2-2-4 for large bulk carriers (4 bow lines–2 bow spring–2 stern springs–4
stern lines) and 3-2-2-3 for general cargo ships (3 bow lines–2 bow spring–2 stern springs–3 stern lines).
Therefore, there is no variability in the number of moorings lines within the same vessel type.
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Figure 1. The Outer Port of Punta Langosteira, A Coruña, Spain. The berthing line and the location of 

the wave buoy and the weather station used in this study are highlighted (a). Mooring arrangement 

of each vessel type (b). 
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Spain and is protected by a 3360 m-long main breakwater and a spur breakwater 1320 m long. The 

current berthing line is 914 m long with an average depth of 22 m. The orientation of the dock is 

N62.7W and reaches a crest height 6.5 m above the zero datum of the port. A set of bollards spaced 

31 m apart with a load capacity of 200 t is situated 0.75 m from the dock. In addition, there is a double-

fender system protected by a shield to streamline vessel operations. 

In order to compute the transfer functions, the six degrees of freedom of 27 vessels (15 Bulk 

carriers and 12 General cargo vessels) were recorded under different climatic conditions (Table 1). 

These vessels were located along the entire berthing line and represent a typical harbor fleet in this 

port.  
  

Figure 1. The Outer Port of Punta Langosteira, A Coruña, Spain. The berthing line and the location of
the wave buoy and the weather station used in this study are highlighted (a). Mooring arrangement of
each vessel type (b).

2. Field Campaign and Forecast Data

Three field campaigns were conducted at the facilities of the Outer Port of Punta Langosteira in A
Coruña for the measurement of the variables involved, lasting a total of 18 months (October–March
2015–2016, 2016–2017, and 2017–2018). The port is located 10 km southeast of the city of A Coruña
in Spain and is protected by a 3360 m-long main breakwater and a spur breakwater 1320 m long.
The current berthing line is 914 m long with an average depth of 22 m. The orientation of the dock is
N62.7W and reaches a crest height 6.5 m above the zero datum of the port. A set of bollards spaced
31 m apart with a load capacity of 200 t is situated 0.75 m from the dock. In addition, there is a
double-fender system protected by a shield to streamline vessel operations.

In order to compute the transfer functions, the six degrees of freedom of 27 vessels (15 Bulk
carriers and 12 General cargo vessels) were recorded under different climatic conditions (Table 1).
These vessels were located along the entire berthing line and represent a typical harbor fleet in this port.
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Table 1. Characteristics of the vessels measured during the field campaign.

Vessel Type Deadweight Tonnage DWT (t) Length (m) Beam (m)

Fu Da Bulk carrier 71,330 224.9 32.2
Avax Bulk carrier 87,030 225.0 32.2

Yannis Bulk carrier 50,792 189.9 32.2
Western Boheme Bulk carrier 37,000 186.9 28.6

Pina Cafiero Bulk carrier 75,668 225.0 32.2
Jing Jin Hai Bulk carrier 77,872 225.0 32.2

Lowlands Saguenay Bulk carrier 37,152 179.9 30.0
Aloe Bulk carrier 30,618 178.7 28.0

CSK Unity Bulk carrier 77,105 225.0 32.2
Topaz Bulk carrier 75,499 225.0 32.2

Walsall Bulk carrier 58,018 189.9 32.3
Kyzicos Bulk carrier 92,598 229.5 36.9

Nautical Lucia Bulk carrier 63,548 199.9 32.2
Nord Saturn Bulk carrier 77,288 225.0 32.2

Orange Harmony Bulk carrier 81,837 229.0 32.2
Marc General cargo 4135 89.8 13.6

Celine General cargo 8600 129.4 15.8
Dominica General cargo 13,022 127.3 21.2

Kelly C General cargo 6250 106.0 15.5
Notos General cargo 8049 125.1 16.4

Don Juan General cargo 21,057 158.0 23.0
Eems River General cargo 4066 89.9 12.5

Linau General cargo 3699 88.0 12.8
Fortune General cargo 12,692 138.9 21.3

Moraime General cargo 7300 118.0 16.5
Onego Capri General cargo 10,273 138.9 15.9

Oppland General cargo 9273 107.0 18.4

The methodology used for the measurement of the movements was validated in other studies by
the authors of this paper [16]. The measurement equipment consists of three systems that continuously
record each of the vessel’s degrees of freedom with a frequency of 1 Hz. The first of these systems is an
inertial measurement unit (IMU) [17] consisting of three accelerometers and three gyroscopes that record
the roll and the pitch (Figure 2, Left). The second system comprises two electronic distance-measuring
lasers for the sway and yaw measurements (Figure 2, Right). Finally, photogrammetric techniques
were employed to measure the heave and surge movements [18] (Figure 2, Center).
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Figure 2. Left: IMU (Inertial measurement unit), Center: Photogrammetric techniques, Right: Laser
distance sensor.

The climatic variables were measured using the available instrumentation in the Spanish Port
Authority network and the A Coruña Port Authority. The location of the instruments is shown in
Figure 1. This decision was made since the port’s own meteorological forecasting system collects data
at these points. In first place, the hydrodynamic variables were measured at the outer buoy of the Port
of Punta Langosteira, located at 43◦20′58.34” N–8◦33′41.32” W at a depth of 60 m. During the first
20 min of each hour it recorded the following variables: significant wave height (Hs (m)), maximum
wave height (Hmax (m)), peak wave period (Tp (s)), average wave period (Tm (s)), and wave direction
(DirW (◦)). Second, the weather station located near the roundhead of the main breakwater was used
to record wind speed and direction. The instrumentation continuously records the average wind
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speed (Vw (km/h)), wind gust speed (Vg (km/h)), average direction, and wind gust direction (DirVw (◦)
and DirVg (◦)). However, the port weather forecast system only provides 72 h in advance data of the
variables Hs (m), Tp (s), and DirW (◦) at the buoy location, and, Vw (km/h) and DirVw (◦) at the weather
station, so these variables were finally used in this study. This forecasting system was developed by
the Spanish government agency Puertos del Estado in collaboration with the State Meteorological
Agency (AEMET). This system is driven by wind fields supplied by AEMET from the High Resolution
Limited Area Model (HIRLAM). The system starts a new execution twice a day providing data outputs
with a time resolution of 1 h. To ensure good initial conditions, before the forecast starts, the model is
forced using wind analyzed fields of the 12 h prior to forecast initialization [19].

The seasonal wind and wave roses (winter and summer) at the buoy position for the period
2015–2018 are shown in Figure 3, in order to clarify the values of the main forcings acting in the Outer
Port of Punta Langosteira.

Water 2019, 11, x FOR PEER REVIEW 5 of 20 

 

at these points. In first place, the hydrodynamic variables were measured at the outer buoy of the 

Port of Punta Langosteira, located at 43°20′58.34″ N–8°33′41.32″ W at a depth of 60 m. During the first 

20 min of each hour it recorded the following variables: significant wave height (Hs (m)), maximum 

wave height (Hmax (m)), peak wave period (Tp (s)), average wave period (Tm (s)), and wave direction 

(DirW (°)). Second, the weather station located near the roundhead of the main breakwater was used 

to record wind speed and direction. The instrumentation continuously records the average wind 

speed (Vw (km/h)), wind gust speed (Vg (km/h)), average direction, and wind gust direction (DirVw (°) 

and DirVg (°)). However, the port weather forecast system only provides 72 h in advance data of the 

variables Hs (m), Tp (s), and DirW (°) at the buoy location, and, Vw (km/h) and DirVw (°) at the weather 

station, so these variables were finally used in this study. This forecasting system was developed by 

the Spanish government agency Puertos del Estado in collaboration with the State Meteorological 

Agency (AEMET). This system is driven by wind fields supplied by AEMET from the High 

Resolution Limited Area Model (HIRLAM). The system starts a new execution twice a day providing 

data outputs with a time resolution of 1 h. To ensure good initial conditions, before the forecast starts, 

the model is forced using wind analyzed fields of the 12 h prior to forecast initialization [19]. 

The seasonal wind and wave roses (winter and summer) at the buoy position for the period 

2015–2018 are shown in Figure 3, in order to clarify the values of the main forcings acting in the Outer 

Port of Punta Langosteira. 

 

Figure 3. Seasonal wind and wave roses (winter and summer) at the buoy position for the period 

2015–2018. 

Figure 3. Seasonal wind and wave roses (winter and summer) at the buoy position for the
period 2015–2018.

Although the models for estimating the movements of moored vessels were obtained with
observational meteorological and ocean data (recorded by the wave buoy and the weather station),
they are run with forecast data. Therefore, it is important to know the differences between both sources
of information (observational data vs. forecast data). To this end, an analysis of the estimation errors
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of each variable (Hs (m), Tp (s), Dirw (◦), Vw (km/h), and DirVw (◦)) was conducted. Table 2 shows the
obtained results.

Table 2. Coefficient of determination (R2), root mean square error (RMSE) and mean absolute error
(MAE) of forecast and observed meteorological and ocean variables.

Forecast Variable vs. Observed Variable R2 RMSE MAE

Hs (m) forecast vs. Hs (m) observed 0.86 0.39 m 0.29 m
Tp (s) forecast vs. Tp (s) observed 0.63 1.9 s 1.2 s

Dirw (◦) forecast vs. Dirw (◦) observed 0.77 18.2◦ 11.3◦

Vw (km/h) forecast vs. Vw (km/h) observed 0.64 6.8 km/h 5.2 km/h
DirVw (◦) forecast vs. DirVw (◦) observed 0.51 55.1◦ 36.5◦

On the one hand, Hs (m), Tp (s), Dirw (◦), and Vw (km/h) variables present a better approximation
to the observed value, showing acceptable prediction errors (MAE values of 0.29 m, 1.2 s, 11.3◦, and
5.2 km/h, respectively). On the other hand, DirVw (◦) shows the largest deviation between the observed
and the forecast value (MAE value of 36.5◦). Since the models are fed with forecast data, having an
accurate weather forecasting system will provide similar results in terms of accuracy to those obtained
by these models in their development stage.

As previously mentioned, the wave buoy employed in this study characterizes the main ocean
variables of each sea state (1-h duration) using the records obtained during the first 20 min of each hour.
For this reason, the joint analysis of the data was carried out using only the concomitant data of both
wind, waves, and vessel movements. Regarding moored vessels behavior, the analysis of motion time
series was based on a zero crossing technique. A peak-to-peak criterion was applied to each movement
to obtain their amplitudes, except in the case of sway motion, for which the zero-peak criterion was
used. Complete time series of each motion were split into blocks of 1-h duration, obtaining the
maximum motion amplitude, average motion amplitude, and significant motion amplitude calculated
as the average of the highest third for each block [16]. Figure 4 shows a sample of roll motion time
series recorded on the bulk carrier vessel WESTERN BOHEME. The analysis of the maximum, average,
and significant amplitudes of each motion and their concomitant climatic forcings recorded on the
same vessel are shown in Figure 5.
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As can be seen in Figure 5, a moored ship that under specific meteorological and ocean conditions
moves with certain amplitudes may experience a maximum punctual movement much larger than its
significant or average movement. This value that stands out from the main trend of the movement
could be occasionally caused by the action of other external agents such as the waves generated
by passing vessels or the punctual modification of the mooring lines tension to adapt them to the
tidal variations.
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3. Analytic Methodology

This section presents the analytical methodology developed in this study for the calculation of
each of the transfer functions. The analysis was performed for significant movements. This parameter
has commonly been used in similar studies to evaluate the dynamic behavior of a moored vessel
during its stay in port [16,20,21]. Also, the use of the significant value assures that motions and wave
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parameters (significant wave height and peak wave period) are obtained following the same statistical
analysis. This can contribute to achieving better relations with the main forcings of moored vessels’
behavior. In addition, the range and independence of each of the variables used were also calculated.

3.1. Dataset Creation

First, a dataset was created to handle the calculation of the transfer functions. The range of validity
is shown in Table 3 and defines the values of each of the variables recommended for the equations
calculated in this study.

Table 3. Range of the variables considered for the calculation of the transfer functions.

Range Length (m) Beam (m) Hs (m) DirW (◦) Tp (s) Vw (km/h) DirVw (◦)

Min. 88.0 12.5 1.04 1.0 5.5 0.1 4.0
Max. 229.5 36.9 8.95 359 18.2 80.0 351.0

Abbreviations: Hs (m)—Significant wave height; DirW (◦)—Wave direction; Tp (s)—Peak wave period; Vw
(km/h)—Average wind speed; DirVw (◦)—Wind direction.

The homogeneity in the distribution of variables of the dataset was analyzed. To this end, each
data of a given variable was dimensionalized with the highest value of the same (Variable value
(i)/Maximum variable value). In this way, the spectrum of values was contained between 0 and 1.
Figure 6 shows the cumulative frequency of each parameter (Y-axis) within its range (X-axis). Therefore,
in a situation of homogeneous distribution of the data, the plot would correspond with the bisector of
the graph.
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range (Variable value (i)/Maximum variable value) vs. Accumulated frequency for each of the variables).

The results show that the significant wave height (Hs (m)) and wind velocity (VW (km/h))
variables are concentrated between 0.1 and 0.4 of their range. The wind direction (DirVw (◦)) presents a
homogeneous distribution in its range. However, the variables representing the peak wave period
(Tp (s)), wave direction (Dirw (◦)), length (m), and beam (B [m]), are all concentrated between 0.6
and 1 for the majority of the data. With the aim of more precisely quantifying the variables without
dimensionalizing them, Table 4 shows the frequency ranges and values for each of the variables.

An amount of 83% of the significant wave height data (Hs (m)) is concentrated in the range
1.0 ≤ Hs (m) ≤ 4. For the peak period, 93% of the data lies between 8 ≤ Tp (s) ≤ 16. Moreover, 38% of
the data is concentrated within a 2-s range (10 s–12 s). Most of the data pertaining to the wave direction
come from the NW direction (81%). Regarding the ship’s dimension, 59% of the length values and
70% of the beam values are for the largest vessels (200–250 m length and > 30 m beam). In view of the
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results it can be seen that some of the possible combinations between the variables are not defined by a
very high number of data points.

Table 4. Frequency of the data recorded during the field campaign for each of the variables.

Hs (m) Tp (s) DirW (◦) Vw (km/h) DirVw (◦) Length (m) Beam (m)

Range % Range % Range % Range % Range % Range % Range %

<1.0 0% <4 0% N [337.5–22.5] 16% 0–10 14% N [337.5–22.5] 2% <100 1% <10 0%
1–2 27% 4–6 0% NE [22.5–67.5] 0% 10–20 35% NE [22.5–67.5] 27% 100–150 13% 10–15 1%
2–3 37% 6–8 2% E [67.5–112.5] 0% 20–30 24% E [67.5–112.5] 4% 150–200 27% 15–20 9%
3–4 19% 8–10 19% SE [112.5–157.5] 0% 30–40 16% SE [112.5–157.5] 19% 200–250 59% 20–25 6%
4–5 8% 10–12 38% S [157.5–202.5] 0% 40–50 7% S [157.5–202.5] 8% >250 0% 25–30 13%
5–6 7% 12–14 21% SW [202.5–247.5] 0% 50–60 3% SW [202.5–247.5] 19% >30 70%
6–7 1% 14–16 15% W [247.5–292.5] 2% 60–70 1% W [247.5–292.5] 14%
7–8 1% 16–18 4% NW [292.5–337.5] 81% >70 0% NW [292.5–337.5] 6%
8–9 1% >18 1%
>9.0 0%

3.2. Statistical Response, Variables and Predictors

Next, the analytical methodology employed, the variables used, and their influence on each of the
degrees of freedom is presented.

The variables were selected taking their a priori possible influence on vessel movements into
account. They were divided into three groups, depending on whether they were climatic variables,
vessel dimensions, or dimensionless vessel size features. The latter were obtained by scaling the vessel
size measurements with the following wave characteristics: significant wave height (Hs (m)), and
wave length in deep water (Lop (m)). Table 5 shows the description of all the predictor and response
(vessel movements) variables obtained, studied, and modeled in this work.

Table 5. Response and predictor variables, with corresponding tags.

Movement (yi) Name Variables (Xm) Name Typology

Roll y1 Wave height (Hs (m)) X1

Meteorological and
ocean variables

Pitch y2 Wave period (Tp (m)) X2
Heave y3 Wave length (Lop (m)) X3
Surge y4 Wave steepness (s) X4
Sway y5 Wave direction (DirW (◦)) X5
Yaw y6 Wind velocity (Vw (km/h)) X6

Wind direction (DirVw (◦)) X7

Length (L (m)) X8 Vessel dimensionsBeam (B (m)) X9

Length/Beam (L/B) X10

Dimensionless
Length/Hs X11
Length/Lop X12

Beam/Hs X13
Beam/Lop X14

The transfer functions were calculated and analyzed using statistical correlation studies and
multivariate linear regression techniques [22]. This methodology has recently been applied to various
different engineering domains, including naval and oceanic engineering [23–25]. In the case of ocean
engineering, following a similar methodology, Carral-Couce et al. [23] developed nonlinear and
multivariate linear regression models to estimate the traction of towing and anchor-handling winches.
Additionally, the transit time to cross the Panama Canal’s new locks was estimated using multivariate
linear regression [24], and the effect of vessel dimensions, type, and fishing ground were also modeled
to estimate net drum and winch traction for trawler design tasks [25]. These techniques were also used
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to forecast wave height [26] and vessel traffic flow [27], among various other applications. For the
present case, the proposed multivariate regression model can be expressed as Equation (1):

yi = β̂0 +
M∑

m=1

β̂mxm + ε̂i, with i = 1, 2, . . . , 6 and m = 1, 2, . . . , 14 (1)

where yi represents the sample values of the response variable (vessel movement) corresponding to the
multivariate linear model, xm represents the m predictor variables (there were up to M = 14 variables
analyzed), and ε̂i represents the model’s residuals or the discrepancy between the real yi and the
model estimates, ŷi = β̂0 +

∑M
m=1 β̂mxm. The i index accounts for the vessel’s degrees of freedom (roll,

pitch, heave, surge, sway, and yaw). β̂0 represents the constant term of each model, and β̂m represents
the model’s parameter estimates corresponding to each of the independent variables. They account for
the linear effect of each predictor on the response.

4. Results and Discussion

This section includes the descriptive analysis, including the predictor correlation study, the
multivariate linear model’s estimation, and the model’s predictions of vessel movements obtained
from the previously described dataset.

4.1. Correlation Analysis

The predictors of a multivariate linear model should be uncorrelated in order to obtain reliable
model parameter estimations, and, hence, accurate and precise predictions [23–25,28]. Indeed, the
existence of multicollinearity leads to estimates of model parameters being highly dependent on sample
data, preventing an analysis of the effect of each predictor or covariate on the response, and limiting
the model’s ability to generate accurate predictions. Accordingly, a pairwise dependence relationship
analysis should be performed prior to including the predictors in the final model [28]. The most widely
used measurement for goodness of fit is the Pearson coefficient (r). At this point, it is important to note
that the inclusion of new additional predictors to the model always increases the Pearson coefficient.
Nevertheless, those predictors must be uncorrelated to prevent spurious dependence relationships
and inaccurate models. Accordingly, the dependence structure of the predictors was analyzed by
calculating the Pearson coefficient, r (Table 6).

Table 6. Pairwise Pearson linear correlation coefficients for the predictors (in gray when r ≥ 0.6 or r < −0.6).

r

Hs
(m)

Tp
(s)

Lop
(m) s DirW

(◦)
Vw

(km/h)
DirVw

(◦)
L

(m)
B

(m) L/B L/Hs L/Lop B/Hs B/Lop

r

Hs (m) 1.0 0.3 0.3 0.7 0.1 0.3 0.1 −0.1 −0.1 0.1 −0.8 −0.3 −0.8 −0.3
Tp (s) 0.3 1.0 1.0 −0.4 0.1 −0.1 −0.1 0.1 0.1 0.1 −0.2 −0.7 −0.2 −0.8

Lop (m) 0.3 1.0 1.0 −0.4 0.1 −0.1 −0.1 0.1 0.1 0.1 −0.2 −0.7 −0.2 −0.7
s 0.7 −0.4 −0.4 1.0 0.1 0.3 0.1 −0.1 −0.1 0.1 −0.6 0.4 −0.6 0.4

DirW (◦) 0.1 0.1 0.1 0.1 1.0 −0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0
Vw (km/h) 0.3 −0.1 −0.1 0.3 −0.1 1.0 0.1 −0.1 0.0 −0.2 −0.3 0.0 −0.3 0.0
DirVw (◦) 0.1 −0.1 −0.1 0.1 0.1 0.1 1.0 −0.1 −0.1 −0.1 −0.1 0.0 −0.1 0.0

L (m) −0.1 0.1 0.1 −0.1 0.1 −0.1 −0.1 1.0 0.9 0.2 0.5 0.4 0.4 0.4
B (m) −0.1 0.1 0.1 −0.1 0.1 0.0 −0.1 0.9 1.0 0.0 0.5 0.4 0.5 0.4
L/B 0.1 0.1 0.1 0.1 0.0 −0.2 −0.1 0.2 0.0 1.0 0.1 0.1 0.0 0.0

L/Hs −0.8 −0.2 −0.2 −0.6 0.0 −0.3 −0.1 0.5 0.5 0.1 1.0 0.4 1.0 0.4
L/Lop −0.3 −0.7 −0.7 0.4 0.0 0.0 0.0 0.4 0.4 0.1 0.4 1.0 0.4 1.0
B/Hs −0.8 −0.2 −0.2 −0.6 0.0 −0.3 −0.1 0.4 0.5 0.0 1.0 0.4 1.0 0.4
B/Lop −0.3 −0.8 −0.7 0.4 0.0 0.0 0.0 0.4 0.4 0.0 0.4 1.0 0.4 1.0

Table 6 shows that the wave period (Tp (s)) and wave length (Lop (m)) present a direct linear
relationship (r = 1) due to their definition. In addition, the wave height (Hs (m)) and steepness (s)
are also correlated (r > 0.6). Additionally, the vessel size predictors are also significantly correlated.
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This is the case for vessel length (L (m)) and beam (B (m)), which are very strongly correlated (r ≥ 0.9).
A similar dependence structure is obtained when the size dimensionless predictor variables are studied.
Taking into account the fact that the dimensionless variables were derived from the vessel size and
meteorological and ocean variables, Table 6 shows that they are strongly correlated with both size and
meteorological and ocean predictors. On the other hand, it can be observed that the dimensionless
variable Length/Beam is independent, and this allows the influence of the size of the vessel to be
introduced into the analysis.

On the basis of the results depicted in Table 6, linear regression models were developed using
variables that were independent of each other. Thus, these models were constructed using five
hydrodynamic predictors (Hs (m), Tp (s), DirW (◦), Vw (km/h), DirVw (◦)) and the dimensionless
variable Length/Beam (Table 7).

Table 7. Predictors involved in fitting regression models.

Selected Predictors

Wave height (Hs (m))
Wave period (Tp (s))

Wave direction (DirW (◦))
Wind velocity (Vw (km/h))
Wind direction (DirVw (◦))

Length/Beam (L/B)

The variables Hs (m) and Tp (s) were selected instead of s (wave steepness) and Lop (m) since
they are the main parameters that define the characteristics of a sea state (together with DirW (◦)).
In addition, their values are directly provided by both the wave buoy and the weather forecasting
system of the Port, facilitating the data acquisition and the implementation of the models. Regarding
vessel dimensions, neither L (m) nor B (m) was selected to participate as an independent variable since
their information was already included in the dimensionless variable L/B.

4.2. Regression Modelling of Vessel Movements

Once the variables that could potentially participate in the generation of the models were selected,
the next step consisted in identifying those that had an important influence on the prediction provided
by each model. To this end, an Akaike criterion (AIC) was used [29]. First, the multivariate linear
regression models were calculated including all selected predictors. The parameters corresponding to
each predictor, β̂m were estimated from the data base by means of the least squares method. Then,
a statistical significance analysis of each variable was carried out, selecting those with a level of
significance α ≤ 0.01 (Table 8).

Table 8. Summary of the selected predictors for each response variable. Variables that have an effect on
the response significantly different from zero are indicated by a cross (significance level α ≤ 0.01).

Roll (y1) Pitch (y2) Heave (y3) Surge (y4) Sway (y5) Yaw (y6)

Hs x x x x x x
Tp x x x

DirW x x x x
Vw x x x

DirVw x x
L/B x x x x x x

Finally, models were re-calculated using only the most influential predictors in each vessel
movement, obtained from the significance analysis (Table 8). Adopting this methodology ensured
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that the models would provide predictive results. The following expressions show the structure and
selected variables for each transfer function:

y1 (Roll) = β0Roll
+ β1Hs

·Hs + β1Tp
·Tp + β1DirW

·DirW + β1VW
·VW + β1 L

B

·
L
B

(2)

y2 (Pitch) = β0Pitch
+ β2Hs

·Hs + β2Tp
·Tp + β2 L

B

·
L
B

(3)

y3 (Heave) = β0Heave
+ β3Hs

·Hs + β3DirW
·DirW + β3VW

·VW + β3 L
B

·
L
B

(4)

y4 (Surge) = β0Surge
+ β4Hs

·Hs + β4DirW
·DirW + β4DirVW

·DirVW + β4 L
B

·
L
B

(5)

y5 (Sway) = β0Sway
+ β5Hs

·Hs + β5Tp
·Tp + β5VW

·VW + β5DirVW
·DirVW + β5 L

B

·
L
B

(6)

y6 (Yaw) = β0Yaw
+ β6Hs

·Hs + β6DirW
·DirW + β6 L

B

·
L
B

(7)

Each multivariate linear regression model was adjusted with 80% of the composed data sample.
The rest of the data was reserved for external validation of the transfer functions calculated by
the models.

In order to quantify the importance of each variable for vessel movements, a relative frequency
descriptive analysis was performed (Figure 7). From this analysis, the wave height (Hs (m)) and the
dimensionless variable Length/Beam (L/B) effect on the response was found to be significant in all
(100%) of the regression models performed (transfer functions), while the wave direction (DirW (◦)).
effect was non-zero in 66.67% of the transfer functions performed. In addition, the wave period (Tp (s))
and wind velocity (Vw (km/h)) were significant in 50% of the movements. Finally, wind direction
(DirVw (◦)) effect was only significant for surge and sway movements.Water 2019, 11, x FOR PEER REVIEW 13 of 20 
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Figure 7. The relative frequency corresponding to the models where the effect of each predictor on the
response is significantly different from zero.

Figure 8 shows the results obtained with each of the models constructed. This data visualization
provides information about the goodness of fit, the ability to predict vessel movements using a
variable-dependent model, and the model’s accuracy and precision.
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Figure 8. Scatter plots of measured values versus predicted values for the multivariate linear models
fitted to significant vessel movements.

As can be observed, the models with the highest accuracy and precision were those that estimate
the heave and the surge. This trend was also observed for the yaw and pitch movements. The lowest
accuracy was obtained for the sway and the roll. These two movements had greater variability over
time, as well as an inertial component from the vessel and the cargo, so their accuracies were lower.
Accordingly, the fittings for these latter vessel movements were less precise (a greater dispersion of
points around the diagonal). However, although these models did not allow the real motion amplitude
to be predicted accurately, they were able to estimate the main trends of these movements.
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In addition, the R2 coefficients and the root mean square error (RMSE) provided a quantitative
measure of each model’s goodness of fit (Table 9). The best goodness of fit was produced for the heave
movement, with an R2 value of 0.71 and an RMSE of 0.08 m.

The surge movements fitted with R2 = 0.67, while the yaw and pitch movements had R2 values of
0.56 and 0.45, respectively. In addition, the RMSE is 0.18 m for the first, 0.21◦ for yaw, and 0.09◦ for the
pitch. Finally, the movements with the lowest goodness of fit values were the sway (R2 = 0.30) and the
roll (R2 = 0.27). In these two cases it was verified that the RMSE of the sway was about 0.18 m, while
for the roll it was 0.46◦.

Table 9. Values of the R2 coefficient and the root mean square error (RMSE) of the calculated
transfer functions.

Movement R2 RMSE

Heave 0.71 0.08 m
Surge 0.67 0.18 m
Sway 0.30 0.18 m
Yaw 0.56 0.21◦

Pitch 0.45 0.09◦

Roll 0.27 0.46◦

Additionally, the error for each function was quantified. This was done using the mean absolute
error (MAE) parameter (Table 10). The objective was to estimate the deviation of the functions, because
all the variables involved in the process were not taken into account. The joint analysis of these three
parameters allows for a determination to be made as to whether the error obtained was acceptable for
use in a port operational management system.

Table 10. Mean absolute error (MAE) for each of the six degrees of freedom analyzed using
transfer functions.

Heave (m) Surge (m) Sway (m) Yaw (◦) Pitch (◦) Roll (◦)

Mean Absolute
Error 0.06 0.14 0.14 0.15 0.07 0.36

The results show that despite not having all the variables referenced in the model, it is possible to
estimate with a mean precision of at least 0.36◦ the rotations, and 14 cm the displacements. From Table 10
it can be seen that, coinciding with the values of R2, the largest errors were produced in the case of the
roll, and the smallest for the heave.

4.3. Model Validation

An external validation procedure was implemented in order to evaluate the predictive ability of
the transfer functions compared in the previous section. For this purpose, 20% of the data obtained in
the field campaigns was applied to the transfer functions and the results were compared (Figure 9).

As can be observed in Figure 9, heave, surge, yaw, and pitch estimated and measured movements
conform to the bisector of the first quadrant. Sway and roll movements present a similar fit, but in a
less precise way. This fact demonstrates that the proposed models achieve their objective. However, as
before, the existing differences were produced by climatic characteristics, the mooring lines and the
cargo configuration. Figure 10 shows the comparison between the measured heave and roll motions,
and those estimated by the transfer functions from the validation data.
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To quantify the accuracy of the estimations, the determination coefficient (R2) and the root mean
square error (RMSE) of each movement were analyzed (Table 11).

Table 11. Obtained values of the R2 coefficient and the root mean square error (RMSE) in transfer
functions validation.

Movement R2 RMSE

Heave 0.70 0.08 m
Surge 0.74 0.16 m
Sway 0.22 0.18 m
Yaw 0.60 0.20◦

Pitch 0.46 0.09◦

Roll 0.32 0.44◦

Comparing Tables 9 and 11, the obtained validations reflect the same pattern as the calculated
transfer functions. Similarly, both the determination coefficient (R2) and the root mean square error
(RMSE) obtained were shown to be of the same order of magnitude. Therefore, it can be concluded
that the accuracy of the validation is similar to that of the calculated functions. Moreover, it was also
verified that the mean absolute error (MAE) had a similar value to that calculated by the models: 0.35◦

for the rotations, and 14 cm for the displacements (Table 12). However, as mentioned in Section 2, these
tools will be fed with weather forecast data, so their accuracy will also be conditioned by the port’s
own forecasting system (Table 2).
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Table 12. Mean absolute error (MAE) for each of the six degrees of freedom studied in the validation of
the transfer functions.

Mean Absolute Error

Heave (m) Surge (m) Sway (m) Yaw (◦) Pitch (◦) Roll (◦)

Validation 0.07 0.12 0.14 0.14 0.07 0.35

Finally, the application of this methodology and the implementation of the obtained models
in a port management system would provide reasonable predictions of the expected movements of
moored vessels from weather forecast data. Comparing this information with the movement thresholds
specified by the different standards would detect possible operational downtimes and risk situations in
the berthing area. Therefore, this tool would help to identify operational windows for ships, facilitating
decision making on port berth occupancy planning.

5. Conclusions

This paper presents an analytical methodology to relate the movements of moored vessels using
the variables available in forecast data including specifically, ship dimensions and climatic conditions.
This work was applied and validated for 27 moored vessels (15 Bulk carrier and 12 General cargo)
at the facilities of the Outer Port of Punta Langosteira, A Coruña, Spain. The results obtained are
currently incorporated in its port management system.

The results show that this methodology can be used to predict the six degrees of freedom of
moored vessels. These models were obtained assuring that the variables used were independent of
each other. The values of the determination coefficient (R2) and of the root mean square error (RMSE)
indicate that the equations calculated allow a reasonable prediction of the movements. Even models
with lower R2 values (sway and roll movements) are able to estimate the main trend of the expected
movements. In addition, the mean absolute error reveals that the errors are less than 14 cm for the
displacements, and less than 0.36◦ for the rotations.

As a conclusion, it can be verified that the methodology proposed facilitates an advance towards a
better understanding of the factors that influence port operations in the Outer Port of Punta Langosteira.
This is the first step in order to generate warnings that assist port management and help to optimize
the use of the port’s resources and facilities. Also, this methodology could be exportable to other ports
providing an analysis of the influential and available forecast variables is made, as well as a record of
the movements of the moored vessels.
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