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Abstract: In order to enhance the using efficiency of the adsorbent and decrease production costs,
reclaimed saturation Lanthanum modified pine needles (LH pine needles) have been studied as a
possible solution. Pine needles gathered from the woods of Northeast China area were used as raw
material for generating LH pine needles by alkali-isopropanol treatment and chemical precipitation.
To explore the utilization of LH pine needles as a recycling adsorbent in wastewater treatment plants
(WWTPs) and laboratory water distribution. Results show that removal effective of phosphorus (P)
by LH pine needles in low concentration reclaimed water of WWTPs was 41% and up to more than
92% in its adding standard. In the wide pH range, LH pine has an effective adsorption capacity for
phosphorus; pH can also interfere with the adsorption capacity of LH pine as there is a negative
correlation between them. The adsorption of phosphorus by LH pine needles is divided into three
stages with a pH ranging from 3~11. Ligand exchange reaction, electrostatic reaction and Lewis acid
reaction are PO4

3− adsorption mechanism. The analysis of the recycling efficiency of LH pine needles
proved that LH pine needles have good regeneration performance. After being eluted by NaOH
regeneration agent for more than 10 times, the adsorption efficiency of phosphorus can still be stable
at over 90% in seven cycles.
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1. Introduction

As early as 2015, the United Nations Environment Programme addressed that waste water
was an undervalued resource that should not be wasted, while reclaimed water had most added
value [1,2]. Utilization of reclaimed water is receiving increased attention in many regions, countries
and different industries around the world, such as the United States, Europe, Singapore and China [3–5].
In China, the applications of reclaimed water include groundwater recharge, supply for rivers and
lakes, landscapes, irrigation of agricultural crops and industrial reuse, the mainstream of sewage is
still discharged [2–5]. Due to the complexity of sewage and the limitation of treatment process, the
regenerated water after deep treatment still contains plant nutrients such as nitrogen and phosphorus
(P). Although reclaimed water of waste water treatment plants (WWTPs) contains low concentrations
of pollutants, it may still threaten the environment by normal pollutant which supplied directly [6].
Phosphorus (P), a necessity of life while polluting the ecological environment in many ways, is also an
important contaminant in reclaimed water that should be removed.

P removal mechanisms in WWTPs include physical (sedimentation), chemical (adsorption,
precipitation and complexation) and biological processes (vegetation and microbial) [7,8], as well as
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the emission of phosphine gas [9]. Due to different P concentrations in solutions, the P adsorption
capacities of substrates vary greatly [10].

Our previous research of the removal of P was only at laboratory scale of water distribution, while
research and mechanism analysis in actual WWTPs were yet executed [11]. Adsorption mechanism is
a necessary part of adsorbent which plays an important role in pollutant removal of reclaimed water.
During the last decade, studies of adsorbent on phosphorus have been conducted varied, including in
sodium bentonite/clay (BC) [12], Modified cottonwood fiber, etc. [13]. The effectiveness for P removal
with different absorbing materials have also been compared [11,14,15]. However, most adsorbent
studied to date are used to treat P of sewage in few cycles, and very few studies investigated the use of
adsorbent in recycling, let alone use a recycling biosorbent.

Different kinds of natural and synthetic adsorbents have been used to remove pollutants from
wastewater [16,17]. Biomass adsorbent has been widely used in wastewater treatment due to its
purification effect on lower phosphorus wastewater. 2.12 million hectares of camphor pine and red
pine in Changbai Mountain in the northeast of China produces 14.84 million tons of pine needles
annually. However, these pine needles are abandoned normally. Biomass adsorbent can improve
the adsorption efficiency by changing the adsorption properties: increasing the pore channel and
specific surface area of adsorbent, or changing the cationic species attached to the surface of adsorbent.
Hence, pine needles with pore structure are supposed to be good carbon-based biomass adsorbents.
Thus, it is widely used in wastewater treatment [18]. The modification methods of the adsorbents
studied at present mainly include biological modification [19–21], physical modification [22] and
chemical modification [23]. Based on the chemical modification method, the properties of biomass can
be easily changed using metal hydroxides (oxides). Lanthanum hydroxide (lanthanum oxide) is an
environmentally friendly substance [24], and has proven to have a very high phosphorus adsorption
and removal efficiency [25–27].

At present, there is no engineering study on the application of LH pine needles made by loading
lanthanum hydroxide on pine needles in reclaimed water. Based on this, the waste pine needles were
utilized as resources, and the improvement conditions of the properties of modified biomass adsorbent
were comprehensively considered, which solved the problem of disposal of waste resources and saved
the use cost of Regenerable Biomass Adsorbent. Additionally, we attempted to identify the influencing
factors involved in P removal by mechanism analysis. Phosphorus removal in reclaimed water by the
Regenerable Biomass Adsorbent must be a key element of this study.

2. Materials and Methods

2.1. Chemicals

All chemicals used for this study were analytical grade, purchased from Tianjin Fuchen Chemical.
All solutions were prepared with distilled water. Lanthanum nitrate hexhydrate (La(NO3)3·6H2O)
was used to prepare the adsorbent LH pine needles. Phosphorus stock solutions were prepared using
potassium dihydrogen phosphorus (KH2PO4).

2.2. Preparation of LH and AI Pine Needles

LH and AI (alkali-isopropanol) pine needles were synthesized by the following procedures:
Pine needles were gathered from the woods behind Northeast Normal University (NENU). As

displayed in Figure 1, we received full permission from Northeast Normal University for collecting
the pine needles from the woods that belongs to NENU, and the geographic coordinates are 125.43◦

E, 43.83◦ N. These pine needles were washed five times with distilled water to remove dust. The
samples were then dried overnight at a temperature of 353 K. The needle samples were then crushed
to a size of approximately 1–2.5 mm in length, and then soaked in a mixture of 3 M sodium hydroxide
(NaOH) and isopropanol (V NaOH/V isopropanol = 1:1) for 24 h. The soaked pine needles were then
washed again with distilled water and dried overnight, again at a temperature of 353 K. The cooled
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AI pine needles were then set aside for further use. take 20 g AI pine needles added to 250 mL of 0.1
M La(NO3)3 after, stirred for 1 h, and deposited for 5 h. An ammonia solution (28%, wt%) was then
added drop by drop to adjust the pH within the range of 8–9. The samples were again deposited for 10
h, washed five times with distilled water, and dried at 353 K for 720 min. The synthesized procedures
used in this research are the same as in our previous study [11].
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Figure 1. SEM chart of outer surface of LH pine needles (a), SEM chart of interior structure of AI pine
needles (b), TEM chart of LH pine needles (c) and EDAX of LH pine needles (d).

2.3. Batch Adsorption Experiments

Batch experiments were conducted to investigate the phosphorus adsorption performances of LH
pine needles. Samples were placed into multiple 150 mL glass stoppered conical flasks containing
100 mL phosphorus solutions at target concentrations. Flasks were then placed on a rotary shaker
and stirred at 160 rpm at a temperature of 298 K. Samples of 0.1 g LH pine needles were added to a
series of solutions (reclaimed water from west-north-south suburb WWTPs) with standard addition of
phosphorus concentrations (10 mg/L) for 720 min at a temperature of 298 K. The effect of initial pH
was studied by mixing 0.1 g LH pine needles with 10 mg/L phosphorus solution at pH values ranging
from 3 to 10 for 720 min. Solution pH was adjusted with 0.1 mol/L HCl and NaOH.

The experiments of the recycling efficiency of LH pine needles were then conducted. The
adsorption saturated LH pine needles were filtered by 0.45 µm glass fiber membrane and then added
to 100 mL regenerative solvent (ammonia, NaCl, and NaOH) with a concentration of 0.1 mol/L.
After further centrifugation for 30 min, the analytical LH pine needle was filtered through a vacuum
extraction filter. The solution containing phosphate was determined by ion chromatography. The
regenerated LH pine needles were washed 3 times with deionized water, and the adsorption and
desorption experiments were conducted once again.

All of the experiments were carried out in triplicate.
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2.4. Analytical Methods

Phosphorus concentrations were determined using a Metrohm 881 ion chromatograph coupled
with a Metrosep A Supp 4 column. A solution with 1.8 mm of Na2CO3 and 1.7 mm of NaHCO3 was
used as a mobile phase with a flow rate of 1.2 mL/min.

The concentration of residual lanthanum ions in the solutions after the adsorption process
was determined. Phosphorus adsorption capacities (qe, mg P/g) and removal efficiencies (%) were
determined using the following equations:

qe =
V × (C0 −Ce)

1000×m
(1)

Removal e f f iciency (%) =

(
1−

Ce

C0

)
× 100% (2)

In these equations, qe (mg P/g) was the phosphorus adsorption capacity, V (mL) was the volume
of the solution, C0 and Ce (mg/L) were respectively the concentrations before and after adsorption and
m (g) was the adsorbent mass.

3. Results and Discussion

3.1. Characteristics of LH Pine Needles

The Fourier transform infrared spectra of AI pine needles and LH pine needles were obtained
by Thermo FisherNicolet 6700 spectrometer. The sample was prepared by KBr tablet. The test range
was 450 cm−1~4000 cm−1. The morphological structures of AI pine needles and LH pine needles were
obtained by SEM (XL30-ESEM, FEI, Portland, OR, USA) and TEM (TECNAIF20, FEI, Portland, OR
State, USA).

(1) Surface morphology analysis

As shown in Figure 1, SEM images and TEM images of LH pine needles are shown. It can be
seen from Figure 1a that the LH pine needle have many pleated outer surfaces, but the appearance is
smooth without significant change, indicating that the hydroxide and isopropanol pretreatment does
not destroy the lignified skin of the outer surface of the pine needle. However, significant changes can
be seen on the inside as shown in Figure 1b, and many fine white spots can be seen by observing the
inside of the LH pine needle, these spots being confirmed as lanthanum oxide according to the EDAX
pattern, 11.84% (wt%) of La was obviously loaded on the pine needle. pretreatment destroyed the
hydrogen bond between lignin and carbohydrate or cellulose molecules, and the organic matter of
pine needle tissue was extracted to make its structure fluffy and form porous structure. The exposure
of the fibers contributes to a greater specific surface area, making the attachment to lanthanum ions
easier and providing a greater surface area and surface active functionality.

The presence of black particles can also be observed from TEM Figure 1c of the LH pine needles, and
the disordered mosaic of particles of varying sizes in the pores resulting from the uneven distribution
of wrinkles. It was further proved that La modified pine needles.

(2) X-ray diffraction analysis

As shown in Figure 2 are X-ray diffraction (XRD) patterns of LH pine needles, the diffraction peak
shape of XRD has a great relation to whether the sample is crystalline or amorphous: if the peak shape
is a steamed bread peak, it is a standard amorphous; if the peak shape is a sharp peak, it is a crystal.
The sharper the peak, the smaller the half height width, the smaller the grain size, the higher the
crystallinity [28]. It can be seen that the diffraction peaks of La match well with the cubie structure of
La (JCPDS NO.83-1345) in the fixed figure. The results showed that LH pine needle were successfully
prepared. Moreover, the characteristics of the amorphous solids of the pine needles were not changed
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after the pine needles were loaded with the metals La, indicating the structural stability of the modified
pine needles [29].Water 2019, 11, x FOR PEER REVIEW 5 of 12 
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3.2. Adsorption of Phosphorus in Reclaimed Water with LH Pine Needles as Recycling Adsorbent

In the actual wastewater adsorption experiment, the original water from the secondary effluent
of the treated sewage plant was extracted by adding standard, and the recovery rate was above 80%.
Reclaimed water was selected from typical WWTPs in Changchun. The different treatment processes
(Anaerobic-Anoxic-Oxic (A2/O) and Anoxic Oxic (A/O)) of three WWTPs were selected, providing
81.2% of the entire city in daily processing capacity. Therefore, the study of reclaimed water has
practical research value (Tables 1 and 2).

Table 1. Basic situation of typical sewage treatment plants in Changchun City. WWTP: waste water
treatment plant.

Provincial City Site Treatment
Process

Build-Up Time
(mm/year)

Design Disposal
Capability (t/day)

Actual Capacity
(t/day)

Jilin Changchun Southern suburb
WWTP A2/O 08/2009 15.00 7.55

Jilin Changchun Northern suburb
WWTP A2/O 08/2007 39.00 33.84

Jilin Changchun Western suburb
WWTP A/O 08/2002 15.00 7.25

Table 2. Maximum total phosphorus concentration emission allowance in GB18918-2002 (average daily
value, mg/L).

Basic Control Item Standard A of
the First Class

Standard B of
the First Class

Standard of the
Second Class

Standard of the
Third Class

Total phosphorus
(by P)

before the construction
in 31 December 2015 1 1.5 3 5

after the construction in
1 January 2016 0.5 1 3 5

The adsorption of phosphorus for reclaimed water with standard addition by LH pine needles
followed. The content of the actual water body composition is very complex, and there were a lot of
coexisting pollutants that were both organic and inorganic; the ionic strength and pH would have a
great influence on the adsorption process of LH pine needles. Therefore, in the experiment process,
the water of the typical wastewater treatment plant in Changchun was selected as the base water to
determine the phosphorus adsorption of LH pine needles. The sample was collected three times, and
100 mL of each water sample was taken.
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The basic test results showed that, when counting number of samples that meets the standard in
Table 2, 80% of outflows met the emission standard of GB18918-2002 after adsorption. The adsorption
efficiency of phosphorus is approximately 62% in five kinds of water, of which the quality of the second
effluent from the southern wastewater treatment plant was the best. The primary test results are shown
in Table 3.

Table 3. Removal of phosphate in reclaimed water of sewage plant using LH pine needles.

Site Sample ID Reclaimed Water After Adsorption

P (mg/L) P (mg/L)

Second class-Western suburb (SW)
1 2.225 1.335
2 2.072 1.243
3 2.331 1.362

Second class-Northern suburb (SN)
1 1.835 1.101
2 2.195 1.318
3 2.374 1.462

Reclaimed water-Northern suburb (RN)
1 1.113 0.668
2 1.196 0.717
3 1.135 0.681

Second class-Southern suburb (SS)
1 0.079 0.049
2 0.141 0.083
3 0.061 0.036

Reclaimed water-Southern suburb (RS)
1 0.389 0.232
2 0.331 0.199
3 0.391 0.234

Figure 3 shows the impact of LH pine needles adsorbing P in actual wastewater. The efficiency of
adsorbing P could be 41–43% at 25 ◦C. In a broad pH, LH pine needles adsorption to P had a high
efficiency, and in the low pH, the adsorption became stronger.
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Figure 3. Adsorption of phosphorus in LH pine needles in typical sewage treatment plant in
Changchun City.

The whole adsorption efficiency was 88–93%, this is consistent with that found in synthetic
wastewater. The effects of standard addition were better than that without standard addition. Further,
the components in the raw water were complicated—there are many kinds of interfering ions. When
PO4

3− was at a low concentration, it was disadvantageous to occupy the active position. The
concentration of phosphate increases after the addition of the standard, and with the free diffusion
effect, the efficiency of LH pine needles clearly increased.
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3.3. The Analysis of the Recycling Efficiency of LH Pine Needles

In order to enhance the using efficiency of the adsorbent and decrease the production cost,
reclaimed saturation LH pine needles have been studied.

Taking into consideration the characteristics of raw needle adsorbent, modified LH pine needles,
melting point, thermostability, vapour pressure, as well as physical and chemical characteristics,
chemical solvent reclamation was chosen to reclaim the LH pine needles.

In our previous studies, LH pine needles had a better performance in acidic conditions than
that in neutral or alkaline conditions. Lewis plays a main role in the adsorbing process under the
alkaline condition in which the ligand changing function is inactive. The alkaline eluent was used to
avoid decreasing the loading La when reclaiming the saturated LH pine needles. The elution rate of
phosphate was calculated according to the ratio of phosphate in the eluent as Equation (3):

E =
Ce ×V
qe ×m

× 100% (3)

where Ce (mg/L) is the concentration of phosphate in the eluent after equilibrium, qe (mg/g) is the
adsorbing capacity after equilibrium, V (mL) is the volume of the eluent and m (g) is the amount of the
LH pine needles.

The elution rate of phosphate in LH pine needles under different eluents is displayed in Table 4.

Table 4. Elution rate of phosphate in regeneration solvent.

Regeneration Solvent NH3·H2O NaCl NaOH

Elution rate (%) 63 59 91

The regeneration results show that NH3·H2O, NaCl, and NaOH all had an acceptable performance
(≥59%) in eluting phosphate on the LH pine needles, signifying it is good for reclaiming LH pine
needles under the alkaline condition. The elution rate of NaCl was lower than that of NaOH, which
potentially results from the accelerating adsorption process by Cl−.

It is suitable for bidentate phosphate to transfer into monodentate under high pH. Accordingly,
NaOH elution was chosen as the regeneration solvent. After some cycling, the reclaimed LH adsorbent
also had a good performance for phosphate adsorbing.

Regenerating LH pine needle is the reverse reaction process of adsorbing by decreasing the
adhesive force. The regeneration formula is presented in Equation (4):

La(HPO4)n + 2nOH−→La(OH)2n + nHPO4
2− (4)

Figure 4 shows the influence of cycling on the adsorption capacity of the reclaimed LH pine
needles. Using a 0.1 mol/L NaOH (pH = 10.5) solution, the saturated LH pine needles were eluted 10
times. During the first time, the adsorption capacity of reclaimed LH pine needles could be recovered
as much as 90% as the raw LH pine needles. After 2–5 cycles, the adsorption capacity of reclaimed LH
pine needles could be recovered higher than 90%.
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After 10 times, the adsorption capacity of reclaimed LH pine needles could be recovered as much
as 80% of the raw. This result indicates that LH pine needles have a good ability to regenerate.

3.4. The Analysis for LH Pine Needles Adsorbing Phosphate Mechanism

Electrostatic force and ligand exchange are most common during adsorption [30]. Some
anions—such as PO4

3−, NO3
− and ASO2

− are adsorbed and affected by several factors. However, it is
difficult to locate a reasonable adsorption mechanism, as well as the complex system of variable anion
concentrations and pH in natural waters [31]. pH plays an important role in the adsorbing process
because PO4

3− is exchanged with the OH ligand of the adsorbance. At the end of the adsorption, the
solution pH decrease may result from the deprotonation of the La active cite (La-OH2

+
↔ La-OH +

H+). This result indicates that the main process for PO4
3− adsorption was electrostatic attraction.

FT-IR spectra study of the adsorption process often appears the presence of several kinds of
structural OH groups. In the FT-IR spectra, the main characteristic peak at 3445 cm−1 in Figure 5 could
be attributed to –OH from the adsorbed H2O [32]. The peak at 814 cm−1 could be attributed to –CH in
aromatic ring structure [33]. The peak at 2920 cm−1 is attributed to –CH2− from the biopolymer, the
peak at 1617 cm−1 was attributed to C=O and C=C. The peak at 1262 cm−1 was attributed to C-O from
aromatics and –OH from phenols, while the peaks at 672 cm−1 and 524 cm−1 are attributed to La-OH in
La(OH)3 [34]. The peak at 1417 cm−1 is attributed to NO3

− from the compound La(NO3)3·6H2O. After
adsorbing, there was a new peak present at 1060 cm−1, which could be attributed to PO4

3− [35,36].
The peak attributed to La-O moved from 524 cm−1 to 571 cm−1. There was a new peak at 484 cm−1,
which could be attributed to O-P-O [36]. The essence of these changes is that the metal activity points
of lanthanum are occupied by phosphate.
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solution pH decrease may result from the deprotonation of the La active cite (La-OH2+ ↔ La-OH + 
H+). This result indicates that the main process for PO43− adsorption was electrostatic attraction. 

FT-IR spectra study of the adsorption process often appears the presence of several kinds of 
structural OH groups. In the FT-IR spectra, the main characteristic peak at 3445 cm−1 in Figure 5 could 
be attributed to –OH from the adsorbed H2O [32]. The peak at 814 cm−1 could be attributed to –CH in 
aromatic ring structure [33]. The peak at 2920 cm−1 is attributed to –CH2− from the biopolymer, the 
peak at 1617 cm−1 was attributed to C=O and C=C. The peak at 1262 cm−1 was attributed to C-O from 
aromatics and –OH from phenols, while the peaks at 672 cm−1 and 524 cm−1 are attributed to La-OH 
in La(OH)3 [34]. The peak at 1417 cm−1 is attributed to NO3− from the compound La(NO3)3·6H2O. After 
adsorbing, there was a new peak present at 1060 cm−1, which could be attributed to PO43− [35,36]. The 
peak attributed to La-O moved from 524 cm−1 to 571 cm−1. There was a new peak at 484 cm−1, which 
could be attributed to O-P-O [36]. The essence of these changes is that the metal activity points of 
lanthanum are occupied by phosphate. 
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Figure 6 shows the effect of initial-final pH value (3–11) on phosphate adsorption capacity. The
point of zero charge (pHpzc) of pine needles is approximately 8. Owing to the fact that pH affected
the electric charge in the solution and LH pine needles and therefore affected the ions interaction, the
adsorbing capacity changed significantly with the changing of pH.
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When pH of solution was higher than pHpzc of pine needles, there was some negative charge on
the surface of pine needles. While the pH of solution was lower than pHpzc of pine needles, there
was some positive charge on the surface of pine needles. The adsorbing capacity to PO4

3− of LH
pine needles changed a lot in the whole range of pH. LH pine needles had the highest adsorption
of 5.49 mg/g at pH = 3. Other pH levels decreased the adsorption for PO4

3−. When the pH was
about 8 (pHpzc = 8), the adsorption increased a little and then decreased significantly. In specific, the
adsorption decreased by 19.2% at pH = 9.6.

It could be divided into three stages: I, II and III.
At stage I (pH from 3 to 8), a positive correlation of pH (∆pH = pHinitial − pHend) showed that the

adsorption of LH pine needles was a ligand exchange reaction. In fact, –OH2
+ could occupy the metal

binding position more easily than –OH. When the solution pH was less than pHpzc, the –OH on the
surface of LH pine needles would be protonized: La-OH + H+

↔La-OH2
+. The positive charge on

the surface attracted PO4
3− by electrostatic force. In the surface of metal oxide, the metal ion had less

ligancy, thus, the surface of dried metal oxide showed Lewis acid position.
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The metal ion on the surface was first coordinated with the water molecule. Figure 7 shows a
La-O ligand bond that was formed by the active position of La and negative oxygen ion of PO4

3−

under Lewis acid affection.
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At stage II (8 < pH < 10), phosphonium ions existed in the form of HPO4
2−. Protonation of≡La-OH

became weaker when the pH was less than 10 [37]. In this case, the adsorption of phosphonium ions
by the electromagnetic force in the solution is not the main way for it to decrease. Meanwhile, the
negative LA-O− and HPO4

2− had a strong electrostatic repulsion, stopping HPO4
2− from approaching

the surface of LH pine needles. The mechanism of ligand exchange is that the protonation of LH pine
needles surface became weak, resulting in ∆pH decreasing. The increasing of Lewis acid function
resulted in negative oxygen of HPO4

2− increasing.
At stage III (pH > 10), the adsorption dramatically decreased. The electrostatic repulsion of

adsorbent lead ligand exchange reaction was disappearing. Lewis acid reaction controlled the
adsorption process.

Figure 7 shows the adsorption to PO4
3− mechanism of LH pine needles. Ligand exchange reaction,

electrostatic reaction and Lewis acid reaction were PO4
3− adsorption mechanism.

Within the entire adsorption process, Ligand exchange reaction and electrostatic reaction became
weak with the increase in pH, decreasing adsorption. However, when Lewis acid increased, the
adsorption also increased. The SEM analysis of LH pine needles after adsorption shows that there were
regular vertical and horizontal textures on the surface and honeycomb cavity within the texture. Alkali
alcohol could change the hydrogen bond of woodiness, carbohydrate and cellulose molecule, leading
to a fluffy structure [38]. A significant amount of fluffy structure could facilitate LH pine needles
adsorbing a certain amount of contaminants, causing a lot of honeycomb cavities being occupied
by contaminants.

4. Conclusions

The role of removal P by adsorbent is known to be influenced by many factors. In this study, the
influence of pH, concentration and Regenerable was studied. In that wide-area pH range, LH pine has
an effective adsorption capacity for phosphorus, and has a strong adsorption effect in the low pH range.
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The adsorption of LH on phosphorus in the pH range of 3~11 is divided into three stages. The three
main mechanisms of phosphorus adsorption are ligand exchange reaction, electrostatic interaction
force and Lewis acid-base interaction.

The results show that at 25 ◦C, LH pine needle has an effective adsorption capacity for phosphorus
of wide-area pH range in reclaimed water, and the adsorption effect is stronger in the low pH range. The
highest adsorption efficiency can be achieved 92%, and the treatment capacity of low concentration raw
water was also 41%. LH pine needles retain the characteristics of the original amorphous solid, which
indicates the structural stability of the modified pine needle. The experimental study on recycling and
reuse of LH pine needle showed that LH pine needle had good regeneration performance.
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