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Abstract: The predictions of flood hazard over the design life of a hydrological project are of great
importance for hydrological engineering design under the changing environment. The concept
of a nonstationary flood hazard has been formulated by extending the geometric distribution to
account for time-varying exceedance probabilities over the design life of a project. However, to our
knowledge, only time covariate is used to estimate the nonstationary flood hazard over the lifespan of
a project, which lacks physical meaning and may lead to unreasonable results. In this study, we aim to
strengthen the physical meaning of nonstationary flood hazard analysis by investigating the impacts
of climate change and population growth. For this purpose, two physical covariates, i.e., rainfall
and population, are introduced to improve the characterization of nonstationary frequency over a
given design lifespan. The annual maximum flood series of Xijiang River (increasing trend) and
Weihe River (decreasing trend) are chosen as illustrations, respectively. The results indicated that:
(1) the explanatory power of population and rainfall is better than time covariate in the study areas;
(2) the nonstationary models with physical covariates possess more appropriate statistical parameters
and thus are able to provide more reasonable estimates of a nonstationary flood hazard; and (3) the
confidences intervals of nonstationary design flood can be greatly reduced by employing physical
covariates. Therefore, nonstationary flood design and hazard analysis with physical covariates are
recommended in changing environments.

Keywords: nonstationary flood frequency analysis; nonstationary hazard analysis; nonstationary
design flood; climate change; population growth

1. Introduction

The conventional flood frequency analysis has served as the primary tool to estimate design
flood and provide information for flood hazard management. The fundamental assumption of the
conventional flood frequency analysis is that the annual maximum flood series (AMFS) is independent
and identically distributed (iid), also known as the stationary assumption. However, this assumption
has been challenged by climate change and human activities [1–12]. Thus, the conventional stationary
flood frequency analysis should be adapted to nonstationary conditions in changing environments.

In recent decades, the nonstationary flood frequency analysis theory has been developed to address
this issue. In the framework of nonstationary flood frequency analysis, the statistical parameters
of the time-varying probability distribution model (TVPD) are typically modelled as a function of
covariates. Therefore, the evolution of future flood distribution heavily relies on the projections of
covariates. Theoretically, if the covariates are able to represent hydrological processes, the related
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nonstationary models can be employed to predict future flood hazard by extending covariates into
future periods. Otherwise, the nonstationary models with only time covariates are regarded as lacking
a physical mechanism. Thus, researchers have introduced some physical covariates such as rainfall,
temperature, climate indices, reservoir index, crop area, irrigation area, and impervious surface
to inform nonstationary models [13–23], and conduct flood hazard analysis [24–32]. In changing
environments, to guarantee that the flood hazard analysis is closely related to the operation of the
hydrologic projects and the early flood warning system, we must associate flood hazards with the
design lifespan of hydrological projects due to a flood hazard of a certain flood event exceeding a given
flood quantile over the project’s lifespan being significantly different from that over other time periods
of the same length due to the nonstationarity/evolution of flood distributions. However, as far as we
know, when doing flood hazard analysis considering the design life of a project, researchers usually
employ only the time covariate to inform the nonstationary models for the purpose of illustration
except for Condon et al. [28] who employed downscaled climate projections to investigate the variation
of flood hazard over the design life of projects, which lacks a physical mechanism and may lead to
unreasonable results of flood hazard analysis. Thus, how to provide a reasonable estimate of the
nonstationary flood hazard with well-defined physical covariates which are closely related to the
changing flood process is one of the challenging problems in nonstationary conditions.

Many literature works have reported the nonstationarity issue of flood series in some regions of
China, such as the Xijiang River basin and Weihe River basin, and they have revealed that both climatic
factors and human intervention, such as urbanisation, can lead to the change of flood generation
mechanism and statistical characteristics of flood events [14,15,19,33,34]. With the rapid economy
development of China, the urbanisation process has been accelerated in the Xijiang River basin and
the Weihe River basin in recent decades. However, the direct use of urbanisation covariate is difficult
because of the difficulty in reliable projection of future urbanisation. Thus, to examine the possible
impacts of urbanisation on flood events, researchers have used a comprehensive social-economic
covariate, i.e., population, as a proxy of urbanisation [19,35,36].

Under changing environments, future flood distributions are changing from one year to another
year, thus the nonstationary flood hazard analysis and design flood estimation considering the design
life of hydrological projects are of great significance for hydrological communities. The objectives of
this study are therefore: (i) to evaluate the nonstationary flood hazard over the design lifespan of a
project by considering the impact of climate factor (annual total rainfall) and anthropogenic factors
(population growth) and (ii) to compare the nonstationary flood hazard and design floods estimated
by time and physical covariates. For the purpose of fulfilling these objectives, annual maximum
flood series (AMFS) of the Xijiang River basin (XRB) and the Weihe River basin (WRB) were chosen
as the study cases. The AMFS of XRB and WRB are representative since they exhibit increasing and
decreasing trends, respectively. In addition, XRB is located in the humid region of China while WRB is
located in the arid region of China.

2. Methodology

2.1. Nonstationary Flood Frequency Analysis

2.1.1. Time-Varying Probability Distribution Model

Researchers have documented that probability distributions in flood frequency analysis can be
classified into four families: the normal family (e.g., normal, lognormal), the Pearson type III family
(e.g., gamma, Pearson type III), the general extreme value (GEV) family (e.g., GEV, Gumbel), and the
generalized Pareto family [37,38]. In this study, we select the lognormal (LN), gamma (GA), Gumbel
(GU), and GEV distributions to represent the normal, Pearson type III and GEV families. Generalized
Additive Models in Location, Scale and Shape (GAMLSS) [39] are employed to build the time-varying
probability models (TVPD). In GAMLSS, for a nonstationary flood series zt (t = 1, . . . , k), the probability
distribution of TVPD, denoted by GZ,t(z

∣∣∣θt) , varies in different years, since the distribution type G(·)
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is invariant, but the statistical parameters θt, i.e., the time-varying location parameter µt and scale
parameter σt, are expressed as function of the covariates It

j ( j = 1, 2, . . . , n) by

h(µt) = α0 +
∑n

j=1
α jIt

j,

h(σt) = β0 +
∑n

j=1
β jIt

j,
(1)

where h(·) represents the link function of statistical parameters, and α = (α0, . . . ,αn)
T and β =

(β0, . . . , βn)
T are the parameters used for describing µt and σt, respectively. In this study, µt and σt

are estimated using the maximum likelihood method. It must be mentioned that, when constructing
the nonstationary GEV models, the estimates of time-varying shape parameters are sensitive to the
data sets and may contain a high uncertainty. Hence, the shape parameter of GEV models is kept to
be constant as done by Lima et al. [24] and Du et al. [32]. Annual total rainfall (rain) and population
(pop) are employed as covariates to represent the climate factors and urbanisation. In calculating
future exceedance probabilities, general circulation models (GCM) are used to project rain under
representative concentration pathway (RCP) 4.5 and 8.5, and the logistic growth equation is used to
project the growth of future pop. See Yan et al. [19] for detailed information about the projection of
future rain and pop.

2.1.2. Model Selection and Goodness-of-Fit Test

In this study, different kinds of nonstationary models are developed considering the combination
of different candidate probability distributions and variation types of statistical parameters. Thus,
the Akaike Information Criterion (AIC) [40] is used to determine the optimal nonstationary model,
which is given by

AIC = −2 ln(ζ) + 2ρ, (2)

where ζ is the maximized likelihood value and ρ is the total number of independently adjusted
parameters of the model. The lower the AIC value is, the better the performance of the nonstationary
model. In addition to AIC value, two kinds of diagnostic plots, i.e., the worm plot [41] and the centile
curves plot, are also employed to assist the selection of optimal models and the diagnosis of the fitting
quality of the optimal models. The worm plot is also known as the detrended Q-Q plot, in which
the x-axis represents the standard normal quantiles, while the y-axis represents the difference value
between empirical quantiles and standard normal quantiles. The centile curves plot employs five
percentile curves, i.e., 5th, 25th, 50th, 75th and 95th, to assist the visual inspection of probabilistic
coverage below different percentiles.

2.2. Flood Hazard Analysis

In the flood management decision-making, flood hazard over a given design life is important
information to communicate event likelihood in changing environments. Under stationary conditions,
for a design life starting from T1 to T2, stationary flood risk Rs is calculated by

Rs = 1− (1− p)T2−T1+1, (3)

where p is the exceedance probability. While under nonstationary conditions, the nonstationary flood
hazard that a flood event exceeds the design value zq(m) for return period m is denoted by Rns, which
is given by [42,43]

Rns = 1−
∏T2

t=T1
(1− pt) = 1−

∏T2

t=T1
GZ,t(zq(m)|θt), (4)

where pt is the time-varying exceedance probability, and GZ,t(z
∣∣∣θt) is the time-varying probability

distribution.
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2.3. Average Design Life Level (ADLL)

The ADLL method was developed by Yan et al. [19]. Assume T1 and T2 are the starting year and
ending year of a project, respectively, and the design life starting from T1 to T2 is denoted by T1 − T2.
Under nonstationary conditions, the annual average reliability over the design life period, denoted by
REave

T1−T2
, is defined as [42]

REave
T1−T2

=
1

T2 − T1 + 1

∑T2

t=T1
(1− pt) =

1
T2 − T1 + 1

∑T2

t=T1
GZ,t(zq|θt). (5)

In the ADLL method, it is assumed that, during the design life period T1 − T2 of a project,
the annual average reliability for a design value zq under nonstationary conditions should be equal
to the yearly reliability 1-1/m under stationary condition, i.e., REave

T1−T2
= 1− 1/m. Thus, the m-year

design value zADLL
T1−T2

(m) can be estimated by

1
T2 − T1 + 1

∑T2

t=T1
GZ,t

(
zADLL

T1−T2
(m)|θ t

)
= 1− 1/m. (6)

In the application of the ADLL method, one should first specify a return period m and obtain
the value on the right side of Equation (6), and finally the design value can be obtained by solving
this equation.

2.4. Uncertainty Analysis of Design Flood

In this study, the uncertainties of design floods estimated by the ADLL method are also estimated
using the nonstationary nonparametric bootstrap method. See Obeysekera and Salas [44] and
Yan et al. [19] for detailed information about the nonstationary nonparametric bootstrap method.

3. Study Areas

The Xijiang River is located between the geographical coordinates 21◦31′–26◦49′ N and
102◦14′–112◦48′ E (Figure 1) and it is the mainstream of the Pearl River, southeast China. The total
length of the Xijiang River is about 2075 km and the drainage area of Xijiang River is approximately
353,100 km2, accounting for about 78% of the total drainage area of Pearl River basin. The average
daily discharge of the Xijiang River is collected from the Dahuangjiangkou station. Being influenced
by the subtropical climate, the average annual rainfall ranges from 1250 to 1750 mm, but the rainfall
from April to September accounts for about 70–80% of the total rainfall. Since the 1950s, with the
construction of flood control projects in the XRB, and the accelerating urbanisation process, the flood
generation condition has been changed. The population of XRB has increased from about 20 million in
1954 to 50 million in 2009.

The Weihe River is the longest tributary of the Yellow River, north China, and it is located between
the geographical coordinates 33◦40′–37◦26′ N and 103◦57′–110◦27′ E (Figure 1). The WRB has an
approximate drainage area of 134,800 km2. The average daily discharge of the Weihe River is collected
from the Huaxian station, which accounts for 79% of the total drainage area of WRB. WRB is influenced
by the typical temperate continental monsoon climate, and the average annual rainfall of WRB is
about 544 mm over the period 1951–2012. The WRB is the major source of water supply for the state
key economic development zone, i.e., the Guanzhong Plain. Over the past decades, the total water
consumption for industrial, agriculture and residential use has significantly increased. The population
of WRB has doubled from 15 million in 1960 to 30 million in 2012. In addition, many reservoirs and
soil and water conservation projects have been constructed in the WRB since the 1950s.

Being influenced by accelerating urbanisation and climate change, in recent decades,
the nonstationarity issue of AMFS for both PRB and WRB has been reported by many
researchers [6,18,37,45–47]. In this study, the AMFS of Dahuangjiangkou hydrological station from
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XRB and Huaxian hydrological station from WRB are selected for illustration purposes (Figure 2).
The AMFS of Dahuangjiangkou station exhibits significant increasing trends while the AMFS of
Huaxian station exhibits significant decreasing trends based on the Mann-Kendall test at the 0.05
significance value (Table 1).
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Table 1. Data Information of the hydrological stations used in this study.

Basins Stations Drainage
Area (km2) Longitude Latitude Record

Length MK_P_Value

Xijiang River Dahuangjiangkou 288,544 110.20 23.58 1956–2009 0.042
Weihe River Huaxian 106,498 109.76 34.58 1951–2012 0.000

4. Results

4.1. Preliminary Data Analysis

The observed AMFS were collected from the Dahuangjiangkou and Huaxian hydrological
stations, respectively. The locations and information of the two stations are shown in Figure 1 and
Table 1, respectively.

Two kinds of hydrometeorological and socio-economic covariates, i.e., annual total rainfall (rain)
and population (pop) are employed as covariates to model the variation of nonstationary AMFS of
Dahuangjiangkou and Huaxian (Figure 3), since both climate factors and anthropogenic impacts are
thought to be potential influencing factors of the nonstationary AMFS [35,48,49]. In addition, correlation
tests were also conducted to examine the correlation between AMFS and pop/rain covariates from the
statistical perspective, respectively. As shown from Figure 4, the Pearson correlation coefficient (PCC)
between AMFS and rain is higher than that between AMFS and pop. For Huaxian, the PCCs between
AMFS and rain/pop are 0.64/0.52, while, for Dahuangjiangkou, the PCCs between AMFS and rain/pop
are 0.49/0.33. The observed daily total rainfall of the selected stations is obtained from the National
Climate Center of China Meteorological Administration [50]. These data are aggregated to basin
scale using the Thiessen polygon method for Dahuangjiangkou and Huaxian stations, respectively,
and then the annual total rainfall series was calculated. The population data is employed to examine
the combined impacts of urbanisation and water consumption on the nonstationarity of AMFS as done
by Yan et al. [19] and Villarini et al. [36]. The population data of watersheds controlled by Huaxian
and Dahuangjiangkou stations are collected from the cities located within them. The population data
is provided by the Shaanxi Provincial Bureau of Statistics [51] and Guangxi Provincial Bureau of
Statistics [52].
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Figure 4. Correlations between annual maximum flood series (AMFS) and rain (a,b) or pop (c,d) for
Huaxian and Dahuangjiangkou stations.

The projected future rainfall and population of Huaxian station are provided by Yan et al. [19]
and the future rainfall and population of Dahuangjiangkou station are projected using statistical
downscaling method and Verhulst logistic growth equation, respectively, as done by Yan et al. [19].
It should be mentioned that the Verhulst logistic growth equation accommodates the growth restriction
resulting from limited natural resources and it has been widely used to predict the growth of population.
See Yan et al. [19] and Tsoularis and Wallace [53] for details. The projected future rain under RCP
4.5 (medium emission) and RCP 8.5 (high emission) scenarios and future pop are presented in
Figures 5 and 6, respectively.
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Figure 5. Projected future rain by using outputs of different general circulation models (GCMs)
under RCP 4.5 and RCP 8.5 emission scenarios for the period of 2015–2099 as done by Yan et al. [19].
The ensemble mean is the arithmetic mean of different GCMs. (a) and (b) are RCP 4.5 and RCP 8.5 for
Huaxian station; (c) and (d) are RCP 4.5 and RCP 8.5 for Dahuangjiangkou station.
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(b) the Dahuangjiangkou station for the period of 1956–2099.

4.2. Nonstationary Flood Frequency Analysis

When using time covariates, a number of nonstationary models were built considering the different
combinations of candidate distributions and variation types. The optimal model was selected based
on the AIC values (Table 2). When using physical covariates, i.e., rain and pop, a total of 64 models
were built for Dahuangjiangkou station and Huaxian station (Figure 7). The optimal models with
either time or rain and pop are summarized in Table 3. It can be seen that the AIC values of the
optimal models with physical covariates are smaller than those with time covariate. Figures 8 and 9
present the goodness-of-fit of the optimal nonstationary model with time and physical covariates.
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The more the scatters in the worm plot located along the 0 value of the y-axis, the better is the model
performance. For both stations, all scatter points in the worm plots are within the 95% confidence
intervals (Figures 8a,b and 9a,b), but the trends of worm plots with physical covariates are gentler than
those with time covariate and more scatters located around the 0 value, indicating better agreement
between the nonstationary model and observations.
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As for centile curves, for Huaxian station, the percentages of observation points below the
5th, 25th, 50th, 75th and 95th centile curves are 3.2%, 33.9%, 45.2%, 69.4% and 95.2% using time
covariate, while these percentages are 4.8%, 25.8%, 50.0%, 79.0% and 93.5% using physical covariates
(Figure 8c,d). For Dahuangjiangkou station, the percentages of observation points below the 5th, 25th,
50th, 75th and 95th centile curves are 3.7%, 27.8%, 44.4%, 72.2% and 98.1% using time covariates,
while these percentages are 9.3%, 25.9%, 44.4%, 70.4% and 94.4% using physical covariates (Figure 9c,d).
In addition, to assist the evaluation of the quantile interval bounds, the Root Mean Squared Error
(RMSE) between the 50th centile curve and the observation data was also calculated. For Huaxian
station, the RMSE is 1108.9 when using time covariate, while the RMSE is 965.8 when using physical
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covariates. For Dahuangjiangkou station, the RMSE for using time and physical covariates are 6983.1
and 6216.3, respectively.

Table 2. Akaike Information Criterion (AIC) values of the nonstationary models with time covariate.
Note that letter “L” in the models’ names represents location parameter µ and “S” represents scale
parameters σ. Number “0” means the parameter is invariant while “t” means the parameter varies
with time covariate. In addition, the AIC value in bold is the optimal model for each station.

Description Models Dahuangjiangkou Huaxian

µ~0, σ~0 GA_L0_S0 1119.82 1067.70
µ~t, σ~0 GA_Lt_S0 1116.09 1053.73
µ~0, σ~t GA_L0_St 1121.81 1066.76
µ~t, σ~t GA_Lt_St 1117.54 1051.84
µ~0, σ~0 GU_L0_S0 1126.22 1086.96
µ~t, σ~0 GU_Lt_S0 1119.95 1074.17
µ~0, σ~t GU_L0_St 1126.68 1088.43
µ~t, σ~t GU_Lt_St 1121.88 1074.64
µ~0, σ~0 LN_L0_S0 1121.73 1069.93
µ~t, σ~0 LN_Lt_S0 1118.04 1052.91
µ~0, σ~t LN_L0_St 1123.71 1070.71
µ~t, σ~t LN_Lt_St 1119.24 1052.34
µ~0, σ~0 GEV_L0_S0 1120.11 1073.06
µ~t, σ~0 GEV_Lt_S0 1121.96 1057.44
µ~0, σ~t GEV_L0_St 1119.53 1073.46
µ~t, σ~t GEV_Lt_St 1121.32 1075.41
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Figure 8. Diagnostic plots for evaluating the goodness-of-fit of the optimal nonstationary models using
time covariates and rain and pop covariates for Huaxian station. (a,b) are worm plots and (c,d) are
centile curves plots.
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Figure 9. Diagnostic plots for evaluating the goodness-of-fit of the optimal nonstationary models using
time covariate and rain and pop covariates for Dahuangjiangkou station. (a,b) are worm plots and
(c,d) are centile curves plots.

In addition to the centile curves, cross-validation procedure is also conducted for assessing
the goodness-of-fit of the optimal models. See Lima et al. [24] for the standard procedure of the
cross-validation method. As shown in Figure 10, the nonstationary cross-validated 50th centiles using
physical covariates are able to better reproduce the observed AMFS, with the Pearson correlation
coefficient being 0.53 and 0.67, respectively. In addition, the probabilistic coverage of the optimal
nonstationary model of Dahuangjiangkou and Huaxian station are 90.7% and 90.3%, respectively,
compared with the expected 95% using the cross-validation method, indicating that the selected models
are well calibrated. Overall, the above results indicated that the selected optimal models are able to
achieve satisfactory performance in modeling the variability of the observed flood events. In addition,
the general performance of nonstationary models with physical covariates is much better than those
with time covariate.
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Figure 10. The cross-validated flood quantiles for Huaxian station (a,b) and Dahuangjiangkou station
(c,d). The yellow points are the observed AMFS. The lower and upper bounds are the cross-validated
flood quantiles associated with the 2.5th and 97.5th centiles, while the blue line and the red line are the
cross-validated flood quantiles associated with the 50th and 90th centiles.

4.3. Flood Hazard Analysis for PRB and WRB

The stationary and nonstationary flood hazard of Dahuangjiangkou and Huaxian stations that a
future flood event exceeds design flood zq corresponding to return period m ∈ [2, 100] and design lives
varying from 1 to 50 years were calculated using Equations (3) and (4), respectively (Figures 11 and 12).
For Dahuangjiangkou station, it was found that the nonstationary flood hazard calculated using
time covariates was always larger than the stationary flood hazard, since the future exceedance
probabilities pt in Equation (4) were getting monotonically larger with time covariates, while the cases
were complicated for the nonstationary flood hazard calculated using pop and rain covariates because
pt grew in fluctuation with pop and rain covariates (Figure 11). In addition, the nonstationary flood
hazard calculated using pop and rain covariates was larger than that calculated using time covariate
for m ∈ [2, 30]. For Huaxian station, the nonstationary flood hazard estimated by time or physical
covariates were all smaller than stationary flood hazard because the AMFS were decreasing and the
exceedance probabilities pt in Equation (4) were getting smaller (Figure 12), indicating that the flood
hazard in the Huaxian basin will decrease in future periods. In addition, we found that the edges of
nonstationary flood hazards with physical covariates were not as smooth as that with time covariates
because of the different variation types of covariates.
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Figure 11. Stationary and nonstationary flood hazard of Dahuangjiangkou station corresponding to
return periods changing from 2 to 100, and design lifes changing from 1 to 50. (a) stationary flood
hazard corresponding to design flood zq; (b) nonstationary flood hazard calculated by nonstationary
model with time covariate; (c,d) are nonstationary flood hazards calculated by nonstationary models
with pop and rain covariates under RCP 4.5 and RCP 8.5 scenarios, respectively.
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Figure 12. Stationary and nonstationary flood hazard of Huaxian station corresponding to return
periods changing from 2 to 100, and design lifes changing from 1 to 50. (a) stationary flood hazard
corresponding to design flood zq; (b) nonstationary flood hazard calculated by nonstationary model
with time covariate; (c,d) are nonstationary flood hazards calculated by nonstationary models with pop
and rain covariates under RCP 4.5 and RCP 8.5 scenarios, respectively.

4.4. Design Flood and Associated Uncertainty Using ADLL

In this study, we assume that there will be a hydrological structure to be in service for 50 years
from 2015 to 2064 for illustration purposes. The ADLL method was employed to estimate the design
floods for Huaxian station (AMFS with decreasing trend) and Dahuangjiangkou station (AMFS with
increasing trend) based on the optimal nonstationary probability distributions with either time or
physical covariates (pop and rain) (Table 3). In addition, for the purpose of providing a comprehensive
comparison between stationary and nonstationary design floods estimated using time or physical
covariates, the 95% confidence intervals (CIs) of stationary and nonstationary design floods were
estimated using the nonstationary nonparametric bootstrap method.

As shown in Figure 13, for Dahuangjiangkou station, the nonstationary design floods were larger
than stationary design floods except for design floods with higher return periods using physical
covariates. As for CIs, it was found that the CIs of nonstationary design floods were five times as
large as those of stationary design floods when using time covariates, while the CIs were greatly
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reduced when using physical covariates. For Huaxian station, the nonstationary design floods were
always smaller than stationary design floods. In addition, the CIs of nonstationary design floods were
dramatically reduced when using physical covariates, which were even comparable with those of
stationary design floods. The much larger CIs of the design flood estimated by time covariate is mainly
due to the infinite extrapolation of time covariate in far future. Therefore, physical covariates that can
provide reliable future prediction products are preferred in nonstationary frequency analysis in the
study areas.

Table 3. Summary of the optimal nonstationary models with time and physically-based covariates.
µt and σt are the time-varying location parameter and scale parameter, respectively. Note that letter “L”
in the models’ names represents location parameter and “S” represents scale parameters. Number “0”
denotes the parameter is invariant, while “t”, “p”, “r” and “pr” denote that the parameter varies with
time, pop, rain and both pop and rain, respectively.

Dahuangjiangkou Huaxian

Covariates Time covariate Physical covariate Time covariate Physical covariate
Optimal model GA_Lt_S0 LN_Lpr_Spr GA_Lt_St LN_Lpr_S0

Description Only µt is changing
with time

Both µt and σt are
changing with pop

and rain

Both µt and σt are
changing with time

Only µt is changing
with pop and rain

Location parameter µt = exp(−0.11 +
0.005t)

µt = 10.22 + 0.10pop
+ 0.14rain

µt = exp(37.11 −
0.015t)

µt = 7.728 − 0.22pop
+ 0.323rain

Scale parameter 0.249 σt = exp(−1.59 −
0.24pop − 0.33rain)

σt = exp(−20.132 +
0.01t) 0.377

AIC 1116.09 1097.79 1051.84 1021.22
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Figure 13. Design flood and the associated 95% bootstrapped confidence intervals for the AMFS of
Dahuangjiangkou station (upper panel) and Huaxian station (lower panel) estimated by the average
design life level (ADLL) method. (a,c) are estimated using time covariate while (b,d) are estimated
using pop and rain covariates.
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5. Discussion

Reliable prediction of future flood hazard over the design lifespan of a hydrological project is
very important for local flood alert and hazard management in changing environments. It can be
seen from the results of flood hazard analysis that the nonstationary flood hazard calculated using
time covariate is prone to exaggerate the current trend of flood series; that is to say, it could make
the flood hazard more serious for increasing flood series and make the flood hazard less serious for
decreasing flood series, compared with cases using pop and rain covariates. As for the difference
between the estimated stationary and nonstationary flood hazard, when using a time covariate,
the nonstationary flood hazard is always larger or smaller than a stationary flood hazard for increasing
and decreasing cases, respectively, while, when using pop and rain covariates, the difference between
stationary and nonstationary flood hazard depends on the return period and the design lifespan of a
project. Finally, when it comes to the estimated distribution parameters, the monotonous variation
type of time covariate would definitely lead to monotonous variation of expectation and variance
of the AMFS derived from the fitted location and scale parameters (Table 3). However, a noticeable
fluctuation movement of AMFS can be observed in both stations (Figure 2a,b), which contradicts
the monotonous variation patterns obtained by using time covariate, while, when using pop and
rain covariates, the fitted parameters are changing in fluctuation with physical covariates, which is
thought to provide better model performance and more reasonable statistical parameters. The findings
of this study are consistent with other similar studies such as Condon et al. [28] and Du et al. [32],
who demonstrated the evolution of future flood or low-flow hazard with only climate factors, and are
different with them in terms of physical meanings, model performance and the three-dimensional flood
hazard profile plot with different return periods and design life. Thus, the flood hazard analysis over
the design life of hydrological projects based on the nonstationary models using physical covariates
can provide more reasonable and useful information for hydrological communities and policy makers,
to predict future evolution of flood hazards within the lifespan of hydrological projects.

From the perspective of design flood estimation, we also found that, for both stations, when using
time covariates, the CIs of nonstationary design floods were extremely large compared with those of
stationary design floods. While when using physical covariates, the CIs can be dramatically reduced
for both stations, which is very important for practical application of nonstationary design strategy
and thus provide an alternative for hydrological communities and policy makers when addressing the
nonstationary issue.

6. Conclusions

The flood hazard analysis is important for flood risk reduction in changing environments.
The main objective of this study is to strengthen the significance of employing physical covariates in
the flood hazard analysis in changing environments. For this purpose, we compared nonstationary
flood hazard calculated using time and physical covariates, i.e., pop and rain. In addition, nonstationary
design floods estimated using either time covariate or pop and rain covariates were also compared.
The main findings are drawn as follows:

(1) The AMFS of Dahuangjiangkou and Huaxian station have exhibited significant increasing
or decreasing trends due to climate change and human activities. For Dahuangjiangkou,
the nonstationary lognormal model with both location and scale parameters varying with
population and rainfall is the optimal model, whereas, for Huaxian station, the nonstationary
lognormal model with only location parameters varying with population and rainfall is the
optimal model. For both stations, the performance of the optimal nonstationary models with
physical covariates is better than those with a time covariate based on the AIC values and
diagnostic plots, probably indicating the better explanatory power of the physical covariates in
the study areas.
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(2) Different covariates employed in the construction of nonstationary models will lead to different
results of nonstationary flood hazard analysis. When using time covariates, the nonstationary
flood hazard is always larger or smaller than the stationary flood hazard for increasing or
decreasing flood series, indicating that the current flood problem will be deteriorated even further
or alleviated over time. However, the above results may exaggerate future flood hazard due to
inappropriate statistical parameters of the constructed nonstationary models, which will change
monotonously and indefinitely over time. In contrast, the nonstationary distributions with
population and rainfall covariates have more appropriate statistical parameters and thus are able
to provide more reasonable nonstationary flood risk since future exceedance probabilities are
changing in fluctuation with physical covariates. Thus, nonstationary flood frequency analysis
and hazard analysis with physical covariates are recommended in changing environments.

(3) The use of different covariates in nonstationary frequency analysis will lead to different results of
nonstationary design flood and associated CIs. The nonstationary design floods are always larger
than stationary ones for increasing flood series, but the gap between stationary and nonstationary
design flood can be lessened when using physical covariates. As for CIs, it is clear that the CIs
of nonstationary design flood can be greatly reduced by using physical covariates regardless of
whether the trend of flood series is increasing or decreasing.

Following the aforementioned conclusions, two major comments concerning the applications of
nonstationary flood hazard analysis and engineering design are made as follows:

Firstly, the selection of covariates is one of the most challenging issues in nonstationary frequency
analysis. We should provide reliable future projection of employed covariates in nonstationary models
to predict future nonstationary distributions. Two selection requirements should be satisfied for the
covariates employed for nonstationary frequency analysis: (i) the covariates should own sufficient
explanatory power to describe the nonstationarity of flood series; and (ii) the covariates must be
projected reliably in future periods [19]. In this study, pop and rain were chosen as covariates to
investigate the impacts of human activities and climatic factors, and they can also be projected using
population growth models and climate models, respectively. However, it should be emphasized that
pop is regarded as an indirect reflection of the intensity of human activities and can just be regarded as
a simple characterization of urbanization in the developing countries where more population to some
extent means more imperviousness. In the future, it is necessary to try more covariates and select the
ones that are most influential on extreme floods, such as the tropical storms and land use changes,
which can reflect the changing process of flood events more directly. For this purpose, efforts should
also be made to improve the reliability of future projections of climate indices and land use changes in
the future studies.

Secondly, only two stations showing opposite trends were selected as study areas in this study for
illustration purposes. The limited number of case studies is a considerable limitation to conclude on
the superiority of the nonstationary models with physical covariates. Thus, further studies are needed
to improve the present work and demonstrate the superiority of physical covariates.
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