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Abstract: The coupling of nitrification and denitrification has attracted wide attention since it plays 
an important role in mitigating eutrophication in aquatic ecosystems. However, the underlying 
mechanism is largely unknown. In order to study the coupling relationship between nitrification 
and denitrification, as well as its effect on phosphorus release, nutrient levels, functional gene 
abundance and potential rates involved in nitrification and denitrification were analyzed in three 
shallow urban lakes with different nutrient status. Trophic level was found positively related to not 
only copy numbers of functional genes of nitrosomonas and denitrifiers, but also the potential 
nitrification and denitrification rates. In addition, the concentrations of different forms of 
phosphorus showed a positive correlation with the number of nitrosomonas and denitrifiers, as well 
as potential nitrification and denitrification rates. Furthermore, the number of functional genes of 
nitrosomonas exhibited positive linear correlations with functional genes and rate of denitrification. 
These facts suggested that an increase in phosphorus concentration might have promoted the 
coupling of nitrification and denitrification by increasing their functional genes. Strong 
nitrification–denitrification fueled the nitrogen removal from the system, and accelerated the 
phosphorus release due to the anaerobic state caused by organic matter decomposition and 
nitrification. Moreover, dissolved organic nitrogen was also released into the water column during 
this process, which was favorable for balancing the nitrogen and phosphorus ratio. In conclusion, 
the close coupling between nitrification and denitrification mediated by nitrifier denitrification had 
an important effect on the cycling mode of nitrogen and phosphorus. 
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1. Introduction 

The biogeochemical cycle of nitrogen in aquatic ecosystems has consistently been a significant 
issue [1]. Within this cycle, nitrification and denitrification are key steps and are mainly catalyzed by 
microbes [2,3]. Nitrification, the microbial oxidation of ammonia to nitrite and nitrate, keeps N in the 
water ecosystem [4,5]. Denitrification, meanwhile, removes N from the water ecosystem by 
converting nitrate into gaseous nitrogen [6]. Nitrification take place in the aerobic layer while 
denitrification is conducted in low-oxygen or anaerobic conditions, and the production of N2O is 
found to be highest at the interfaces between the two areas [7]. Coupled nitrification and 
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denitrification (CND) plays an important role in this process. NO2− or NO3− produced during 
nitrification can be quickly transferred to the anaerobic zone and utilized by denitrifying bacteria [8]. 

The CND has received wide attention in recent years, even though the mechanism has remained 
unclear. Ammonia oxidation, the first and rate-limiting step of nitrification, is catalyzed by ammonia-
oxidizing archaea and bacteria. The amoA gene, which encodes the catalytic subunit of ammonia 
monooxygenase, has been widely used as a functional marker to analyze their communities [9]. 
Denitrification consists of four reaction steps and is mainly catalyzed by four enzymes: nitrate 
reductase, nitrite reductase, nitric-oxide reductase and nitrous oxide reductase [10]. Nitrite reductase 
(Nir: nirS or nirK) and nitrous oxide reductase (Nos: nosZ) are mainly used for the molecular ecology 
of denitrifying bacteria [11]. The coupling of nitrification and denitrification, mediated by respective 
microorganisms, could be reflected by the abundance of the related bacteria [12].  

The CND accelerates the N removal rate and thus mitigates eutrophication in aquatic ecosystems 
[13]. Although the CND is known to play a critical role in removing excessive N from aquatic 
ecosystems, limited information about the mechanism in this combined process is known. Studying 
the relationship between the nitrifying and denitrifying microorganisms that are involved helps 
toward a better understanding of the N cycle in aquatic ecosystems [14]. Except for the significant 
effect on the N cycle, the CND also demonstrates superior P release [15]. This is mainly because the 
anaerobic state accelerates the P release [16]. N removal and P release can be achieved simultaneously 
[17]. 

In this study, three shallow lakes with different nutrient gradients in Wuhan city were selected 
to analyze nutrient levels, functional genes abundance and potential rates involved in nitrification 
and denitrification. The aim was to examine the relationship between nitrogen and phosphorus 
levels, nitrifying and denitrifying bacteria abundance and their potential rate. We hope to verify the 
hypothesis that the abundance of nitrifying and denitrifying bacteria determined the potential rate 
of nitrification and denitrification as well as their coupling relationship, which further stimulated the 
nitrate removal and phosphorus release. The purpose of this study is to 1) examine the relationships 
between trophic level, functional gene abundance and potential rates involved in nitrification and 
denitrification; 2) test whether the coupling between nitrification and denitrification exists and 
determine its mechanism; 3) estimate the effect of the coupling of nitrification and denitrification on 
N and P release. 

2. Materials and Methods 

2.1. Study Sites and Sample Collection 

In this study, samples from 16 sites at four representative lakes or zones (Lake Houguan, 
eutrophic, macrophyte coverage; Lake Tangxun, strongly hypertrophic, aquaculture and anoxia; 
South of Lake Qingling, lightly hypertrophic, macrophyte coverage; the North of Lake Qingling, 
strongly hypertophic, aquaculture and pollutant discharge) were collected on May 5, 2015 (Figure 1). 
The conditions on this date were sunny, the air temperature was about 28 °C, the water temperature 
was about 27 °C. 
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Figure 1. Distribution map of sampling lakes and sites in Wuhan city (Lake Houguan: HG1–HG5; 
Lake Tangxun: TX1–TX5; South of Lake Qingling: QL1–QL3; North of Lake Qingling: QL4–QL6). 

Mixed water samples were collected with a Friedinger sampler for nutrient level and 
extracellular enzyme activity (EEA) level analysis. The transparency (Trans) was measured by a 
Secchi disk, a circular disk with alternating black and white quadrants that is lowered into the water 
until it disappears from view [18]. The basic data from each sampling site are shown in Table 1. 
Surface sediments (0–10 cm) were sampled using a Peterson grab sampler. All the samples were 
immediately stored in cooling boxes for transportation to the laboratory. Water samples were 
processed the same day, sediment samples were stored at 4 °C in the dark for up to four days before 
analysis. 

Table 1. Water depth, transparency, dissolved oxygen (DO), pH, chlorophyll a (Chl a), total 
phosphorus (TP) and trophic state index (TSI) data of the studied lakes. 

 

Water 

Depth 

(m) 

Transparency 

(m) 

Chl a 

(μg L−1) 

DO 

(mg L−1) 
pH 

TP 

(μg L−1) 
TSI 

HG1 1.10 0.25 27.62 7.80 8.30 32.26 66.69 

HG2 1.20 0.30 20.41 7.90 8.30 21.98 63.41 

HG3 1.25 0.50 18.69 8.80 8.78 20.05 60.54 

HG4 1.30 0.65 16.92 8.30 8.67 20.69 58.96 

HG5 1.30 0.75 13.28 6.70 8.40 17.47 56.66 

TX1 2.30 0.25 487.36 15.24 9.83 290.74 87.07 
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TX2 2.33 0.35 147.56 15.94 9.72 248.94 78.93 

TX3 2.41 0.35 92.07 14.26 9.72 167.29 75.50 

TX4 2.40 0.30 79.75 14.80 9.76 29.05 71.28 

TX5 2.43 0.20 194.45 17.70 9.96 124.21 81.16 

QL1 1.50 0.50 65.94 2.74 7.68 160.86 72.11 

QL2 1.50 0.45 48.48 5.74 7.90 162.79 70.96 

QL3 1.30 0.30 62.40 6.78 8.21 103.63 72.97 

QL4 1.50 0.30 222.64 8.50 8.70 868.76 84.71 

QL5 1.50 0.30 338.81 9.72 8.90 902.84 87.03 

QL6 1.50 0.30 296.47 9.75 8.93 972.92 86.50 

2.2. Chemical Analysis of Water and Sediment Samples 

Water samples were filtered through a 0.45 µm membrane filter for analysis of soluble nutrients. 
All of the nutrient measurements, including ammonium (NH4+-N), nitrate (NO3−-N), nitrite (NO2--N), 
dissolved total nitrogen (DTN), total nitrogen (TN), soluble reactive phosphorus (SRP), dissolved 
total phosphorus (DTP) and total phosphorus (TP), were measured based on national standards 
(APHA 2012). Dissolved organic nitrogen (DON) was calculated as follows: DON = DTN-DIN. 
Chlorophyll a (Chl a) was extracted from GF/C filters (Whatman, USA) with 95% ethanol and 
measured at wavelengths of 665 nm and 750 nm [19]. Trophic state index (TSI) was calculated using 
three limological parameters, namely, Chl a (µg L−1), Secchi disk transparency (Trans) (m) and TP (µg 
L−1), according to Carlson [20]. 

The extracellular enzyme activity (EEA) levels, including alkaline phosphatase activity (APA), 
β-D-glucosidase activity (GLU) and leucine aminopeptidase activity (LAP), were determined 
fluorometrically, according to Boetius and Lochte [21]. Briefly, the methylumbelliferone (MUF)-
labeled substrates MUF-phosphate, MUF-Glu (β-D-glucopyranoside) and MCA-Leu (L-leucine-4-
methylcoumarinyl-7-amid HCl) were used as their respective substrates. 

Sediment P was divided into iron-bound P (Fe(OOH)~P), calcium-bound P (CaCO3~P), acid-
soluble organic P (ASOP) and hot NaOH-extractable organic P (Palk), according to Golterman [22]. 
Different forms of P were extracted sequentially and determined as SRP concentrations by the 
molybdate blue method, according to Murphy and Riley [23]. 

2.3. Determination of Potential Denitrification Rate and Potential Nitrification Rate of Sediment 

The sediment potential denitrification rate (PDR) was measured by denitrifying enzyme activity 
assay, according to Jha and Minagwa [24]. Briefly, 5 g of sediment was moved into a special tailor-
made glass bottle, then 20 mL of denitrifying enzyme activity solution (7 mM KNO3, 3 mM glucose 
and 5 mM chloramphenicol) was added. The air in the bottle was purged by a continuous pumping 
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of helium, then acetylene was added to reach a final concentration of 10%. Samples were placed on 
an orbital incubator and shaken (125 r/min) in the dark at 25 °C. Gas samples were taken out at 0, 0.5, 
1, 1.5, and 2 h for testing of N2O concentration using a gas chromatograph. The PDR was calculated 
as a line of best fit curve for the N2O concentration as a function of time. 

The sediment potential nitrification rate (PNR) was measured according to the shaken-slurry 
method [25]. Briefly, 5.0 g of sediment was moved into a 250 mL sterile Erlenmeyer flask. Then, 100 
mL of phosphate buffer (1 mL, pH 7.4) and 0.5 mL of (NH4)2SO4 (0.25 M) were added. Samples were 
incubated on an orbital shaker (180 rpm) at 25 °C for 24 h. A total of 5 mL of slurry was taken out at 
1, 4, 10, 16 and 24 h, then the slurry was centrifuged at 4000 rpm for 5 min and filtered through glass 
microfiber filters (Whatman) for NO3−-N measurement. The PNR was calculated as the NO3−-N 
production per unit of time. 

2.4. DNA Extraction and qPCR 

DNA was extracted from a 0.3 g fresh sediment sample by an UltraClean Soil DNA Isolation Kit 
(MoBio Laboratories, Carlsbad, CA). Quantitative polymerase chain reaction (qPCR) assays were 
performed using respective primers. Briefly, the primers were nirS1F (CCT AYT GGC CGG CRC 
ART) and nirS3R (GCC GCC GTC RTG VAG GAA) [26] for the nirS gene, and reactions were 
performed with 10 ng of template DNA and 0.1 µM concentrations of each primer in a total volume 
of 20 µL. The cycling conditions were: 95 °C for 30 s, followed by 30 cycles of 5 s at 95 °C, 30 s at 57 
°C and 40 s at 72 °C, and then, 7 min at 72 °C. F1aCu(ATC ATG GTS CTG CCG CG) and R3Cu(GCC 
TCG ATC AGR TTG TGG TT) [27] were used for the nirK gene, and reactions were performed with 
10 ng of template DNA and 0.1 µM concentrations of each primer in a total volume of 20 µL. The 
cycling conditions were: 95 °C for 30 s, followed by 30 cycles of 5 s at 95 °C, 40 s at 55 °C and 50 s at 
72 °C, and then 7 min at 72 °C. 

nosZ1F(WCS YTG TTC MTC GAC AGC CAG) and nosZ1R(ATG TCG ATC ARC TGV KCR TTY 
TC) [28] were used for the nosZ1 gene, and reactions were performed with 10 ng of template DNA 
and 0.1 µM concentrations of each primer in a total volume of 20 µL. The cycling conditions were: 95 
°C for 30 s, followed by 30 cycles of 5 s at 95 °C, 50 s at 58 °C and 30 s at 72 °C, then 7 min at 72 °C. 
nosZ2F (CGC RAC GGC AAS AAG GTS MSS GT) and nosZ2R (CAK RTG CAK SGC RGT TCA GAA) 
[28] were used for the nosZ2 gene, and reactions were performed with 10 ng of template DNA and 
0.1 µM concentrations of each primer in a total volume of 20 µL. The cycling conditions were: 95 °C 
for 30 s, followed by 30 cycles of 5 s at 95 °C, 50 s at 58 °C and 30 s at 72 °C, then 7 min at 72 °C.  

ArchamoA-1F (STA ATG GTC TGG CTT AGA CG) and ArchamoA-2R (GCG GCC ATC CAT 
CTG TAT GT) [4] were used for ammonia-oxidizing archaea (AOA) and the amoA gene, and 
reactions were performed with 10 ng of template DNA and 0.1 µM concentrations of each primer in 
a total volume of 20 µL. The cycling conditions were: 95 °C for 30 s, followed by 35 cycles of 5 s at 94 
°C, 30 s at 53 °C and 30 s at 72 °C, then 8 min at 72 °C. amoA-1F(GGG GTT TCT ACT GGT GGT) and 
amoA-2R(CCC CTC KGS AAA GCC TTC TC) [29] were used for ammonia-oxidizing bacteria (AOB) 
and the amoA gene, and reactions were performed with 10 ng of template DNA and 0.1 µM 
concentrations of each primer in a total volume of 20 µL. The cycling conditions were: 95 °C for 30 s, 
followed by 35 cycles of 5 s at 94 °C, 30 s at 55 °C and 30 s at 72 °C, then 8 min at 72 °C. 

2.5. Statistical Analysis 

The Pearson’s test was performed using the SPSS statistical software (version 18.0, SPSS, 
Chicago, IL, USA), with a value of 0.05 or 0.01 selected for significance. Data were transformed and 
tested for normality before correlation analysis. 

3. Results 
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The TSI results of sampling sites ranged from 56.66 to 87.07 (Table 1). The lowest and highest P 
levels in the water were observed in Lake Houguan and North of Lake Qingling (QL4-6), respectively. 
SRP concentration was highest in North of Lake Qingling (Figure 2a). The main form of P in sediment 
was Fe(OOH)~P, observed in North of Lake Qingling (Figure 2b). The N content exhibited 
significantly higher levels in Lake Tangxun and North of Lake Qingling. The lowest N level was 
observed in Lake Houguan. The main N form was DON in Lake Tangxun and Lake Qingling. The 
different N form was at an equilibrium level in Lake Houguan (Figure 2c). Lake Tangxun showed the 
highest EEA level especially APA (Figure 2d). The highest PDR and PNR value were recorded in 
North of Lake Qingling, which was followed by Lake Tangxun. The relatively low PDR and PNR 
value were found in Lake Houguan and South of Lake Qingling (Figure 2e). 

 
Figure 2. Comparison of P (a and b), N (c), extracellular enzyme activity (EEA) (d), and potential 
nitrification rate (PNR)/potential denitrification rate (PDR) (e) at different sampling sites. 

The abundance of functional genes showed the distinct difference in different lakes. For 
example, the AOB gene was significantly higher in Lake Qingling, the AOA, nirS and nirK gene 
showed a low level in all lakes, while the nosZ1 and nosZ2 genes were significantly higher in Lake 
Qingling and Lake Tangxun (Table 2). The AOA-amoA and AOB-amoA gene copy numbers ranged 
from 9.57 × 106 to 6.90 × 107 and from 6.90 × 106 to 1.94 × 109 g−1 for dry sediment, respectively (Table 
2). The nirK and nirS gene copy numbers ranged from 7.01 × 105 to 1.48 × 108 and from 8.93 × 106 to 
4.83E × 107 g−1 for dry sediment, respectively (Table 2). The nosZ1 and nosZ2 gene copy numbers 
ranged from 2.22 × 107 to 9.44 × 108 and from 8.28 ×106 to 8.35 × 108 g−1 for dry sediment, respectively 
(Table 2). 

Table 2. Copy numbers of ammonia-oxidizing archaea (AOA)-amoA, ammonia-oxidizing bacteria 
(AOB)-amoA, nirK, nirS, nosZ1 and nosZ2 at different sampling sites. 
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title AOA-amoA  AOB-amoA  nirK nirS nosZ1 nosZ2 

HG1 1.11 × 107 1.89 × 107 2.27 × 106 1.02 × 107 1.46 × 108 1.24 × 108 

HG2 9.57 × 106 1.32 × 107 7.01 × 105 8.93 × 106 1.17 × 108 1.22 × 108 

HG3 1.67 × 107 2.00 × 108 1.25 × 106 1.14 × 107 4.38 × 108 3.09 × 108 

HG4 1.62 × 107 6.90 × 106 1.60 × 106 1.41 × 107 2.22 × 107 8.28 × 106 

HG5 1.04 × 107 9.46 × 106 2.67 × 106 9.62 × 106 4.45 × 107 1.24 × 107 

TX1 1.49 × 107 4.68 × 107 1.39 × 106 1.31 × 107 3.90 × 108 8.35 × 108 

TX2 1.11 × 107 2.31 × 107 3.18 × 106 1.02 × 107 4.27 × 108 3.88 × 108 

TX3 1.99 × 107 5.41 × 107 3.58 × 106 1.67 × 107 6.00 × 108 5.10 × 108 

TX4 3.09 × 107 2.67 × 108 3.43 × 107 2.45 × 107 3.63 × 108 7.48 × 108 

TX5 1.92 × 107 2.87 × 107 2.46 × 107 1.62 × 107 2.56 × 108 4.12 × 108 

QL1 4.83 × 107 6.68 × 108 2.03 × 106 3.56 × 107 5.85 × 108 3.64 × 108 

QL2 2.20 × 107 1.39 × 108 1.46 × 108 1.81 × 107 6.21 × 108 2.68 × 108 

QL3 4.52 × 107 2.75 × 108 1.48 × 108 3.36 × 107 1.74 × 108 7.65 × 108 

QL4 6.90 × 107 1.75 × 109 8.46 × 107 4.83 × 107 3.06 × 108 7.60 × 108 

QL5 5.15 × 107 1.94 × 109 2.82 × 107 3.78 × 107 9.44 × 108 7.30 × 108 

QL6 6.48 × 107 1.06 × 109 8.15 × 107 4.61 × 107 3.00 × 108 5.44 × 108 

Significantly positive relationships existed between P concentrations, including DTP, SRP, 
Fe(OOH)~P, CaCO3~P, ASOP, and Palk, and copy numbers of different gene types of denitrifying 
bacteria, including nirS , nirK, nosZ1 and nosZ2 (Table 3 and Figure 3a, 3b, 3e, 3f). Copy numbers of 
nirS and nosZ2 showed significant positive correlations with LAP (Table 3 and Figure 3g). 
Furthermore, the TN concentration showed significant positive correlations with the copy numbers 
of nosZ1 and nosZ2 (Table 3 and Figure 3h). 

Table 3. Pearson’s correlation coefficients between nutrient forms and copy numbers of AOA/AOB 
as well as denitrifiers. 

 AOA AOB nirK nirS nosZ1 nosZ2 PDR PNR 

SRP 0.845** 0.795** 0.675** 0.844** 0.598* 0.727** 0.667** 0.301 
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DTP 0.696** 0.670** 0.545* 0.695** 0.644** 0.653** 0.674** 0.546* 

Fe(OOH)~P 0.546* 0.449 0.536* 0.548* 0.253 0.415 0.739** 0.717** 

Ca(OOH)~P 0.780** 0.574* 0.682** 0.780** 0.218 0.401 0.827** 0.352 

ASOP 0.311 0.230 0.562* 0.370 0.108 0.200 0.318 −0.032 

Palk 0.595* 0.427 0.492 0.592* 0.027 −0.025 0.345 −0.445 

APA −0.237 −0.199 −0.010 −0.116 0.169 0.317 0.004 0.604* 

GLU 0.315 0.343 0.357 0.410 0.470 0.630** 0.414 0.652** 

LAP 0.523* 0.405 0.422 0.524* 0.422 0.615* 0.604 0.726** 

NO3−-N −0.386 −0.377 −0.367 −0.405 0.074 0.081 −0.183 0.621* 

NO2−-N −0.383 −0.268 −0.009 −0.31 0.155 0.148 −0.079 0.641* 

NH4+-N −0.297 −0.319 −0.172 −0.318 0.233 0.294 −0.274 0.506* 

TN 0.352 0.421 0.403 0.44 0.672** 0.750** 0.347 0.742** 

TSI 0.596* 0.588* 0.494 0.597* 0.660** 0.795** 0.501* 0.722** 

Significance at **α = 0.01 level, *α = 0.05 level; n = 16. 

Data were transformed and tested for normality before correlation analysis. 

Abbreviations of nutrient forms: SRP, soluble reactive phosphorus; DTP, dissolved total phosphorus; 
Fe(OOH)~P, iron-bound P; Ca(OOH)~P, calcium-bound P; ASOP, acid-soluble organic P; PALK, hot 
NaOH-extractable organic P; APA, alkaline phosphatase activity; GLU, β-D-glucosidase activity; 
LAP, leucine aminopeptidase activity; NO3−-N, nitrate; NO2−-N, nitrite; NH4+-N, ammonium; TN, total 
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nitrogen. 

 

Figure 3. Scatter plots of the correlations between copy number of denitrifiers and SRP (a), DTP (b), 
Fe(OOH)~P (c), CaCO3~P (d), ASOP (e), Palk (f), LAP (g), TN (h) (n = 16). 

Meanwhile, PDR and PNR showed significant and positive relationships with P concentrations 
(Figure 4a, 4b) as well as TSI (Figure 4d). Additionally, PDR was significantly and positively related 
to the copy numbers of the nirS and nirK genes (Figure 4c). AOA and AOB abundance exhibited 
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significant positive relationships with SRP, DTP, CaCO3~P and TSI (Table 3). 

 

Figure 4. Scatter plots of the correlations between P concentration and PDR (a), PNR (b); PDR and 
copy numbers of nirS and nirK (c); TSI and PDR/PNR (d) (n = 16). 

Noticeably, the abundance of AOA and AOB showed positive linear correlations, not only with 
denitrifying bacteria encoding the different gene types (Figure 5a and b) but also with PDR 
(Figure5c). In turn, PNR was significantly and positively related to copy numbers of the nosZ2 gene 
(Figure 5d). 
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abundance of nirS-type denitrifiers [36]. In soils, urea addition increased nirS and nirK gene 
abundances and N2O emission [37]. A quantification of the functional genes involved in 
denitrification along with the Spearman’s rank correlation matrix revealed that the N2O emission 
rates correlated with the abundance of nirK and nirS genes [38]. In short, lake eutrophication 
aggravation greatly increased the abundance of nitrifying and denitrifying bacteria with specific 
functional genes (especially nirS and nirK), which further effectively promoted nitrification and 
denitrification rates.  

Our results also showed a connection between nitrification and denitrification (Figure 5). These  
results indicated that the coupling of nitrification and denitrification was based on the combination 
of microbial quantity and function. This coupling can be explained by the nitrifier denitrification 
mechanism. The first step of nitrification is accomplished by AOB and AOA with the participation of 
O2, while both AOA and AOB can produce N2O in the form of by-products [39]. Firstly, ammonium 
hydroxide or its derivatives formed during the conversion of ammonia to nitrite are oxidized and 
cracked to produce N2O. Secondly, the process of nitrite to NO is catalyzed by the nitrite reductase 
(nir) gene, which is encoded by the nirK and nirS genes. The NO reductase (nor) gene, which further 
catalyzes the reaction of NO to N2O, is coded by norB. It is noteworthy that all the detected AOB 
contain nirK and norB genes [40]. Besides, AOA can also reveal homologues of nirK and norB [40,41]. 
These two independent processes producing N2O are called nitrifier denitrification [6]. Thus, besides 
the classical denitrification process, nitrifier denitrification achieving the coupling of nitrification and 
denitrification might be another important and efficient pathway for nitrogen removal in shallow 
lakes. Hence, the aggravation of eutrophication accelerates this process and fuels nitrogen removal. 

Meanwhile, P concentrations were positively related with the abundance as well as the activity 
of nitrosomonas and denitrifiers (Figure 3 and Figure 4). These results indicate that high potential 
nitrification and denitrification rates stimulated the phosphorus release from the sediments. This 
result was further proved by the higher P concentrations in more eutrophic sites, such as QL4-6 and 
TX1-2 (Table 1 and Figure 2). It was indicated that the enrichment of organic carbon and nitrogen can 
result in P release through the anaerobic status caused by organic matter decomposition, suggesting 
a close coupling between carbon and N and P cycles [42]. Also, a hypothesis about mutual coupling 
and interplay between N and P cycling was presented, based on N loss due to P accumulation and P 
release due to anoxia, which resulted from organic matter decomposition in the process of 
eutrophication [36]. In this study, besides the fact that organic matter decomposition resulted in 
anoxia, the strong nitrification that consumed a great deal of oxygen should be considered as an 
important reason for the formation of anoxia, based on the relationship between P and nitrification. 
In a manipulated experiment, nitrification in sediment was enhanced on the condition of anoxia, 
which quickly caused a release of dissolved P [43]. This can be explained by the fact that the 
enhancement of nitrification resulting in anoxia induced SRP release. Conversely, during this process, 
DON was also released into the water column in considerable quantity in eutrophic lakes (Figure 2c). 
Ligand exchange was considered as the important mechanism for the desorption of DON in Lake 
Taihu sediment. Both sulfate and phosphate had a significant influence on the release of DON, which 
might have an important influence on N cycling in the water column [44]. Even though the 
mechanism is still not clear, it is proposed that DON release was beneficial for balancing the 
disequilibrium of N and P ratio in the water column due to SRP release.  

4. Conclusions 

Taken together, compared to eutrophic Lake Houguan, the enrichment of nutrients (P in 
particular) in sediments of the strongly hypertophic North of Lake Qingling greatly increased 
nitrifying and denitrifying microbial abundance by an order of magnitude, further accelerating the 
potential rates of nitrification and denitrification by 6.9 and 3.5 fold respectively. The coupling of 
these two processes were especially mediated by nitrifier denitrification. Strong nitrification–
denitrification in sediments of North of Lake Qingling fueled the nitrogen removal from the system 
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in terms of 21.9% and 27.0% lower ammonium and nitrate levels than that of Lake Houguan. 
Furthermore, this coupling also accelerated the P release (1000 times higher SRP value in the water 
column of North of Lake Qingling, comapred to Lake Houguan) due to the anaerobic state caused by 
organic matter decomposition and nitrification. During this process, DON was also released into the 
water column in considerable quantity, which was favorable for balancing the N and P ratio. 
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NO3−-N. Nitrate (nitrogen). 

NO2−-N. Nitrite (nitrogen). 
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DTP. Dissolved Total Phosphorus. 

SRP. Soluble Reactive Phosphorus. 
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Palk. Hot NaOH-extractable organic phosphorus. 

EEA. Extracellular Enzyme Activity. 

APA. Alkaline Phosphatase Activity. 
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LAP. Leucine aminopeptidase activity. 

Chl a. Chlorophyll a. 

TSI. Trophic State Index. 

PDR. Potential Denitrification Rate. 

PNR. Potential Nitrification Rate. 

AOA. Ammonia-Oxidizing Archaea. 

AOB. Ammonia-Oxidizing Bacteria. 

nir. Nitrite reductase. 

nos. Nitrous oxide reductase. 
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