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Abstract: Radon (222Rn) and uranium (U) measurements were conducted in 98 groundwater samples
in Yongin area, Korea to identify the factors controlling their levels and spatial distributions.
Groundwater samples were obtained from the different depth of wells used for drinking water and
irrigation. 222Rn and U concentrations were measured using a liquid scintillation counter (LSC)
equipped with a pulse-shape analyzer and inductively coupled plasma mass spectrometers (ICP-MS),
respectively. Large variations were observed in groundwater concentrations of 222Rn and U, ranging
between 0.6 ± 0.1–673.7 ± 8.7 Bq L−1 and 0.02–117.00 µg L−1, respectively. Correlation analysis
revealed no significant relationship between field parameters (temperature, electrical conductivity,
pH, and dissolved oxygen) and 222Rn or U concentrations. The fact that 222Rn and U concentrations
were higher in granite areas than gneiss areas suggests that lithology plays a significant role in
controlling the levels and spatial distributions of the two radionuclides. Furthermore, groundwater
222Rn and U behaviors have been affected by the existence of fault and well depth. Especially, the
temporal monitoring of 222Rn suggests that 222Rn concentrations in the shallow groundwater may be
controlled by variation in rainfall and artificial effects such as water curtain cultivation conducted in
the winter season in this study area.
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1. Introduction

Groundwater has been a globally essential resource for drinking, industrial, and agricultural
purposes throughout history. For example, over 95% of the rural population depends on groundwater
for their drinking water in the USA [1]. In Korea, groundwater provides 13% (approximately 3.7 billion
m3) of the total annual water supply, and the use of groundwater is increasing continuously [2]. Human
consumption of groundwater, however, may be restricted due to quality concerns. Naturally occurring
radionuclides in groundwater, such as radon (222Rn) and uranium (U), have become major health
issues with previous studies reporting high radionuclide levels [3–5].

222Rn is a naturally occurring radionuclide with a half-life of 3.8 days. Due to its suitable half-life
and high concentration in groundwater, 222Rn has been used as an excellent tracer for quantifying
groundwater discharge and determining groundwater-surface water interaction in aquatic systems
such as streams, rivers, wetlands, and estuaries [6–10]. Furthermore, 222Rn in groundwater has been
monitored worldwide to predict earthquakes and understand natural processes [11–13]. U, a redox
sensitive element, has been used to examine the portion of submarine groundwater discharge in
coastal zones because its concentration and isotopic ratio (234U/238U) presented different endmembers
in seawater and coastal groundwater [14,15]. Although there are various applications of 222Rn and U
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in the scientific researches, the excess dissolved radionuclides (222Rn and U) in groundwater used for
drinking water can impact the human health. Inhaling or ingesting 222Rn is known to cause lung and
stomach cancer [16,17]. U can cause kidney problems, and its inhalation presents a chemical toxicity
risk to the lungs [18,19].

Previous studies have reported on the spatial distributions and levels of 222Rn and U in groundwater
and drinking water in other countries. For example, 222Rn and U concentrations were measured
in 5097 wells located in more than 40 principals in USA, showing that 2.7% of the groundwater
samples contained 222Rn concentrations which were higher than the alternative maximum contaminant
level (AMCL) of 148 Bq L−1 recommended by US EPA (Environmental Protection Agency) [20]. In
India, 222Rn and 238U groundwater concentrations from 41 different locations were reported to range
from 0.86 to 7.62 Bq L−1 and from 0.26 to 29 µg L−1, respectively, indicating that high levels of these
radionuclides were associated with lithology [3]. In Korea, recently, 222Rn concentrations in 3818
groundwater samples were measured and 26.5% of the total samples exceeded the World Health
Organization (WHO) radon level limit of 100 Bq L−1 [21]. It is reported that approximately 4% of 4140
wells in South Korea contained U concentrations exceeding the WHO guideline level for drinking
water, 30 µg L−1 [22], suggesting that these groundwater wells should be closed immediately to reduce
health hazards [23].

With this background, the need to determine 222Rn and U distributions and concentrations in
groundwater is significant, especially in regions where residents use groundwater containing high
222Rn and U levels for drinking. Therefore, this study was conducted in Yongin area where high 222Rn
concentrations have already been reported [24] and groundwater has been used for drinking water
and irrigation. This study aimed (1) to investigate the levels and spatial distributions of 222Rn and U in
groundwater and (2) to determine the factors controlling these radionuclides’ behaviors in Yongin
area, Korea.

2. Materials and Methods

2.1. Site Description

Groundwater samples were collected from wells in Yongin area (185 km2) located in the northwest
part of South Korea (Figure 1). The mean annual precipitation and temperature of this region are
1560 mm and 11 ◦C, respectively, with high precipitation concentrated in the summer monsoon season
(June and July). The basement rock primarily consists of Jurassic gneissose biotite granite (over 70% of
the study area) and Precambrian banded gneiss [24,25]. Jurassic gneissose biotite granite is composed
of biotite and hornblende, and Precambrian banded gneiss is composed of quartz, plagioclase, and
biotite [25].

2.2. Groundwater Sampling

Groundwater samples were collected from 98 groundwater wells located in Yongin area in 2013.
Samples were taken after the wells were purged by pumping for more than 15 min using a submersible
pump to remove well bore storage. Field parameters including temperature, electrical conductivity
(EC), pH, and dissolved oxygen (DO) in groundwater were measured in situ using portable meters
(Orion 5 Star). Well depths varied from 25 to 200 m.
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Figure 1. A simplified geological map of the sampling points in Yongin area, Korea. 
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(Optiphase Hisafe3, PerkinElmer). 222Rn concentration was measured after 4 h elapsed for 
radioactive equilibrium between 222Rn and its daughters. The 222Rn concentration was measured 
using a liquid scintillation counter (LSC, Perkin Elmer, Wallac 1220 Quantulus) equipped with a 
pulse-shape analyzer which can electronically separate alpha and beta nuclides into different 
spectra. This ultra-low-level LSC is able to effectively measure very low-level alpha and beta 
nuclides, making it possible to optimize measurement conditions for various environmental 
radioactivity applications. The optimal pulse shape analysis (PSA) level was set to 100, determined 
using 241Am and 90Sr/90Y standard radioactive solutions to minimize alpha/beta discrimination 
capabilities [26]. 

The detection efficiency for 222Rn was determined based on the total peak area of the alpha line 
at 100 PSA level using the 226Ra standard solution. Detection efficiency was determined in triplicate 
using three standard samples, demonstrating a mean value of 89% with standard deviation of 0.6%. 
Background values were measured in the 550‒750 channel range, excluding the 214Po peak region 
because 214Po was immediately formed due to its short half-life. 

Previously boiled ultra-pure water was mixed with a scintillation cocktail solution cleaned by 
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2.3. 222Rn and U Measurements

Groundwater samples were collected promptly to avoid radon gas loss. A total of 8 mL of each
sample were injected and mixed with 12 mL of a commercial liquid scintillator cocktail solution
(Optiphase Hisafe3, PerkinElmer). 222Rn concentration was measured after 4 h elapsed for radioactive
equilibrium between 222Rn and its daughters. The 222Rn concentration was measured using a liquid
scintillation counter (LSC, Perkin Elmer, Wallac 1220 Quantulus) equipped with a pulse-shape analyzer
which can electronically separate alpha and beta nuclides into different spectra. This ultra-low-level
LSC is able to effectively measure very low-level alpha and beta nuclides, making it possible to optimize
measurement conditions for various environmental radioactivity applications. The optimal pulse
shape analysis (PSA) level was set to 100, determined using 241Am and 90Sr/90Y standard radioactive
solutions to minimize alpha/beta discrimination capabilities [26].

The detection efficiency for 222Rn was determined based on the total peak area of the alpha line
at 100 PSA level using the 226Ra standard solution. Detection efficiency was determined in triplicate
using three standard samples, demonstrating a mean value of 89% with standard deviation of 0.6%.
Background values were measured in the 550–750 channel range, excluding the 214Po peak region
because 214Po was immediately formed due to its short half-life.

Previously boiled ultra-pure water was mixed with a scintillation cocktail solution cleaned by
argon gas to produce a background sample containing no radon. The background sample was
measured for 5 h under the same protocol as actual samples. This background counting value was
used to determine both the counting efficiency and detection limit. Based on Equation (1) [27], the
minimum detectable activity (MDA, Bq L−1) was calculated to be 0.22 Bq L−1 for the α-ray total peak.

MDA =

4.65×

√
Cb

t

/(E × V × 60), (1)
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where Cb (cpm) is the background count rate. V (L) and t (min) represent the sample volume (8 mL) and
the background counting time, respectively. The 222Rn concentration of the sample was determined
using the following equation [28]:

C = (RS −RB)/
(
E × V× 60 ×

(
1− exp−λt

))
, (2)

where C (Bq L−1) is the 222Rn concentration of the sample. RS (cpm) and RB (cpm) represent the sample
count rate and the background count rate, respectively. E is the counting efficiency. λ (day−1) is the
222Rn decay constant and t (day) is the elapsed time from sampling to the midpoint of the decay
correction count.

Groundwater sample for the total U analysis was immediately filtered through 0.45 µm cellulose
membrane, and then acidified to ~pH 2 with nitric acid and stored in the vails which were pre-cleaned
with nitric acid and de-ionized water. The concentration of U was measured using inductively coupled
plasma mass spectrometry (ICP-MS; DRC-II; PerkinElmer). Calibrations were performed using U
standard solution (10 µg mL−1, Accustandard). The statistical and spatial analyses were performed
using SPSS (SPSS Inc., v. 17, IBM, Armonk, NY, USA) and Grapher (Golden Software Inc., v. 13, Golden,
CO, USA) respectively.

3. Results and Discussion

Well depth information, field parameters (temperature, EC, pH, and DO), and 222Rn and U
groundwater concentrations are shown in Table A1. We scrutinized the variables used in this study
to examine unusual values. Groundwater was sampled from the wells of various depths, showing
a temperature range of 11.9-18.5 ◦C (mean ± standard deviation; 15.2 ± 1.3 ◦C). The EC, pH, and
DO ranged from 68 to 712 µS cm−1 (192 ± 108 µS cm−1), from 5.1 to 8.9 (6.3 ± 0.6), and from 0.6 to
10.6 mg L−1 (5.1 ± 2.1 mg L−1), respectively. The 222Rn concentration in groundwater fell between
0.6 ± 0.1 and 673.7 ± 8.7 Bq L−1 with a mean value of 208 ± 166 Bq L−1. The U concentration in
groundwater ranged from 0.02 to 117.00 µg L−1 with a mean value of 11.5 ± 21.1 µg L−1. The highest
concentrations of 222Rn and U were observed at YI21 and YI32, respectively.

Histograms showing the frequency distributions of 222Rn and U concentrations indicated that
the concentrations of these radionuclides were skewed to the left (Figure 2). Approximately 50%
of the sampling points showed 222Rn concentrations below 148 Bq L−1, and the distribution of U
concentration showed approximately 10% of the sampling points were above 30 µg L−1.
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Figure 2. Histograms showing concentration frequency distributions for (a) radon (222Rn) and (b)
uranium (U) in the groundwater samples.

3.1. Correlations between 222Rn or U and Field Parameters

The 222Rn concentrations showed no significant correlation with temperature (r = 0.04, p = 0.69),
EC (r = 0.19, p = 0.06), or DO (r = 0.05, p = 0.63) and only weak correlations with pH (r = −0.29, p < 0.05)
(Figure 3). The U concentrations also showed no significant correlation with temperature (r = 0.05,
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p = 0.65) or DO (r = 0.16, p = 0.12), and weak correlations with pH (r = 0.30, p < 0.05) and EC (r = 0.27,
p < 0.05) (Figure 4). Even though the 222Rn and U concentrations appeared to correspond with pH
based on the statistical analysis, those data were highly scattered, and the correlation coefficients were
extremely weak. Similar to the current results, prior research has reported neither significant nor
weak correlation between pH and 222Rn concentrations in groundwater [4,29]. These results therefore
suggest that these individual field parameters may not play primary roles in regulating 222Rn and U
groundwater levels.
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3.2. Effect of Lithology and Fault

For statistical analysis, the 222Rn and U concentrations in groundwater were grouped based on
the geological characteristics (granite or gneiss areas) of the sampling locations. The mean 222Rn
groundwater concentration in granite areas was 238 ± 161 Bq L−1, approximately four times higher
than that of gneiss areas (66 ± 104 Bq L−1), and the mean U groundwater concentration in granite areas
(14 ± 23 µg L−1) was seven times higher than that in gneiss areas (2 ± 5 µg L−1). These results are
similar to the previous studies conducted in various bedrock-type areas [2,30], reflecting the fact that
granite contains high levels of radionuclides such as 226Ra (parent of 222Rn) and 238U [31].

3.3. Spatial Distributions of 222Rn and U

The spatial distributions of the 222Rn and U groundwater concentrations also demonstrated
relatively higher concentrations in granite than gneiss areas (Figure 5). To determine the spatial
distribution, wells deeper than 30 m were selected to reduce data noise, specifically interactions between
surface water and groundwater. Based on these spatial distributions, the highest concentrations (more
than 600 Bq L−1) of 222Rn were observed near Fault A over granite bedrock (Figure 5a). This may be
due to the fact that fractures with higher permeability/porosity can increase bedrock surface area in
fault zones, allowing 222Rn to dissolve from the bedrock into groundwater through active water-rock
interactions. Previous studies have reported that fractures can enhance emanation surfaces, allowing
222Rn to escape from rocks via α-recoil [32,33]. The relatively lower 222Rn concentration in groundwater
close to Faults B and C may be due to the different lithology (gneiss) of those well locations. The U
concentrations displayed different distribution trends with higher U concentrations observed in the
southern part of the studied area (Figure 5b). These different spatial distributions may be attributed to
the fact that 222Rn and U have different geochemical behavior: while the behavior of gaseous 222Rn is
determined by physical processes (e.g., groundwater movement) rather than chemical processes on the
basis of the relationships between major ions (Na+, Mg2+, and Cl−) and 222Rn concentrations [34,35],
U concentrations in groundwater are controlled by redox potential and CO2 partial pressure [24,36].
Similarly, several researches conducted in Korea have reported poor or weak relationships between
222Rn and U concentrations [25,37,38]. Conversely, Singh et al. reported strong correlation (r = 0.75)
between 222Rn and 238U concentrations in drinking water [3]. As such, more comprehensive and
comparative investigation is required to better understand the behaviors of 222Rn and U in groundwater
with consideration to various chemical and physical processes including water mixing processes
(groundwater-groundwater or groundwater-surface water).
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3.4. Effect of the Well Depth

The well depth of the 98 groundwater samples showed no significant statistical correlation with
222Rn (r = 0.10, p = 0.32) or U (r = 0.27, p = 0.15) concentrations. For further granularity, wells located in
granite area were classified as shallow (<30 m) or deep (>100 m) to investigate the effect of well depth
on radionuclide concentration. While a significant positive correlation (r = 0.68, p < 0.05) was observed
between 222Rn and U concentrations in shallow wells, no significant relationship (r = 0.27, p = 0.25) was
seen in deep groundwater wells (Figure 6). This result may be due to active groundwater-surface water
interaction in shallow wells. In Korea, the mean depth of alluvial and/or weathering zone is generally
less than 30 m. This zone tends to have higher hydraulic conductivity and be more fractured than
bedrock. Since more active groundwater-surface water interaction can be occurred in the shallow wells,
and surface water has lower 222Rn and U concentrations than groundwater [25], the concentrations of
these radionuclides in the shallow wells were relatively lower than those of the deep wells and showed
a significant positive correlation depending on the surface water mixing rate. The poor correlation of
concentrations in the deep wells may be due to different behaviors of 222Rn and U in groundwater
(described in detail above).
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3.5. Temporal Variation in 222Rn

To determine a temporal variation of 222Rn concentrations in shallow wells (<30 m) with relatively
active groundwater-surface water interaction, groundwater sampling campaigns were conducted
in five wells throughout August, October, and November, 2013. The temporal variations of 222Rn
concentration in these well showed similar trends, except for YI100. 222Rn concentrations of the
other four wells in October were about two times higher than that in August. This result may reflect
the higher precipitation rate in July (Figure 7), because 222Rn concentration in groundwater should
be decreased by an inflow of rainwater or surface water into shallow groundwater following large
rainfall events in the summer monsoon season (June and July). In November, the 222Rn concentrations
decreased, potentially related to the regional groundwater use. Although information on seasonal
groundwater use was not obtained in this study, water curtain cultivation has been conducted using
groundwater in winter season to maintain high air temperature in vinyl houses in this study area. This
continuous groundwater extraction increases groundwater circulation, decreasing the groundwater
radon concentration [5] due to an input of water from rivers or streams, which have low 222Rn
concentrations. Therefore, these results suggest continuous monitoring or a minimum of bi-weekly
measurements of naturally occurring radionuclides in groundwater are required not only to reduce
health risks but also to better understand groundwater–surface water interactions.
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Figure 7. Temporal variations in 222Rn concentrations in the shallow (<30 m) groundwater wells in
August, October, and November 2013.

4. Conclusions

222Rn and U concentrations were measured in 98 groundwater wells in Yongin area, Korea. Results
revealed that the 222Rn concentrations of approximately 50% of the sampling points in the study area
was higher than 148 Bq L−1 (the AMCL recommended by the US EPA), and 10% of the sampling points
displayed U concentrations above 30 µg L−1 (the WHO guideline level for drinking water). Based on
statistical analyses, geological variability, well depth, rainfall rates, and geological structures (faults)
may affect the levels, temporal variations, and spatial distributions of 222Rn and U in groundwater. Our
results suggest that continuous or short interval monitoring of 222Rn and U in groundwater, especially
that used for drinking, is required to reduce potential health risks via the intake of groundwater
containing high levels of these naturally occurring radionuclides.
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Appendix A

Table A1. Well depth, field parameters including temperature, electrical conductivity (EC), pH, and
dissolved oxygen (DO), and the concentrations of 222Rn and U in groundwater of Yongin area in 2013.

Sampling
Point No.

Well
Depth (m)

Temp.
(◦C)

EC
(µS cm−1)

pH DO
(mg L−1)

222Rn
(Bq L−1)

U (µg L−1)

YI01 78 14.1 402 6.5 2.9 27.4 ± 1.1 0.66 ± 0.01
YI02 200 15.3 608 8.9 2.7 126.7 ± 2.6 15.80 ± 0.27
YI03 30 15.3 102 5.7 5.5 68.1 ± 1.8 0.20 ± 0.01
YI04 200 16.0 455 6.6 4.7 41.5 ± 1.4 15.50 ± 0.27
YI05 40 17.1 152 6.6 5.5 112.2 ± 2.5 1.20 ± 0.01
YI06 45 16.6 116 5.6 4.9 45.2 ± 1.4 0.15 ± 0.01
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Table A1. Cont.

Sampling
Point No.

Well
Depth (m)

Temp.
(◦C)

EC
(µS cm−1)

pH DO
(mg L−1)

222Rn
(Bq L−1)

U (µg L−1)

YI07 80 18.5 228 6.0 6.2 3.7 ± 0.4 0.61 ± 0.01
YI08 80 16.5 352 6.7 1.9 8.5 ± 0.6 0.63 ± 0.01
YI09 100 14.9 279 6.5 5.8 74.1 ± 1.8 0.81 ± 0.01
YI10 200 14.7 270 6.3 2.7 265.9 ± 4.4 93.90 ± 1.60
YI11 25 13.0 118 6.6 5.8 107.4 ± 2.3 5.83 ± 0.05
YI12 120 16.0 264 6.5 3.4 23.7 ± 0.7 0.45 ± 0.01
YI13 150 15.9 138 5.8 2.8 12.2 ± 0.4 0.08 ± 0.01
YI14 120 15.8 498 6.8 0.6 61.5 ± 1.2 9.42 ± 0.07
YI15 100 15.0 178 6.1 4.0 60.7 ± 1.2 0.25 ± 0.01
YI16 100 13.9 111 6.3 3.5 315.6 ± 4.4 1.67 ± 0.02
YI17 90 15.3 164 6.3 4.5 363.3 ± 4.9 52.10 ± 0.89
YI18 80 15.6 115 5.3 2.6 210.7 ± 3.1 0.42 ± 0.01
YI19 80 14.9 228 6.3 3.4 210.0 ± 3.1 0.43 ± 0.01
YI20 100 16.8 241 6.0 4.2 538.9 ± 7.1 2.08 ± 0.02
YI21 100 16.1 118 5.8 3.7 673.7 ± 8.7 2.61 ± 0.02
YI22 100 14.5 68 6.1 5.4 646.7 ± 8.4 2.21 ± 0.02
YI23 120 17.1 312 6.2 4.3 279.6 ± 3.9 19.20 ± 0.33
YI24 100 14.3 138 6.1 4.15 516.7 ± 6.8 18.60 ± 0.32
YI25 150 16.9 134 6.1 3.3 453.0 ± 6 2.71 ± 0.02
YI26 100 18.0 150 5.8 4.2 173.0 ± 2.6 1.17 ± 0.01
YI27 50 14.4 87 6.3 4.8 163.0 ± 2.5 0.27 ± 0.01
YI28 100 13.8 119 5.9 4.5 485.6 ± 6.4 0.23 ± 0.01
YI30 120 14.7 195 7.2 6.6 251.5 ± 3.8 58.80 ± 1.00
YI31 100 14.4 109 5.1 6.3 286.3 ± 4.2 2.11 ± 0.02
YI32 100 17.9 186 6.4 8.9 239.3 ± 3.7 117.00 ± 1.99
YI33 120 14.1 129 5.3 9.0 411.1 ± 5.7 5.93 ± 0.05
YI34 120 14.9 179 5.7 8.5 221.1 ± 3.4 2.00 ± 0.02
YI35 100 14.5 223 5.1 4.7 381.5 ± 5.4 3.23 ± 0.03
YI36 70 14.1 337 6.0 3.6 3.0 ± 0.3 4.95 ± 0.04
YI37 100 14.6 104 5.5 6.1 39.6 ± 1.0 0.25 ± 0.01
YI38 100 13.2 93 5.2 4.9 89.3 ± 1.7 0.20 ± 0.01
YI39 50 14.7 251 5.5 2.0 221.1 ± 3.4 0.30 ± 0.01
YI40 200 15.7 272 7.1 6.7 43.7 ± 1.1 10.9 ± 0.19
YI41 100 14.3 287 6.2 9.6 204.4 ± 3.1 48.80 ± 0.83
YI42 25 13.5 114 5.4 8.4 275.9 ± 4.0 0.58 ± 0.01
YI43 120 14.3 194 5.9 10.6 232.2 ± 3.5 1.46 ± 0.02
YI44 120 14.3 119 5.2 9.6 371.9 ± 5.2 0.48 ± 0.01
YI45 100 14.8 156 6.2 6.2 34.1 ± 0.9 0.38 ± 0.01
YI46 150 14.1 137 6.5 6.3 35.9 ± 0.9 0.15 ± 0.01
YI47 100 15.1 99 6.0 9.2 41.1 ± 1.0 0.15 ± 0.01
YI48 100 16.7 183 6.3 2,3 4.1 ± 0.3 0.08 ± 0.01
YI49 130 14.8 85 7.4 6.5 363.3 ± 5.1 8.42 ± 0.06
YI50 100 14.6 163 7.1 5.3 104.4 ± 1.9 21.40 ± 0.37
YI51 30 13.2 161 6.1 3.8 120.7 ± 2.6 1.19 ± 0.01
YI52 30 14.1 122 5.9 6.7 32.6 ± 1.2 0.02 ± 0.01
YI53 35 11.9 206 6.5 5.8 72.6 ± 1.9 0.92 ± 0.01
YI54 30 13.4 88 6.9 8.9 94.1 ± 2.2 1.43 ± 0.02
YI55 30 13.6 109 6.7 8.8 138.1 ± 2.9 0.53 ± 0.01
YI56 35 16.3 111 6.5 7.7 128.9 ± 2.8 0.62 ± 0.01
YI57 30 16.9 199 6.3 6.5 31.5 ± 1.1 0.17 ± 0.01
YI58 100 13.7 277 6.8 2.4 81.9 ± 2.0 52.20 ± 0.89
YI59 33 14.8 214 6.2 6.9 138.9 ± 2.8 0.75 ± 0.01
YI60 150 15.6 157 6.7 6.1 173.0 ± 3.3 21.20 ± 0.37
YI61 30 16.1 272 6.5 3.7 310.0 ± 5.0 41.90 ± 0.72
YI62 50 14.1 107 7.2 6.6 77.4 ± 2.0 10.80 ± 0.19
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Table A1. Cont.

Sampling
Point No.

Well
Depth (m)

Temp.
(◦C)

EC
(µS cm−1)

pH DO
(mg L−1)

222Rn
(Bq L−1)

U (µg L−1)

YI63 30 14.2 173 5.9 2.7 369.3 ± 5.7 2.01 ± 0.02
YI64 50 16.8 127 6.5 4.4 357.4 ± 5.5 13.90 ± 0.24
YI65 37 14.4 126 6.1 6.4 128.5 ± 2.6 0.55 ± 0.01
YI66 30 14.3 192 5.8 6.9 94.4 ± 2.1 0.43 ± 0.01
YI67 100 14.4 249 6.8 4.6 99.6 ± 2.2 11.00 ± 0.19
YI68 100 14.4 244 6.5 8.3 363.3 ± 5.7 6.38 ± 0.05
YI69 30 16.7 712 5.5 1.7 261.5 ± 3.8 5.36 ± 0.04
YI70 100 15.2 161 6.2 1.1 357.0 ± 5.0 2.26 ± 0.02
YI71 90 16.4 730 5.8 3.3 112.2 ± 2.0 1.13 ± 0.01
YI72 90 16.5 234 6.2 4.3 225.9 ± 3.4 17.60 ± 0.30
YI73 50 16.1 398 5.7 2.2 436.7 ± 6.1 6.87 ± 0.05
YI74 100 16.8 130 6.0 2.2 261.9 ± 4.0 3.20 ± 0.03
YI75 100 14.6 146 6.9 4.8 144.4 ± 2.5 54.90 ± 0.94
YI76 100 16.0 281 7.4 5.4 36.3 ± 0.9 74.00 ± 1.26
YI77 100 15.6 169 6.5 5.0 114.4 ± 1.9 0.36 ± 0.01
YI78 100 15.3 159 6.2 3.5 354.1 ± 4.9 20.20 ± 0.35
YI79 100 14.5 213 5.8 2.1 195.2 ± 2.9 17.60 ± 0.30
YI80 150 15.3 195 5.9 4.1 398.1 ± 5.3 11.20 ± 0.20
YI81 170 14.5 198 6.0 4.1 345.2 ± 4.7 7.71 ± 0.06
YI82 80 14.8 132 5.5 3.8 132.2 ± 2.1 3.15 ± 0.03
YI83 150 15.2 147 6.1 6.4 0.6 ± 0.1 23.80 ± 0.41
YI84 25 16.7 191 6.3 5.4 368.1 ± 4.9 6.70 ± 0.05
YI85 100 17.9 83 6.0 5.7 474.4 ± 6.2 0.94 ± 0.01
YI86 200 14.8 69 5.9 7.3 277.8 ± 3.9 0.23 ± 0.01
YI87 170 13.7 157 5.8 4.8 648.9 ± 8.3 3.69 ± 0.03
YI88 100 14.4 109 6.0 3.7 623.7 ± 8.0 5.53 ± 0.04
YI89 200 16.8 297 6.8 3.8 72.2 ± 1.4 46.20 ± 0.79
YI90 200 16.8 218 6.3 6.0 243.7 ± 3.5 23.60 ± 0.41
YI91 50 14.9 184 6.6 5.1 116.3 ± 1.9 5.80 ± 0.05
YI92 25 17.1 125 6.1 4.4 426.3 ± 5.7 9.34 ± 0.07
YI93 100 17.1 157 7.7 5.6 108.1 ± 1.8 4.53 ± 0.04
YI94 50 14.1 120 7.4 6.2 70.7 ± 1.5 1.06 ± 0.01
YI96 30 13.7 118 6.5 6.0 173.7 ± 2.8 0.75 ± 0.01
YI97 30 14.2 124 6.7 6.5 193.3 ± 3.0 3.49 ± 0.03
YI98 50 16.0 321 7.1 3.7 124.1 ± 2.2 65.10 ± 1.11
sYI99 30 16.8 152 6.6 4.8 78.1 ± 1.6 0.50 ± 0.01
YI100 30 14.8 183 6.7 5.1 366.3 ± 5.2 1.73 ± 0.02
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