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Abstract: The latest research indicates that there are time-lag effects between the normalized difference
vegetation index (NDVI) and the precipitation variation. It is well known that the time-lags are
different from region to region, and there are time-lags for the NDVI itself correlated to the precipitation.
In the arid and semi-arid grasslands, the annual NDVI has proved not only to be highly dependent
on the precipitation of the concurrent year and previous years, but also the NDVI of previous years.
This paper proposes a method using recurrent neural network (RNN) to capture both time-lags of the
NDVI with respect to the NDVI itself, and of the NDVI with respect to precipitation. To quantitatively
capture these time-lags, 16 years of the NDVI and precipitation data are used to construct the
prediction model of the NDVI with respect to precipitation. This study focuses on the arid and
semi-arid Hulunbuir grasslands dominated by perennials in northeast China. Using RNN, the
time-lag effects are captured at a 1 year time-lag of precipitation and a 2 year time-lag of the NDVI.
The successful capture of the time-lag effects provides significant value for the accurate prediction of
vegetation variation for arid and semi-arid grasslands.
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1. Introduction

The interannual variability of vegetation can be well-described by the remotely sensed normalized
difference vegetation index (NDVI), which is derived from satellite optical-infrared remote sensing [1–6].
In arid and semi-arid regions, the annual NDVI is highly sensitive to the interannual variability of
precipitation [7–10]. Recently, the annual NDVI has proved to be highly dependent on the precipitation
of the concurrent year and the previous year [7,8,11]. The dependence of vegetation variation on
precipitation is referred to as “time-lag effects” [8,12]. These effects have been observed in different
arid and semi-arid regions [12].

In order to understand time-lag effects, the time-lags have to be investigated both qualitatively
and quantitatively. It is a common understanding that the vegetation variation is correlated not only to
the precipitation of the concurrent year and previous years, but also to the vegetation itself in previous
years. It is desirable to have quantitatively investigated time-lags for the further understanding of
time-lag effects.
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Reviews on the time-lag effects of global vegetation variation responses to climate change have
been reported qualitatively [12]. The time-lags between the NDVI and precipitation in arid to semi-arid
regions have been reported quantitatively in the literature [7,8]. Obviously, the time-lags vary in
different regions [12]. It is also well known that there are time-lags for the NDVI itself correlated to the
precipitation. Consequently, how to accurately capture time-lags of vegetation response with respect
to both the vegetation itself and precipitation remains an open topic.

In the existing literature, researchers have investigated the relationship between the NDVI and
precipitation using the multiple linear regression (MLR) technique [8,13], back propagation neural
network (BPNN) and support vector machine (SVM) [14,15]. These methods can effectively model linear
and nonlinear data characteristics of the NDVI–precipitation relationship. However, influenced by
time-lag effects, there are time-lags for the NDVI response to precipitation [12]. The NDVI–precipitation
relationship is the result of dynamical interactions exerted over a wide range of the temporal scale [16,17].
The methods used in the literature are considered as static and memoryless networks, and lack the
ability to examine the temporal dimension of data and to capture the time-lag effects between the
NDVI and precipitation [18]. Therefore, to accurately capture the time-lag effects, it is necessary to
consider a dynamic method (i.e., dynamic neural network) that can be used to determine the temporal
relationship between the NDVI and precipitation.

Recurrent neural network (RNN) is one of the effective dynamic neural networks characterized
by internal self-connections. Both hidden and output layers of RNN have internal time-delay feedback
loops which are fully connected. RNN provides a very elegant way of dealing with (time) sequential
data that embody correlations between data points that are close in the sequence [19,20]. RNN can
accurately learn and represent the dynamic input–output relationship for time series prediction,
and has been widely used in data classification, computational neuroscience and machine learning
applications [19–21]. Recently, RNN has been used to capture temporal dependencies in multivariate
time series to perform predictions [22].

In this paper, RNN is introduced to capture the time-lag effects between the NDVI and precipitation.
The RNN can accurately predict output behaviors by not only the current and past inputs but also
the output behaviors in past periods [20,21]. This study focuses on the arid and semi-arid Hulunbuir
grasslands of northeast China (46◦55′–50◦50′N; 115◦00′–120◦29′ E). The NDVI and the precipitation data
from 2000 to 2015 are used to construct the prediction model of the NDVI with respect to precipitation,
for the further understanding of time-lag effects. The proposed technique can successfully capture the
time-lag effects between the NDVI and precipitation in the arid and semi-arid Hulunbuir grasslands
of northeast China. The successful capture of the time-lag effects provides significant value for the
accurate prediction of vegetation variation.

2. Materials and Methods

2.1. Study Region and Data

2.1.1. Study Region and Vegetation Structure

The study region (Hulunbuir grasslands, 46◦55′–50◦50′ N and 115◦00′–120◦29′ E) (Figure 1),
which includes the meadow steppe, typical steppe, and desert steppe from east to west, is characterized
by arid and semi-arid conditions (Figure 1). Located in the eastern section of the Inner Mongolia
Autonomous Region of China, the area of the study region is about 8 × 104 km2 with a mean
elevation of 650–750 m and is covered mostly by natural vegetation. It has the typical temperate
continental monsoon climate with an average annual temperature of −0.7 ◦C. The annual precipitation
is 292.1 mm and the main part of the precipitation occurs from June to August [23]. The vegetation
variation in the arid and semi-arid grasslands is more sensitive to precipitation than temperature in the
grass-growing season [24]. The spatial vegetation variation has proved to be correlated to the amount
of precipitation [25]. The mean annual precipitation (mm yr−1) increases from less than 235 mm yr−1

in the western parts to more than 330 mm yr−1 in the eastern parts of the study area.
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Figure 1. Location of study region.

As shown in Figure 2, the land cover data of the study area were extracted from the GlobCover
2009 provided by the European Space Agency (ESA) and Université Catholique de Louvain (http:
//due.esrin.esa.int/page_globcover.php). The study region is divided into four sub-regions, i.e.,
Xinba’erhuyouqi (A1), Xinba’erhuzuoqi (A2), Chen ba’erhuqi (A3) and Ewenkiqi (A4). A1 to A4 are
covered by multiple land cover types, including grassland, forest, water bodies, bare areas and other
types (Table 1).

Table 1. Land cover data of study region.

Sub-Region Grassland (%) Forest (%) Water Bodies (%) Other Types (%)

A1 67.36 * - 8.53 24.11 ***
A2 89.34 3.94 0.51 6.21
A3 88.69 ** 3.10 2.58 5.63
A4 60.60 24.36 8.88 6.16

* The proportion of sparse (<15%) vegetation is 42.23%, ** the proportion of sparse (<15%) vegetation is 38.67%,
*** the proportion of bare areas is 23.48%.

As the typical steppe, located in the western part of the study region, A1 is dominated by Stipa
krylovii Roshev, Leymus chinensis (Trin.) Tzvel, Allium polyrhizum Turcz. ex Regel and Cleistogenes
squarrosa (Trin.) Keng. Located at the central part of the study region, A2 is the desert steppe and
is dominated by Stipa grandis P. Smirn, Leymus chinensis (Trin.) Tzvel, Artemisia frigida Willd and
Cleistogenes squarrosa (Trin.) Keng. The meadow steppe (A3 and A4), located in the eastern part of the
study region, is dominated by Leymus chinensis (Trin.) Tzvel, Stipa Baicalensis Roshev and Stipa grandis
P. Smirn [26].

2.1.2. The NDVI and Precipitation Data Set

The monthly composite MODIS NDVI data set (MODIS/Terra, MOD09GA, Version 5) during
the period of February 2000–December 2015 were obtained from the International Scientific and
Technical Data Mirror Site, Computer Network Information Center, Chinese Academy of Sciences
(http://www.gscloud.cn). These NDVI data were processed by the maximum value composite (MVC) to
eliminate the effects of cloud cover, dust and aerosols from atmospheric conditions on the NDVI images.
In this study region, the main part of the annual precipitation occurs in the growing season (from
June to August). The annual NDVI has proved to be highly dependent on precipitation. Therefore,
the annual NDVI in this study region can be represented by the mean monthly value of the NDVI in the
growing season [23]. In addition, the monthly precipitation data of the four sub-regions were provided
by the local meteorological service in A1–A4. Since the percentage of the annual precipitation (about

http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
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76.50%) is concentrated in the growing season from June to August, the mean monthly precipitation in
the growing season can be represented by the mean values from June to August [23].

Water 2019, 11, x FOR PEER REVIEW 4 of 11 

 

 
Figure 2. Land cover types of study region. 

Table 1. Land cover data of study region. 
Sub-Region Grassland (%) Forest (%) Water Bodies (%) Other Types (%) 

A1 67.36 * - 8.53 24.11 *** 
A2 89.34 3.94 0.51 6.21 
A3 88.69 ** 3.10 2.58 5.63 
A4 60.60 24.36 8.88 6.16 

* The proportion of sparse (<15%) vegetation is 42.23%, ** the proportion of sparse (<15%) vegetation 
is 38.67%, *** the proportion of bare areas is 23.48%. 

As the typical steppe, located in the western part of the study region, A1 is dominated by Stipa 
krylovii Roshev, Leymus chinensis (Trin.) Tzvel, Allium polyrhizum Turcz. ex Regel and Cleistogenes 
squarrosa (Trin.) Keng. Located at the central part of the study region, A2 is the desert steppe and is 
dominated by Stipa grandis P. Smirn, Leymus chinensis (Trin.) Tzvel, Artemisia frigida Willd and 
Cleistogenes squarrosa (Trin.) Keng. The meadow steppe (A3 and A4), located in the eastern part of the 

Figure 2. Land cover types of study region.

2.2. Methods

Artificial neural networks (ANNs) are robust computing systems for modeling complex
relationships between sets of inputs and outputs [27]. Generally, the structure of ANNs consists of an
input layer, one or more hidden layers and an output layer of the interconnected “neurons”, which
communicate with each other by exchanging messages. BPNN is one of the most popular ANNs,
which is a typical feedforward neural network. Time-delay neural network (TDNN) is developed from
the general feedforward neural network (i.e., BPNN) by adding a set of input time-delay units, which
can be used to find the potentially temporal relationship among inputs [28]. RNN is further developed
based on TDNN, which consists of not only the inputs with a set of time-delay units but also feedback
from outputs with another set of time-delay units. In this paper, the RNN is used to model the time
domain behaviors of the NDVI versus precipitation in order to predict the NDVI with given values of
precipitation. In addition, to intuitively know the ability of RNN to represent the NDVI–precipitation
relationship, we compare RNN with BPNN, TDNN and simple statistical techniques (i.e., MLR) [8,13].
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2.2.1. BPNN

As one of the most popular ANNs, BPNN belongs to a typical feedforward neural network
(Figure 2a) [29,30]. The data flow of BPNN is in one direction and the model output is obtained solely
based on the current set of inputs [31,32]. The training procedure of BPNN uses backward error
propagation, which is an iterative gradient descent algorithm designed to minimize the mean squared
error between network predicted outputs and training set values [33]. In this study, the training
algorithm of BPNN is Levenberg–Marquardt, which is used to train BPNN based on the observed
data (the observed NDVI) and the model output (the predicted NDVI). The activation functions in the
hidden and output layers used in this study are sigmoid and linear types, respectively.

As shown in Figure 3a, P(t) and IN(t) represent the time series of precipitation and the NDVI. The
observed precipitation and NDVI data from 2000 to 2015 in the four sub-regions are used to train the
BPNN model. The data are divided into two sets, which are the training set (80%) and the testing
set (20%). For sub-regions A1 and A2, a three-layer neural network of one hidden layer with three
hidden neurons was found to be the optimal structure with the best accuracy for the NDVI prediction
with respect to precipitation, and a three-layer neural network of one hidden layer with four hidden
neurons was found to be the optimal structure for A3 and A4.Water 2019, 11, x FOR PEER REVIEW 7 of 11 
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2.2.2. TDNN

As a dynamical ANN, TDNN is developed from a general feedforward neural network, such as
BPNN, and commonly used for input–output modeling of nonlinear dynamical systems [28]. TDNN
has an input time-delay unit, which can be used to store the events of inputs across time [31]. Figure 3b
shows the detailed structure of the TDNN model for predicting the NDVI with respect to precipitation.
The TDNN model for predicting the NDVI with respect to precipitation is defined as:

IN(t) = fTDNN[P(t), P(t− τ) . . .P(t− ntτ)] (1)

where P(t) represents the time series of the precipitation as the input of TDNN. IN(t) represents the
time series of the NDVI as the output of TDNN. τ represents the value of time-delay; nt represents the
total number of time-delays used in TDNN; f TDNN (•) represents the nonlinear mapping function for
TDNN. The precipitation data and NDVI data from 2000 to 2015 in A1–A4 are divided into training
data (80%) and testing data (20%) for training the four TDNN models, respectively. The optimal
number of time-delays and the optimal number of neurons in the one hidden layer were determined to
be one and six, respectively, for all of the TDNN models.

2.2.3. RNN

RNN has been demonstrated it has good memory ability using time-delay units. RNN can be
easily and efficiently applied to time series prediction [34]. The architecture of the RNN model used
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in this study is shown in Figure 3c. RNN consists of input, hidden and output layers, and produces
recurrent connections from the output which may delay several unit times to form new inputs using
a time-delay unit (z−1) [20,21,35]. As shown in Figure 3c, RNN has a good memory capability using
time-delay units to predict the output behaviors by not only the input in the current and the past
periods, but also the output in the past periods. Therefore, the RNN for predicting NDVI with respect
to precipitation is formulated as:

IN(t) = fRNN[P(t), P(t− τ) . . .P(t− ntτ); IN(t− τ), IN(t− 2τ) . . . , IN(t−mtτ)] (2)

where P(t) and IN(t) represent the time series of precipitation and the NDVI as the input and output of
the RNN model at discrete time step t, respectively; τ represents the value of the time-delay; nt and mt

represent the total number of time-delays used in the input layer and output layer of the RNN model,
respectively; f RNN(•) is the nonlinear mapping function for RNN.

In this study, the NDVI prediction model is constructed by RNN. As shown in Figure 3c, P(t) and
IN(t) are the input and output, respectively. The observed precipitation and NDVI data from 2000 to
2015 in the sub-regions are used to train the RNN. The data are randomly divided into two sets by time.
The two sets are the training set (80%) and the testing set (20%), respectively. The three-layer neural
network structure is used as the RNN structure. The number of hidden neurons of the RNN model is
continuously increased until the minimum training and testing errors are obtained. After the suitable
number of hidden neurons is determined, different combinations of different numbers of the input and
output time-delays are tried to find the best combination. After training, a three-layer neural network
structure with one hidden layer (seven hidden neurons), one input time-delay (P(t − 1) is considered
an input) and two output time-delays (IN(t − 1), IN(t − 2) are considered as outputs) was found to be
the optimal structure for the NDVI prediction with respect to precipitation in the four sub-regions.

To quantify the applicability, reliability and accuracy of the MLR, BPNN and RNN models, the
mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error
(MAPE) are often used to measure the predictive performance of a model [14]. The MAE, RMSE and
MAPE are defined as:

MAE =
1
n

n∑
i=1

∣∣∣yi − di
∣∣∣ (3)

RMSE =

√√
1
n

n∑
i=1

∣∣∣yi − di
∣∣∣2 (4)

MAPE(%) =
1
n

n∑
i=1

∣∣∣∣∣ yi − di

di

∣∣∣∣∣ (5)

where n denotes the number of data sets; yi and di represent the observed and predicted NDVI in the
growing season of the ith year.

3. Results and Discussion

Trained with the same data, the RNN used in this study is compared with MLR, BPNN and
TDNN. Figure 4 shows the prediction results of the NDVI with given values of precipitation for the
four comparative models (MLR, BPNN, TDNN and RNN) obtained for the four sub-regions (A1–A4).
In Figure 4, R2 means the determination coefficient of assessing a possible linear association between
the predicted NDVI and the observed NDVI. The R2 values of the RNN were from 0.897 to 0.960, which
is obviously higher than those of MLR, BPNN and TDNN, indicating that RNN has better fitness than
the other three modeling methods. In addition, the error parameters of MLR, BPNN, TDNN and RNN
for predicting the NDVI are shown in Figure 5. It was found that RNN has the best performance
among the four comparative models in predicting the NDVI with respect to precipitation in terms of
MAE, RMSE and MAPE in the four sub-regions. The results indicate that the RNN model has better
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predicting accuracy (MAE) and stronger robustness (RMSE and MAPE) in the NDVI predictions than
MLR, BPNN and TDNN.Water 2019, 11, x FOR PEER REVIEW 8 of 11 
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From Figures 4 and 5, we noticed that RNN performs better than the other three prediction
models. This reveals that the responses of the NDVI to precipitation and the NDVI itself have certain
time-lags, which can be successfully and accurately captured by RNN. The results of the NDVI
prediction demonstrate that the optimal RNN model with one input time-delay (P(t − 1) is considered
an input) and two output time-delays (IN(t − 1), IN(t − 2) are considered as outputs) produces the best
performance for predicting the NDVI for A1–A4. The time-delay unit in this study is 1 year. Since the
input of RNN is precipitation, one input time-delay in RNN means 1 year time-lag of precipitation.
Since the output of RNN is the NDVI, two output time-delays in RNN mean 2 year time-lags of the
NDVI. Therefore, the 1 year time-lag of precipitation and the 2 year time-lags of the NDVI as the
time-lag effects for the NDVI in the current year are successfully captured using RNN over the study
region. In other words, the NDVI of the current year is closely related to the precipitation of the current
year and 1 previous year, and the NDVI of 2 previous years.

In the study region, the water availability during the early summer (i.e., May and June) of the
previous year could control the germination response, which could in turn affect the vegetation
growth (i.e., an increase or decrease in seed) a year later [8,36,37]. Therefore, the relation between the
germination and production of seeds during the growing season in the previous year and the response
of grasslands in the concurrent year can explain the time-lag effect of a 1 year time-lag of precipitation.

In addition, as described in Section 2.1, typical species in the study region include Leymus chinensis
(Trin.) Tzvel, Stipa krylovii Roshev, Stipa grandis P. Smirn and Stipa krylovii Roshev, which are perennial
species. Perennials live for many years. Perennials devote the first year to vegetative growth and
building up the reserve of resources, and enter reproductive phase (i.e., seed production) in the second
year [38]. Such an explanation would be consistent with the time-lag effect of the 2 year time-lag of
the NDVI.

The performances of RNN slightly vary in different land cover types in the study areas (Figures 4
and 5). For instance, we noticed that RNN in sub-region A4 had the best performance among the four
sub-regions. RNN in sub-region A2 performed better than A1 and A3. The performance of RNN in
sub-region A1 was inferior to those in A2–A4. This indicates that the RNN model cannot successfully
capture the time-lag effects between the annual NDVI and precipitation variation in the relatively
arid regions of A1 and A3, in which the proportion of sparse (<15%) vegetation and bare areas are
relatively high (Table 1). The sparse vegetation and bare soil in these study areas mean low production
of seeds, which can affect the accuracy of RNN in capturing the time-lag effects between the annual
NDVI and precipitation variation. In contrast, the RNN model worked best in areas with relatively
dense vegetation in arid and semi-arid grasslands.

The RNN model used in this study can achieve the best performance for predicting the NDVI
among all the modeling techniques tested. Using RNN, the time-lag effects between the NDVI and
precipitation can be successfully captured, showing that the NDVI can be well represented by certain
time-lags of not only the precipitation but also the NDVI itself in the arid and semi-arid Hulunbuir
grasslands of northeast China.

4. Conclusions

This paper has proposed the use of RNN to successfully capture the time-lag effects between
the annual NDVI and precipitation. According to the results, RNN can produce much more accurate
predictions of the NDVI than TDNN, BPNN and MLR. This reveals that RNN can successfully capture
the time-lag effects between the NDVI and precipitation. The 1 year time-lag of precipitation and the
2 year time-lags of the NDVI were captured using RNN over the study region, and these time-lags
were consistent with the ecological rules of arid and semi-arid grasslands. The successful capture of
the time-lag effects provides significant value for the accurate prediction of vegetation variation in arid
and semi-arid grasslands.

Author Contributions: Investigation, T.W. and H.B.; Methodology, F.F.; Writing—original draft, T.W.;
Writing—review and editing, F.F. and Q.L.; T.W. and F.F. reviewed this paper.



Water 2019, 11, 1789 9 of 10

Funding: This research was funded by National Natural Science Foundation of China (No. 61504092), in part
by National 973 Program of China (No. 61331901), in part by Qingdao National Laboratory for Marine
Science and Technology of China (No. QNLM2016ORP0411),in part by the National Key R&D Plan (No.
2016YFA0202200), in part by the Tianjin Research Program of Application Foundation and Advanced Technology
(No. 15JCQNJC01200)and in part by the AoShan Talents OS (outstanding scientist) Program supported by Qingdao
National Laboratory for Marine Science and Technology (No. 2017ASTCP-OS03).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhong, F.; Cheng, Q.; Ge, Y. Relationships between spatial and temporal variations in precipitation, climatic
indices, and the normalized differential vegetation index in the upper and middle reaches of the Heihe river
basin, Northwest China. Water 2019, 11, 1394. [CrossRef]

2. Ibrahim, Y.; Balzter, H.; Kaduk, J.; Tucker, C.J. Land degradation assessment using residual trend analysis of
GIMMS NDVI3g, soil moisture and rainfall in Sub-Saharan west Africa from 1982 to 2012. Remote Sens. 2015,
7, 5471–5494. [CrossRef]

3. Kim, Y.; Kimball, J.S.; Zhang, K.; McDonald, K.C. Satellite detection of increasing Northern Hemisphere
non-frozen seasons from 1979 to 2008: Implications for regional vegetation growth. Remote Sens. Environ.
2012, 121, 472–487. [CrossRef]

4. Truong, N.; Nguyen, H.; Kondoh, A. Land use and land cover changes and their effect on the flow regime in
the upstream Dong Nai River basin, Vietnam. Water 2018, 10, 1206. [CrossRef]

5. Telesca, L.; Lasaponara, R. Discriminating dynamical patterns in burned and unburned vegetational covers
by using SPOT-VGT NDVI data. Geophys. Res. Lett. 2005, 32, 1–4. [CrossRef]

6. Tucker, C.J.; Townshend, J.R.; Goff, T.E. African land-cover classification using satellite data. Science 1985,
227, 369–375. [CrossRef] [PubMed]

7. Richard, Y.; Poccard, I. A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations
in Southern Africa. Int. J. Remote Sens. 1998, 19, 2907–2920. [CrossRef]

8. Richard, Y.; Martiny, N.; Fauchereau, N.; Reason, C.; Rouault, M.; Vigaud, N.; Tracol, Y. Interannual memory
effects for spring NDVI in semi-arid South Africa. Geophys. Res. Lett. 2008, 35, 195–209. [CrossRef]

9. Serrano, J.; Shahidian, S.; Marques da Silva, J. Monitoring seasonal pasture quality degradation in the
Mediterranean Montado ecosystem: Proximal versus remote sensing. Water 2018, 10, 1422. [CrossRef]

10. Chang, J.; Tian, J.; Zhang, Z.; Chen, X.; Chen, Y.; Chen, S.; Duan, Z. Changes of grassland rain use efficiency
and NDVI in Northwestern China from 1982 to 2013 and its response to climate change. Water 2018, 10, 1689.
[CrossRef]

11. Martiny, N.; Richard, Y.; Camberlin, P. Interannual persistence effects in vegetation dynamics of semi-arid
Africa. Geophys. Res. Lett. 2005, 32, L24403. [CrossRef]

12. Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation
responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [CrossRef] [PubMed]

13. Iwasaki, H. NDVI prediction over Mongolian grassland using GSMaP precipitation data and JRA-25/JCDAS
temperature data. J. Arid Environ. 2009, 73, 557–562. [CrossRef]

14. Huang, S.; Ming, B.; Huang, Q.; Leng, G.; Hou, B. A case study on a combination NDVI forecasting model
based on the entropy weight method. Water Resour. Manag. 2017, 31, 3667–3681. [CrossRef]

15. Jahan, N.; Gan, T.Y. Modelling the vegetation-climate relationship in a boreal mixedwood forest of Alberta
using normalized difference and enhanced vegetation indices. Int. J. Remote Sens. 2011, 32, 313–335.
[CrossRef]

16. Schwinning, S.; Sala, O.E. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems.
Oecologia 2004, 141, 211–220. [CrossRef] [PubMed]

17. Eibedingil, I.; Casagrande, E.; Molini, A. An analysis of global climate-vegetation interactions over arid and
semi-arid regions via causal statistics. J. Cogn. Neurosci. 2014, 26, 279–295.

18. Shoaib, M.; Shamseldin, A.Y.; Melville, B.W.; Khan, M.M. A comparison between wavelet based static and
dynamic neural network approaches for runoff prediction. J. Hydrol. 2016, 535, 211–225. [CrossRef]

19. Bitzer, S.; Kiebel, S.J.; Bitzer, S.; Kiebel, S.J. Recognizing recurrent neural networks (rRNN): Bayesian inference
for recurrent neural networks. Biol. Cybern. 2012, 106, 201–217. [CrossRef] [PubMed]

http://dx.doi.org/10.3390/w11071394
http://dx.doi.org/10.3390/rs70505471
http://dx.doi.org/10.1016/j.rse.2012.02.014
http://dx.doi.org/10.3390/w10091206
http://dx.doi.org/10.1029/2005GL024391
http://dx.doi.org/10.1126/science.227.4685.369
http://www.ncbi.nlm.nih.gov/pubmed/17815712
http://dx.doi.org/10.1080/014311698214343
http://dx.doi.org/10.1029/2008GL034119
http://dx.doi.org/10.3390/w10101422
http://dx.doi.org/10.3390/w10111689
http://dx.doi.org/10.1029/2005GL024634
http://dx.doi.org/10.1111/gcb.12945
http://www.ncbi.nlm.nih.gov/pubmed/25858027
http://dx.doi.org/10.1016/j.jaridenv.2008.12.007
http://dx.doi.org/10.1007/s11269-017-1692-8
http://dx.doi.org/10.1080/01431160903464146
http://dx.doi.org/10.1007/s00442-004-1520-8
http://www.ncbi.nlm.nih.gov/pubmed/15034778
http://dx.doi.org/10.1016/j.jhydrol.2016.01.076
http://dx.doi.org/10.1007/s00422-012-0490-x
http://www.ncbi.nlm.nih.gov/pubmed/22581026


Water 2019, 11, 1789 10 of 10

20. Chiang, Y.-M.; Chang, F.-J. Integrating hydrometeorological information for rainfall-runoff modelling by
artificial neural networks. Hydrol. Process. 2010, 23, 1650–1659. [CrossRef]

21. Coulibaly, P.; Anctil, F.; Rasmussen, P.; Bobée, B. A recurrent neural networks approach using indices of
low-frequency climatic variability to forecast regional annual runoff. Hydrol. Process. 2000, 14, 2755–2777.
[CrossRef]

22. Smith, C.; Jin, Y. Evolutionary multi-objective generation of recurrent neural network ensembles for time
series prediction. Neurocomputing 2014, 143, 302–311. [CrossRef]

23. Wu, Q.; Jin, Y.; Bao, Y.; Hai, Q.; Yan, R.; Chen, B.; Zhang, H.; Zhang, B.; Li, Z.; Li, X.; et al. Comparison of
two inversion methods for leaf area index using HJ-1 satellite data in a temperate meadow steppe. Int. J.
Remote Sens. 2015, 36, 5192–5207. [CrossRef]

24. Swaine, M.D. Rainfall and soil fertility as factors limiting forest species distributions in Ghana. J. Ecol. 1996,
84, 419–428. [CrossRef]

25. Ji, L.; Peters, A.J. A spatial regression procedure for evaluating the relationship between AVHRR-NDVI and
climate in the northern great plains. Int. J. Remote Sens. 2004, 25, 297–311. [CrossRef]

26. Auerswald, K.; Wittmer, M.H.; Tungalag, R.; Bai, Y.; Schnyder, H. Sheep wool δ13C reveals no effect of grazing
on the C3/C4 ratio of vegetation in the Inner Mongolia–Mongolia border region grasslands. PLoS ONE 2012,
7, e45552. [CrossRef] [PubMed]

27. Hasançebi, O.; Dumlupınar, T. Detailed load rating analyses of bridge populations using nonlinear finite
element models and artificial neural networks. Comput. Struct. 2013, 128, 48–63. [CrossRef]

28. Waibel, A.; Hanazawa, T.; Hinton, G.; Shikano, K.; Lang, K.J. Phoneme recognition using time-delay neural
networks. Read. Speech Recognit. 1990, 1, 393–404.

29. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature
1986, 323, 533–536. [CrossRef]

30. Zhang, S.L.; Chang, T.C. A study of image classification of remote sensing based on back-propagation neural
network with extended delta bar delta. Math Probl. Eng. 2015, 4, 1–10. [CrossRef]

31. Zhang, X.M.; Chen, Y.Q.; Babri, H.A. Augmented TDNN for frequency and scale invariant sequence
classification. Neurocomputing 2003, 50, 1–16. [CrossRef]

32. Chang, F.J.; Chen, P.A.; Lu, Y.R.; Huang, E.; Chang, K.Y. Real-time multi-step-ahead water level forecasting
by recurrent neural networks for urban flood control. J. Hydrol. 2014, 517, 836–846. [CrossRef]

33. Smith, J.A. LAI inversion using a back-propagation neural network trained with a multiple scattering model.
IEEE Trans. Geosci. Remote Sens. 1993, 31, 1102–1106. [CrossRef]

34. Lin, T.; Horne, B.G.; Giles, C.L. How embedded memory in recurrent neural network architectures helps
learning long-term temporal dependencies. Neural Netw. 1998, 11, 861–868. [CrossRef]

35. Chang, F.J.; Chen, P.A.; Liu, C.W.; Liao, V.H.C.; Liao, C.M. Regional estimation of groundwater arsenic
concentrations through systematical dynamic-neural modeling. J. Hydrol. 2013, 499, 265–274. [CrossRef]

36. Wang, J.H.; Wang, S.P.; Schnug, E.; Haneklaus, S.; Patton, B.; Nyren, P. Competition between Stipa grandis
and Cleistogenes squarrosa. J. Arid Environ. 2008, 72, 63–72. [CrossRef]

37. Rivas-Arancibia, S.P.; Montaña, C.; Hernández, J.V.; Zavala-Hurtado, J.A. Germination responses of annual
plants to substrate type, rainfall, and temperature in a semi-arid inter-tropical region in Mexico. J. Arid
Environ. 2006, 67, 416–427. [CrossRef]

38. Shivanna, K.R.; Tandon, R. Reproductive Ecology of Flowering Plants: A Manual; Springer: Berlin/Heidelberg,
Germany, 2014.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/hyp.7299
http://dx.doi.org/10.1002/1099-1085(20001030)14:15&lt;2755::AID-HYP90&gt;3.0.CO;2-9
http://dx.doi.org/10.1016/j.neucom.2014.05.062
http://dx.doi.org/10.1080/01431161.2015.1040135
http://dx.doi.org/10.2307/2261203
http://dx.doi.org/10.1080/0143116031000102548
http://dx.doi.org/10.1371/journal.pone.0045552
http://www.ncbi.nlm.nih.gov/pubmed/23029090
http://dx.doi.org/10.1016/j.compstruc.2013.08.001
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1155/2015/178598
http://dx.doi.org/10.1016/S0925-2312(01)00694-4
http://dx.doi.org/10.1016/j.jhydrol.2014.06.013
http://dx.doi.org/10.1109/36.263783
http://dx.doi.org/10.1016/S0893-6080(98)00018-5
http://dx.doi.org/10.1016/j.jhydrol.2013.07.008
http://dx.doi.org/10.1016/j.jaridenv.2007.03.018
http://dx.doi.org/10.1016/j.jaridenv.2006.03.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Region and Data 
	Study Region and Vegetation Structure 
	The NDVI and Precipitation Data Set 

	Methods 
	BPNN 
	TDNN 
	RNN 


	Results and Discussion 
	Conclusions 
	References

