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Abstract: In this study, the performance of 33 Coupled Model Intercomparison Project 5 (CMIP5)
global climate models (GCMs) in simulating precipitation over the Tibetan Plateau (TP) was assessed
using data from 1961 to 2005 by an improved score-based method, which adopts multiple criteria to
achieve a comprehensive evaluation. The future precipitation change was also estimated based on
the Delta method by selecting the submultiple model ensemble (SMME) in the near-term (2006–2050)
and far future (2051–2095) periods under Representative Concentration Pathways (RCP) scenarios
RCP4.5 and RCP8.5. The results showed that most GCMs can reasonably simulate the precipitation
pattern of an annual cycle; however, all GCMs overestimated the precipitation over TP, especially in
spring and summer. The GCMs generally provide good simulations of the temporal characteristics of
precipitation, while they did not perform as well in reproducing its spatial distributions. Different
assessment criteria lead to inconsistent results; however, the improved rank score method, which
adopts multiple criteria, provided a robust assessment of GCMs performance. The future annual
precipitation was projected to increase by ~6% in the near-term with respect to the period 1961–2005,
whereas increases of 12.3% and 16.7% are expected in the far future under RCP4.5 and RCP8.5
scenarios, respectively. Similar spatial distributions of future precipitation changes can be seen in the
near-term and far future periods under the two scenarios, and indicate that the most predominant
increases occurred in the north of TP. The results of this study are expected to provide valuable
information on climate change, and for water resources and agricultural management in TP.
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1. Introduction

The Tibetan Plateau (TP), also referred to as the “Third Pole” of the world [1], is the highest
plateau in the world. It has an average elevation of more than 4000 m and features complex terrains [2].
TP is the source of major rivers in Asia, and as such is also referred to as the “Water Tower of Asia” [3].
Owing to its unique geographical characteristics, TP plays an important role in the East Asian and
global atmospheric circulation through dynamic and thermal processes. On the other hand, TP is
identified as a region that is sensitive and vulnerable to climate change. It is experiencing a warming
trend [4–6], which has profound impacts on the hydrological cycle and the ecological system. Therefore,
it is imperative to understand how climate will change in TP in the future.

Precipitation is a key climate variable in the global climate system and has an important impact on
the hydrological cycle and the ecological system [7–9]. Scientific evidence has shown that precipitation
patterns change in a warmer climate, and the likelihood of extreme precipitation is expected to increase
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due to global warming [10–13]. Thus, understanding the effect of climate change on precipitation
has a great significance, as such information can be important for devising strategies to cope with
such change.

Global climate models (GCMs) have been valuable tools for assessing climate change and produce
climate projections [14]. The Coupled Model Intercomparison Project 5 (CMIP5) has provided numerous
GCMs, which have more complicated mechanisms than before, and incorporate carbon cycle models
and a dynamic vegetation module [15]. Many studies have found that the CMIP5 models perform
better than the CMIP3 ones, have a smaller bias, and an overall improved capability of simulating
climate change [16–19]. The same results were also demonstrated in characterizing the climatology of
the East Asian monsoon [20,21]. However, CMIP5 models are still affected by major bias in simulating
the magnitude and trend of precipitation, especially in regions with complex topography [22,23].

Many studies have been conducted to assess the performance of precipitation simulations of
the CMIP5 GCMs using various methods in different regions [24–29]. Fu et al. [30] evaluated the
performance of 25 GCMs using a score-based method in southeastern Australia. Das et al. [31] adopted
a Multiple Imputation Chained Equation technique to cope with the limited data availability and
poor data quality in the Western Himalayan Region, and assessed 34 GCMs based on three criteria:
mean seasonal cycle, temporal trends, and spatial correlation. Li et al. [32] used the technique for
order preference by similarity to ideal solution model to assess 31 GCMs in mainland Southeast Asia.
Moreover, multimodel ensembles of GCMs have been proven to perform better than individual GCMs,
especially after rejecting the most poorly performing models based on the assessment of all GCMs,
and were shown to provide more reliable information on climate change [33,34]. Thus, an accurate
assessment of GCMs with appropriate methods is necessary.

Because of the coarse resolution of the GCMs, the outputs provide inadequate climate change
information at the regional or local scale [35,36]. Downscaling methods, including dynamic downscaling
and statistical downscaling, have been used to bridge the gap between the coarse resolution of GCMs
and the need for climate information at a local scale [37,38]. Statistical downscaling has advantages in
its convenient implementation and lower computational requirements without considering the effects
of boundary conditions [39]. The Delta method, which is one of the statistical downscaling methods,
has been widely applied in future climate projections [40–42].

In view of the complexity of the East Asian monsoon system and the complex influence of
topography, the uncertainty about future climate change is amplified in TP [43,44]. In addition,
the limited number of observation stations and data availability aggravates the uncertainty in
precipitation projections for TP. Previous studies assessed the simulation capabilities of the CMIP5
GCMs using several evaluation indicators for TP [2,8,22,45]. However, for TP, only a few studies
have adopted a multiple-criteria evaluation method to assess the CMIP5 GCMs comprehensively, and
simulated future precipitation in combination with downscaling methods. Therefore, in this study,
an improved rank score method is applied for assessing the performance of the CMIP5 GCMs in
simulating precipitation over TP. The Delta method is then used to project the future precipitation change
during two periods under Representative Concentration Pathway 4.5 (RCP4.5) and Representative
Concentration Pathway 8.5 (RCP8.5) scenarios for TP based on a multimodel ensemble, which selects
the best performing GCMs. The improved rank score and Delta downscaling method can be used to
evaluate the GCMs and simulate future climate change. This study is expected to provide valuable
information on climate change, and for water resources and agricultural management throughout TP.

2. Materials and Methods

2.1. Study Area

TP is located in East Asia. The study area in this work is limited to 26–40◦ N and 74–106◦ E
(Figure 1). TP features a complex topography, snow mountains, glaciers, permafrost, and lakes. TP is
called the roof of the world because of its high elevation, especially in the western TP. The complex
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terrain and the presence of the Asian monsoon, which exerts an important influence on the regional
climate, are the major factors controlling the amount and patterns of precipitation [46].
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Figure 1. Study area.

2.2. Data

2.2.1. GCM Data

The assessment and projection presented in this study are based on the 33 GCMs of the CMIP5
(Table 1), including historical monthly precipitation data from 1961 to 2005 and future outputs data
from 2006 to 2100 under the RCP4.5 and RCP8.5 scenarios. Table 1 provides summary information on
the GCMs, whereas more details are available on the CMIP5 website. In view of the different spatial
resolutions of the GCMs, precipitation data of the GCMs were all resampled to a 2◦ × 2◦ grid using a
bilinear interpolation approach [29].

2.2.2. Observed Data

The observed data from 1961 to 2005 used in this study were obtained from the China
Meteorological Data Sharing Service System. The dataset was interpolated into a high spatial resolution
grid of 0.5◦ × 0.5◦ on the basis of records from Chinese meteorological stations, accounting for the
elevation effect using the Thin Plate Spline interpolation method [47], and verified through data quality
control. To facilitate assessment and comparisons, the observed data were also resampled to a 2◦ × 2◦

grid to be consistent with the GCMs data. TP contains 89 of such grid cells (Figure 1), all of which were
utilized in the comparisons.
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Table 1. Description of the CMIP5 climate models used in this study.

ID Model Name Modeling Centre (or Group) Nation Resolution
(Lon × Lat)

1 ACCESS1.0 Commonwealth Scientific and Industrial Research
Organization/Bureau of Meteorology Australia 1.88◦ × 1.25◦

2 ACCESS1.3 Commonwealth Scientific and Industrial Research
Organization/Bureau of Meteorology Australia 1.88◦ × 1.25◦

3 BCC-CSM1.1 Beijing Climate Center, China Meteorological
Administration China 2.81◦ × 2.79◦

4 BNU-ESM Beijing Normal University China 2.81◦ × 2.79◦

5 CanESM2 Canadian Centre for Climate Modeling and Analysis Canada 2.81◦ × 2.79◦

6 CCSM4 National Center for Atmospheric Research USA 1.25◦ × 0.94◦

7 CESM1(CAM5) National Center for Atmospheric Research USA 1.25◦ × 0.94◦

8 CESM1(WACCM) National Center for Atmospheric Research USA 2.50◦ × 1.88◦

9 CMCC-CMS Centro Euro-Mediterraneo sui Cambiamenti Climatici Italy 1.88◦ × 1.88◦

10 CNRM-CM5
Centre National de Recherches Météorologiques Centre
Européen de Recherche et Formation Avancée en Calcul

Scientifique
France 1.41◦ × 1.40◦

11 CSIRO-Mk3.6.0
Commonwealth Scientific and Industrial Research
Organization/Queensland Climate Change Centre

of Excellence
Australia 1.88◦ × 1.88◦

12 EC-EARTH EC-EARTH consortium published at Irish Centre for
High-End Computing

Netherlands
/Ireland 1.13◦ × 1.13◦

13 FGOALS-g2 Institute of Atmospheric Physics, Chinese Academy of
Sciences China 2.81◦ × 2.81◦

14 FIO-ESM The First Institute of Oceanography, SOA China 2.80◦ × 2.80◦

15 GFDL-CM3 NOAA Geophysical Fluid Dynamics Laboratory USA 2.50◦ × 2.00◦

16 GFDL-ESM2G NOAA Geophysical Fluid Dynamics Laboratory USA 2.00◦ × 2.02◦

17 GFDL-ESM2M NOAA Geophysical Fluid Dynamics Laboratory USA 2.50◦ × 2.02◦

18 GISS-E2-H NASA/GISS (Goddard Institute for Space Studies) USA 2.50◦ × 2.00◦

19 GISS-E2-R NASA/GISS (Goddard Institute for Space Studies) USA 2.50◦ × 2.00◦

20 HadGEM2-AO National Institute of Meteorological Research, Korea
Meteorological Administration Korea 1.88◦ × 1.25◦

21 HadGEM2-CC Met Office Hadley Center UK 1.88◦ × 1.25◦

22 HadGEM2-ES Met Office Hadley Center UK 1.88◦ × 1.25◦

23 INMCM4.0 Russian Academy of Sciences, Institute for Numerical
Mathematics Russia 2.00◦ × 1.50◦

24 IPSL-CM5A-LR Institute Pierre-Simon Laplace France 3.75◦ × 1.89◦

25 IPSL-CM5A-MR Institute Pierre-Simon Laplace France 2.50◦ × 1.27◦

26 IPSL-CM5B-LR Institute Pierre-Simon Laplace France 3.75◦ × 1.89◦

27 MIROC5

Atmosphere and Ocean Research Institute (The
University of Tokyo), National Institute for

Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

Japan 1.41◦ × 1.40◦

28 MIROC-ESM The same as 27 Japan 2.81◦ × 2.79◦

29 MIROC-ESM-CHEM The same as 27 Japan 2.81◦ × 2.79◦

30 MPI-ESM-LR Max Planck Institute for Meteorology Germany 1.88◦ × 1.87◦

31 MPI-ESM-MR Max Planck Institute for Meteorology Germany 1.88◦ × 1.87◦

32 MRI-CGCM3 Meteorological Research Institute Japan 1.13◦ × 1.12◦

33 NorESM1-M Bjerknes Centre for Climate Research, Norwegian
Climate Center Norway 2.50◦ × 1.89◦

2.3. Methods

2.3.1. Assessment of CMIP5 GCMs

Considering that a single assessment criterion can lead to a biased result [30,48], multiple criteria
were adopted for the assessment, including the mean value (M), standard deviation (SD), temporal
correlation coefficient (r_t), spatial correlation coefficient (r_s), Mann–Kendall test statistics (Z and
Slope), and probability density function (PDF) statistics (Brier score (BS) and Significance score (Sscore)).
Then, accounting for all criteria, we used an improved rank score method to comprehensively assess
the performance of GCMs in simulating precipitation for TP.
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M and SD reflects the homogeneity of the GCMs simulations. The monthly and seasonal M and
SD were calculated as follows.

M =
1
n

n∑
i=1

Pi (1)

SD =

√∑n
i=1 (Pi− P)

n− 1
(2)

where Pi represents the monthly or seasonal precipitation for the GCMs and the observed value at
time i, P represents the mean precipitation, and n represents the number of time series.

The correlation coefficient (r) was used to measure the correlation of temporal and spatial
distributions between the GCMs and observations. Monthly and seasonal correlation coefficients were
calculated in order to perform the time series correlation analysis. For the spatial correlation coefficient,
the r was calculated based on the mean value of monthly and seasonal data in each grid (89 cells in
total). The calculation is performed according to the following formula.

r_t =
∑n

i=1 (Poi − Po)(Pmi − Pm)√∑n
i=1 (Poi − Po)2

×
∑n

i=1(Pmi − Pm)2
(3)

where Poi and Pmi represent the precipitation of observation and GCMs at time i, respectively; Po and
Pm represent the corresponding mean precipitation of observation and GCMs, respectively; and n
represents the length of the time series.

r_s =

∑n
g=1

(
Pog − Po

)(
Pmg − Pm

)
√∑n

g=1

(
Pog − Po

)2
×

∑n
g=1

(
Pmg − Pm

)2
(4)

where Pog and Pmg represent the precipitation of observation and GCMs at cell g, respectively; Po and
Pm represent the corresponding mean precipitation of observation and GCMs, respectively; and n
represents the number of cells in the grid.

The long-term trend of precipitation was identified using the Z statistic and the Slope of the
Mann–Kendall test based on annual time series, so that the ability of the various GCMs in representing
the actual precipitation trend could be compared. The Z and Slope statistics are defined as follows [49–51].

Z =


S−1√
var(S)

, S > 0

0, S = 0
S−1√
var(S)

, S > 0

(5)

S =
n−1∑
i=1

n∑
k=i+1

sgn(xk − xi) (6)

sgn(θ) =


1, θ > 0
0, θ = 0
−1, θ > 0

(7)

var[S] =

n(n− 1)(2n + 5) −
∑

t

t(t− 1)(2t + 5)

/18 (8)
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where xk and xi represent sequential precipitation values, t represents the extent of any given time,
and n is the length of the time series.

Slope = median
(xi − x j

i− j

)
(9)

where 1 < j < i < n and the slope is considered as the median of the entire dataset.
The BS and Sscore of PDF statistics were used to evaluate the effect of the GCMs simulations on

the probability density distribution of monthly precipitation [52,53].

BS =

∑n
i=1(Pmi − Poi)

2

n
(10)

Sscore=
n∑

i=1

Minimum(Pmi, Poi) (11)

where Pmi and Poi are the probabilities related to GCMs and observed precipitation, respectively,
at the i-th bin, and n is the number of bins. BS is the mean square error of the measurement in
probability prediction. The Sscore describes the degree of overlap between the observed and simulated
probability distributions.

The improved rank score method distinguishes relative error indices from the nonrelative error
indices, which could provide consistent results in multiple criteria assessment [29,30]. In this study, M,
SD, Z, Slope, and BS are relative error indices, while r_t, r_s, and Sscore are nonrelative error indices.
The GCM rank score of each criterion can be calculated as follows.

RSe =
{

1− Te−Tmin
Tmax−Tmin , T represents the relative error index

Te−Tmin
Tmax−Tmin , T represents the non− relative error index

(12)

For the relative error indices of M, SD, Z, and Slope, Te represents the absolute error of the statistics
between the GCM and observation, and a smaller Te indicates a better performance of the GCM. For the
relative error indices of BS, Te represents the absolute value of the statistics for a GCM, and a smaller
Te indicates a better performance of the GCM. On the other hand, for the nonrelative error indices of
r_t, r_s, and Sscore, Te represents the absolute value of the statistics, and a larger Te indicates a better
performance of the GCM. Tmax and Tmin are the corresponding maximum and minimum values of all
GCMs, respectively.

For M, SD, r_t, and r_s, the RS is calculated on both monthly and seasonal data. The weights for
each season are set to 0.25, whereas the weight assigned to the whole year is 1. For Z, Slope, BS and
Sscore, the overall GCM rank score of each criterion is RSe. For M, SD, r_t, and r_s, the overall GCM
rank score of each criterion can be calculated as follows.

RSeo =
RSspr × 0.25 + RSsum × 0.25 + RSaut × 0.25 + RSwin × 0.25 + RSa × 1

2
(13)

where RSspr represents the rank score in spring, RSsum represents the rank score in summer,
RSaut represents the rank score in autumn, RSwin represents the rank score in winter, and RSa

represents the rank score based on the data of the whole year.
According to the calculated RS values for each criterion, the overall RS value of all criteria for

precipitation can be obtained using the following formula.

RSp =
n∑

e=1

RSp ×We

Ws
(14)
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where RSe represents the rank score of the e-th criterion, We represents the corresponding weight,
Ws represents the overall weight, and n represents the number of criteria (eight in this study). For the
two criteria describing the same characteristic, the weights are set to 0.5, while the weights of the single
criterion describing characteristics are set to 1. Therefore, the weights of M, SD, Z, Slope, BS, and Sscore
are set to 0.5, and the weights of the temporal and spatial r are set to 1.

2.3.2. Projection of Future Precipitation Change

According to the assessment of the performance of the GCMs, the multimodel ensemble (MME),
based on the arithmetic mean method, is utilized to forecast future precipitation under RCP4.5 and
RCP8.5 scenarios. In addition, the sub-multimodel ensemble, which selects the GCMs that perform
better in the study region, is also used in this study. The formula is as follows.

MME =
1
n

n∑
k=1

Pk (15)

where Pk is the future precipitation outputs of the GCMs, and n represents the number of selected GCMs.
The Delta method is then applied to project future precipitation changes based on the historical

MME data from 1961 to 2005 (45 years) and future outputs with the same duration: 2006–2050 and
2051–2095. The changes can be calculated as follows.

Pc =
P f

Ph
(16)

where Pf and Ph are the mean precipitation of the future and historical MME outputs.

3. Results

3.1. Annual Cycle of Precipitation

The mean monthly precipitation across an annual cycle (observed data and GCMs outputs)
from 1961–2005 is shown in Figure 2. It is apparent that most GCMs can reasonably simulate the
annual cycle of precipitation, but they generally overestimate the amount of precipitation over TP.
All GCMs exhibit the same single-peak precipitation pattern as in the observations, which show
that precipitation is concentrated in June–July–August–September (JJAS). For TP, the mean monthly
precipitation during 1961 to 2005 over the TP is 32.1 mm (ranging from 2.9 mm to 87.6 mm), while that
of the GCMs varies from 10.5 mm to 212.3 mm, with an average of 80.3 mm. The GCMs overestimate
the precipitation, on average, by 48.2 mm, especially in spring (March–April–May (MAM)) and summer
(June–July–August (JJA)), for which the average mean monthly errors are 57.1 mm and 66.0 mm,
respectively, whereas the errors are 45.4 mm and 24.2 mm in autumn (September–October–November
(SON)) and winter (December–January–February (DJF)), respectively.

3.2. Comparison of GCMs Based on Statistical Criteria

Table 2 presents the statistics, for the observations and the GCMs, of the eight assessment criteria:
M, SD, r_t, r_s, Z, Slope, Sscore, and BS. For the mean monthly precipitation, a smaller absolute error
indicates a better performance of the GCMs. The EC-EARTH, IPSL-CM5A-LR, and MRI-CGCM3
demonstrate a better ability in simulating the mean precipitation for TP, and exhibit relatively small
absolute errors of 24.0 mm, 24.0 mm, and 24.1 mm, respectively, while the CESM1(WACCM), FIO-ESM,
and BNU-ESM perform poorly.
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Figure 2. Patterns of precipitation during an annual cycle from 1961 to 2005 for the Tibetan Plateau
(TP): observations and global climate models (GCMs).

The SD of the observations is 30.3 mm, while that of the GCMs ranges from 25.2 mm to
66.7 mm, with a mean value of 47.3 mm. GISS-E2-R, IPSL-CM5A-MR, and IPSL-CM5B-LR show good
performance in simulating the SD, whereas CESM1(CAM5), CESM1(WACCM), and NorESM1-M do
not simulate SD well.

The value of r_t is above 0.90 for all GCMs, with a maximum of 0.99, which indicates that the
GCMs provide superior simulations of the characteristics of the time series of annual precipitation;
among them, the CNRM-CM5 and BNU-ESM models perform best. On the contrary, r_s performs
inconsistently across all GCMs, as it varies from 0.38 to 0.88. The spatial correlation coefficient of
10 GCMs (approximately 30.3% of the total number of GCMs) is higher than 0.8, indicating that these
10 GCMs (e.g., the GFDL-CM3, INMCM4.0, and CanESM2 models) provide a better description of
the characteristics of spatial distribution than the remaining GCMs. Figure 3 presents the correlation
coefficient of the GCMs in each season. Generally, the GCMs can effectively simulate the time
characteristics in spring and autumn with a mean r_t value of 0.99 and 0.99, while the r_t values in
summer and winter are 0.80 and 0.80, respectively. The GCMs do not perform as well in reproducing
the spatial distribution as they do in reproducing the temporal distribution, especially in winter.
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Table 2. Statistics of the assessment criteria for the observations and the GCMs over TP. The symbols
“N”, “4”, “H”, and “5” represent a significant increasing trend, an increasing trend, a significant
decreasing trend, and a decreasing trend, respectively, where “significant” means p-value<0.05.

Model
Mean
(mm)

SD
(mm)

r_t r_s
Mann–Kendall PDF

Z Slope
(mm/y) Sscore BS

Observations 32.1 30.3 1.81 N 0.41
Access1.0 78.1 52.3 0.94 0.72 −1.24 5 −0.42 0.59 0.044
Access1.3 91.8 55.6 0.92 0.76 0.32 4 0.10 0.54 0.048

BCC-CSM1.1 89.9 35.9 0.95 0.44 1.52 4 0.91 0.50 0.050
BNU-ESM 117.8 45.1 0.99 0.38 3.71 N 2.84 0.49 0.050
CanESM2 59.8 44.8 0.97 0.87 3.51 N 1.71 0.63 0.041
CCSM4 84.5 55.9 0.95 0.68 0.44 4 0.16 0.59 0.045

CESM1(CAM5) 92.9 64.0 0.95 0.69 1.13 4 0.53 0.63 0.042
CESM1(WACCM) 107.6 64.1 0.90 0.83 2.22 N 1.32 0.57 0.045

CMCC-CMS 79.6 46.1 0.97 0.75 0.64 4 0.43 0.55 0.048
CNRM-CM5 68.0 43.6 0.99 0.78 3.24 N 1.52 0.61 0.041

CSIRO-Mk3.6.0 60.6 43.5 0.97 0.86 0.95 4 0.51 0.63 0.040
EC-EARTH 56.0 40.3 0.97 0.80 1.07 4 0.48 0.63 0.040
FGOALS-g2 76.3 38.5 0.94 0.60 1.83 N 0.92 0.53 0.048

FIO-ESM 111.5 37.5 0.95 0.75 2.67 N 1.73 0.48 0.051
GFDL-CM3 86.5 50.5 0.97 0.88 −2.49 H −1.08 0.56 0.048

GFDL-ESM2G 76.2 46.1 0.98 0.85 2.04 N 0.99 0.56 0.046
GFDL-ESM2M 78.5 46.9 0.96 0.86 1.32 4 0.66 0.56 0.046

GISS-E2-H 75.0 36.0 0.95 0.54 −2.63 H −1.23 0.52 0.048
GISS-E2-R 72.0 31.1 0.95 0.51 −2.30 H −0.93 0.51 0.049

HadGEM2-AO 78.2 56.9 0.95 0.73 0.89 4 0.26 0.63 0.039
HadGEM2-CC 81.8 57.5 0.95 0.65 0.44 4 0.14 0.62 0.040
HadGEM2-ES 80.1 55.9 0.95 0.65 −0.79 5 −0.27 0.62 0.041

INMCM4.0 79.9 44.5 0.96 0.88 1.99 N 0.78 0.54 0.047
IPSL-CM5A-LR 56.0 25.2 0.90 0.78 1.03 4 0.42 0.52 0.048
IPSL-CM5A-MR 59.4 33.2 0.97 0.70 1.38 4 0.47 0.54 0.048
IPSL-CM5B-LR 63.5 25.6 0.90 0.78 0.28 4 0.15 0.53 0.048

MIROC5 78.3 52.5 0.96 0.82 −0.17 5 −0.07 0.59 0.044
MIROC-ESM 92.3 54.8 0.96 0.39 2.26 N 1.16 0.56 0.045

MIROC-ESM-CHEM 91.9 54.8 0.96 0.44 2.16 N 1.28 0.57 0.045
MPI-ESM-LR 84.8 57.1 0.98 0.76 0.00 − 0.01 0.58 0.044
MPI-ESM-MR 84.8 56.7 0.98 0.75 −0.95 5 −0.36 0.59 0.044
MRI-CGCM3 56.2 41.2 0.98 0.76 0.34 4 0.27 0.62 0.040
NorESM1-M 99.3 66.7 0.98 0.81 0.85 4 0.47 0.57 0.046

The annual observed precipitation shows a significant (p < 0.05) increasing trend (0.41 mm/year)
from 1961 to 2005 in TP. In total, 25 GCMs exhibit an increasing trend, which is significant in 10
of them. This indicates that most GCMs could capture the same trend as that in the observations.
The FGOALS-g2, INMCM4.0, and GFDL-ESM2G exhibit Z values closest to the observations. The slope
values in IPSL-CM5A-LR, CMCC-CMS, and IPSL-CM5A-MR are those that agree the most with the
observations. The GISS-E2-H, GFDL-CM3, GISS-E2-R, and BNU-ESM perform relatively poor in
reproducing the annual precipitation variation trend.

The Sscore of the GCMs ranges from 0.48 to 0.63, with a mean value of 0.57. This indicates,
in general, a relatively limited performance, in spite of the Sscore of nine GCMs being higher than
0.6, which means a better representation of the probability density distribution compared with the
observations. The BS of the GCMs varies from 0.039 to 0.051, with a mean value of 0.045. In general,
a larger Sscore usually implies a smaller BS. The CSIRO-Mk3.6.0, EC-EARTH, and HadGEM2-AO
show a good ability in simulating the characteristics of the probability density distribution, while the
FIO-ESM, BNU-ESM, and BCC-CSM1.1 are not able to simulate them well.
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Figure 3. Time series and spatial correlation coefficient between the observations and the GCMs during
the period 1961–2005 in TP. (a–d) Spring, summer, autumn, and winter, respectively.

3.3. Comprehensive Assessment by Rank Score

Figure 4 illustrates the rank score of the eight chosen criteria and the overall results. Different
criteria produce different rank scores for the same GCM. For instance, EC-EARTH scores relatively
high in the eight criteria and in the overall result, while GISS-E2-R has higher scores for M, SD, and
r_t, but lower ones for r_s, Z, Sscore, and BS. Similarly, CESM1(CAM5) shows a superior ability in
simulating the annual variation trend and probability density distribution, whereas it is not able to
capture the characteristics of the M and SD well, but exhibits an average ability in describing the
temporal and spatial distribution characteristics. This demonstrates that the ability of individual GCMs
in simulating certain aspects is insufficient, thus a comprehensive assessment using multiple criteria is
of great significance.

In the overall assessments (Figure 4), the rank score ranges from 0.38 to 0.89, and 22 GCMs
(approximately 66.7%) score above 0.6. The five best GCMs, which exhibit better performance in
terms of precipitation simulation over TP are CSIRO-Mk3.6.0 (0.888), EC-EARTH (0.886), MRI-CGCM3
(0.849), CNRM-CM5 (0.788), and CanESM2 (0.786).
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Figure 4. Rank scores of the GCMs. Columns 1–8 refer, in order, to criteria M, SD, r_t, r_s, Z, Slope,
Sscore, and BS; column 9 represents the overall rank score.

3.4. Sensitivity Analysis of GCMs Scores

The sensitivity of the rank scores of the GCMs was investigated by comparing the overall score
with the results after removing each statistic individually. The results (Figure 5) indicate that the rank
score is insensitive to the addition or removal of a single criterion. This suggests that the improved
rank score method with multiple criteria can provide a robust assessment of GCMs performance.
In addition, CSIRO-Mk3.6.0, EC-EARTH, MRI-CGCM3, CNRM-CM5, and CanESM2 always provided
better performance, which was unaffected by the addition or removal of a specific criterion.
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3.5. Future Precipitation Projection

The multiple ensemble method is deemed capable to mitigate the uncertainty of GCMs in regional
climate projection [54–56]. Table 3 shows the statistics relative to the assessment criteria of MME and
SMME. The GCMs that ranked within the top 20% (the SMME in this study), including CSIRO-Mk3.6.0,
EC-EARTH, MRI-CGCM3, CNRM-CM5, CanESM2, HadGEM2-AO, and GFDL-ESM2G, were selected
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for future precipitation projection for TP. Undoubtedly, the MME and SMME can both capture the
precipitation trend over an annual cycle (Figure 2), whereas the SMME performs better in simulating
the precipitation (Table 3). The future precipitation change was assessed under RCP4.5 and RCP8.5
scenarios using the Delta method in the near-term (2006–2050) and far future (2051–2095) periods.

Table 3. Statistics relative to the assessment criteria of a multiple model ensemble for TP.

Model
Mean
(mm)

SD
(mm)

r_t r_s Mann–Kendall PDF

Z Slope
(mm/y) Sscore BS

observation 32.1 30.3 1.81 N 0.41
MME 80.3 45.2 0.97 0.86 3.73 N 0.70 0.43 0.050

SMME 65.0 44.1 0.98 0.87 4.22 N 0.46 0.51 0.048

Table 4 shows the change of future precipitation during 2006 to 2050 and 2051 to 2095 compared
with the period 1961–2005 under both RCP4.5 and RCP8.5 scenarios. The magnitude of annual
precipitation increase in the far future is much larger than in the near-term. This is particularly
true for the period of 2051 to 2095 under the RCP8.5 scenario, which exhibits a value of 116.7%,
representing a 16.7% increase of precipitation compared to that in the period 1961–2005. The future
annual precipitation is projected to increase by ~6% in the near-term relative to 1961–2005, while
increases of 12.3% and 16.7% in the far future under RCP4.5 and RCP8.5 scenarios, respectively,
are expected. Moreover, a slightly larger increase in precipitation is expected to occur in spring (MAM)
with respect to the other seasons. Figure 6 shows the evident increasing trend of annual precipitation,
and highlights that the increasing trend under the RCP8.5 scenario is the most apparent. The difference
between the two RCP scenarios is small in the near-term, but becomes more substantial with time,
indicating that the projected change in precipitation is more sensitive to the emission scenarios in the
far future than in the near-term (Figure 6).

Table 4. Changes in precipitation for TP based on submultiple model ensemble (SMME) under RCP4.5
and RCP8.5 scenarios relative to the period of 1961 to 2005.

Period
RCP4.5 RCP8.5

Annual MAM JJA SON DJF Annual MAM JJA SON DJF

2006–2050 106.4% 109.3% 105.6% 105.8% 104.8% 105.8% 109.2% 105.3% 104.5% 102.2%
2051–2095 112.3% 117.3% 110.3% 111.1% 113.9% 116.7% 125.0% 114.3% 113.4% 116.9%
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Figure 7 presents the spatial distribution of mean annual future precipitation changes during
2006–2050 and 2051–2095 relative to the period 1961–2005 under RCP4.5 and RCP8.5 scenarios for TP.
Similar spatial distributions can be seen in the near-term (2006–2050) and far future (2051–2095) under
the two scenarios. This suggests that the most predominant increase in precipitation is expected to
occur in the northern part of the study area, whereas the expected change near the eastern edge is not
so drastic. Additionally, most of the grid cells show an increasing trend from the near-term to the far
future, which is larger in magnitude under the RCP8.5 scenario than under the RCP4.5 scenario.
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4. Discussion

In this paper, it has been shown that most GCMs can reproduce the seasonal pattern of precipitation
for TP reasonably. However, all GCMs overestimate the amount of precipitation compared with the
observations. Similar results have also been shown by Xu et al. and Su et al. [22,57], notwithstanding
the different approaches followed by the authors for assessing the performance of the CMIP5 GCMs.
In addition, the wet bias was also identified in the CMIP3 GCMs, suggesting that the CMIP5 has
unsolved limitations deriving from the CMIP3 [2,17]. Moreover, these limitations appear to be more
obvious in the steep mountain regions [58]. In various studies, a correction of the observed values for
orographic effects was attempted, because the interpolation of station data (point data) of precipitation
to assign values to the grid cells is considered to be biased by the complex topography [59,60].
Nonetheless, most GCMs still overestimate precipitation [22]. In further studies, an algorithm to
modify GCMs simulations of precipitation over steep mountains was also explored [61]. Additionally,
the horizontal resolution of the models is an important factor for simulated precipitation, especially
for the orographic precipitation. In this study, we have found that the GCMs with higher horizontal
resolution seem to perform better than the model with lower resolution. In fact, many factors control
the precipitation in mountain regions. Therefore, it is always essential to better understand physical
parameterization schemes and dynamical process for improving the models in simulating precipitation.
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We assessed and ranked the performance of CMIP5 GCMs in simulating precipitation using the
improved score-based method. Similar results can also be found in studies of Su et al. [22], which
suggest that CSIRO-Mk3.6.0, MRI-CGCM3, and CanESM2 have a better performance compared to the
other GCMs. However, the fact that these three models perform relatively better for TP does not means
that they will perform as well in other regions. Previous studies also showed that the performance of
GCMs depends on the region they are applied to [29,32]. Therefore, the performance of GCMs should
be assessed at the regional scale to obtain more reliable information.

Many studies have indicated that GCMs generally do not perform as well in simulating
precipitation as they do in simulating temperature at a regional scale, especially for TP [2,22,30,32,62].
Extracting the precipitation outputs of the GCMs directly may not provide an accuracy which is
sufficient for actual applications. Multiple model ensemble and downscaling methods could mitigate
the uncertainty of GCMs for regional climate projection. Different MME methods have been used in
GCMs studies, mainly including the arithmetic mean method, the Bayesian model averaging, and the
reliability ensemble averaging, all of which indicate that the MME performs better than any individual
GCM in simulating climate factors [33,63]. In this study, we adopted the arithmetic mean method to
obtain an MME from the GCMs that exhibited the best performance. Additionally, we chose the Delta
method for projecting future precipitation change. For reducing the uncertainty on future precipitation
projection systematically, multiple methods should be considered and compared in further studies.

5. Conclusions

This study focused on assessing the performance of 33 CMIP5 GCMs in simulating precipitation
and projecting future precipitation changes for TP. The performance was evaluated using an improved
score-based method, which adopted multiple criteria to achieve a comprehensive assessment. The future
precipitation change was obtained using the Delta method and the submultiple model ensemble in the
near-term (2006–2050) and in the far future (2051–2095) under RCP4.5 and RCP8.5 scenarios. The main
conclusions are summarized as follows.

(1) Most GCMs can reasonably simulate the annual cycle of precipitation. They successfully
reproduce a single-peak pattern of precipitation, in which most of the precipitation is concentrated in
JJAS. However, all the GCMs overestimate the monthly precipitation for TP, on average by 48.2 mm,
especially in spring and summer.

(2) The GCMs provide superior simulations of the temporal pattern of precipitation, with a
correlation coefficient above 0.9 for the annual precipitation, while do not perform so well in reproducing
the spatial distribution characteristics. Most GCMs are able to capture the same annual variation trend
as in the observation, but have relatively limited performance in simulating the probability density
distribution of precipitation.

(3) Different assessment criteria yield different rank scores for the same GCM, and, therefore,
a comprehensive evaluation using multiple criteria is of great significance. The improved rank score
method with multiple criteria achieved a robust assessment of GCMs performance.

(4) The results of the comprehensive assessment indicated that CSIRO-Mk3.6.0, EC-EARTH,
MRI-CGCM3, CNRM-CM5, and CanESM2 have better performance in simulating precipitation for TP
compared to the other GCMs that we have assessed.

(5) The future annual precipitation was projected to increase by about 6% in the near-term with
respect to the period 1961 to 2005, while it increases by 12.3% and 16.7% in the far future under RCP4.5
and RCP8.5 scenarios, respectively. The future precipitation showed an increasing trend, which is
much more evident under the RCP8.5 scenario than under the RCP4.5 scenario.

(6) Similar spatial distributions of precipitation changes can be seen in the near-term (2006–2050)
and far future (2051–2095) under the two scenarios. These distributions suggest that precipitation
might increase in the north of TP more than in other parts of TP, and that the precipitation change in
the eastern margin of TP is not so predominant.
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Assessing the performance of GCMs effectively and simulating future precipitation are important
for understanding ongoing climate change and its impact on hydrology and water resources, agriculture,
and ecology. The results of this study can provide valuable input for further studies focusing on
TP. Moreover, in further studies, multiple methods for ensembling GCMs and for producing future
precipitation projections should be considered and compared for mitigating the uncertainty of GCMs
outputs at the regional scale.
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