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Abstract: Water storage and flow in shallow subsurface drives runoff generation, vegetation water
use and nutrient cycling. Modelling these processes under non-steady state conditions is challenging,
particularly in regions like the subtropics that experience extreme wet and dry periods. At the
catchment-scale, physically-based equations (e.g., Richards equation) are impractical due to their
complexity, while conceptual models typically rely on steady state assumptions not found in daily
hydrological dynamics. We addressed this by developing a simple modelling framework for shallow
subsurface water dynamics based on physical relationships and a proxy parameter for the fluxes
induced by non-unit hydraulic gradients. We demonstrate its applicability for six generic soil textures
and for an Acrisol in subtropical China. Results showed that our new approach represents top soil
daily fluxes and storage better than, and as fast as, standard conceptual approaches. Moreover, it was
less complex and up to two orders of magnitude faster than simulating Richards equation, making it
easy to include in existing hydrological models.

Keywords: hydrological modelling; soil water content; soil water fluxes; vadose zone; non-unit
hydraulic gradient; transient state

1. Introduction

The top few centimetres of soils experience large fluxes associated with cycles in wetting and
drying and bioturbation from plant roots and fauna. These fluxes, combined with rainfall, impact and
compaction can drastically change pore structure over time [1,2]. As aggregate structures collapse
and reform, pathways for water transport and pore water storage are affected [3]. The complexity
and dynamics of the pore structure of shallow soils [4] are not adequately considered in existing
hydrological models, which could lead to errors in predictions. The potential impact of surface pore
structure dynamics on hydrological processes is particularly significant in agricultural regions, where
tillage, traffic, carbon depletion and periods of bare soil exacerbate temporal variability. Pore structure
dynamics include changes to soil bulk density, pore size distribution and the connectivity of pores [1],
but temporal changes in these properties and their impact on hydraulic conductivity are often ignored
in hydrological modelling [3].

Complex physically-based relationships between soil water content and water fluxes have long
been developed, the most widely used being Richards [5] (1931) equation. Modelling packages, such as
HYDRUS [6], include these complex relationships, but are limited by computational time and the
flexibility to accommodate external processes. Accommodating a dynamic pore structure, including a
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thin layer of rapidly changing surface soil, to more accurately model surface fluxes would be unfeasible.
External processes like root water uptake have limited flexibility in HYDRUS, with parameterization
constrained to pre-implemented Feddes and S-shape models, and computations restricted to 1000 days.

Simpler approaches to simulate sub-surface storage and flow processes exist. Under the assumption
of unit gradient, Richards equation becomes the simple Darcy–Buckingham law [7,8]. However,
this assumption limits applicability to relatively deep soils and/or for long time-scales where the
depth-averaged soil water content dictates the vertical outflux from the soil [9,10]. This precludes
the use of such models in shallow soils or in regions, such as the tropics, where surface soil structure
dynamics strongly affect influx. In models that are more conceptual, water storage and fluxes are
often averaged over a given depth, usually the rooting depth of plants (e.g., [11]). They may also use
a more generic undefined depth, such as in the Hydrologiska Byråns Vattenbalansavdelning model,
HBV-96 [12]. In HBV-96 and other popular conceptual models, (e.g., the Soil & Water Assessment
Tool model, SWAT [13]), vertical fluxes are estimated with an empirical semi-linear reservoir type of
behaviour. This typically generates percolation from one layer to another as a function of soil water
content and a set of empirical calibrated parameters.

Modelling of soil water in agricultural soils needs to accommodate the shallow top layer of soil
that is often cultivated and highly temporally variable. This creates additional limitations to the
standard simple depth integrated approach, because this highly managed zone of soil will dominate
nutrient cycling and movement within a soil profile [14]. When predicting the export of carbon
and nitrogen from soil [15], considerable error could result from failing to account for soil structure
dynamics, as changes in water availability can have a dramatic impact on C and N turnover [16] and
leaching to groundwater [17]. Salvucci and Entekhabi [18] showed that rainfall events can create highly
transient conditions with large soil water fluxes from this upper zone. Similarly, periods of drought can
trigger evaporative forcing, large enough to generate temporarily non-negligible upward fluxes across
the bottom boundary of a relatively thin top soil zone [19]. In fine-textured soils, this is exacerbated
by large capillary forces [20], so assumptions of gravity flow are invalidated. Another challenge to
modelling the impacts of surface soil structural properties is their dynamic nature over time due to
precipitation [21] or agricultural management practices, such as tillage or the choice of crop [22]. Soil
water content in the upper zone is, therefore, a poor predictor of deeper, depth-averaged soil water
content, yet this is given inadequate consideration in hydrological modelling. One challenge is the
computational requirements of incorporating highly temporal and spatial depth-dependent dynamics.

More simple representations of appropriate shallow soil water storage and fluxes included within
existing modelling setups could improve predictions. In this study, we propose such a simple modelling
framework of soil water storage and fluxes called the Shallow Subsurface Modelling Framework
(SSMF). It accounts for the rapidly changing soil water dynamics in a thin, managed near-surface
soil zone under agricultural production, and is parameterised using measurable physical properties.
The complexity of the processes it aims at representing is computed in a simple way that directly
addresses the physical laws, through a simple mass balance approach, and with a set of three new
main features. Since the SSMF was developed with the idea to offer a simple and flexible alternative to
the complex solving of Richards equation, we evaluated the performance of the SSMF against Richards
equation solutions for a range of soil textures. In order to also anchor the results in real conditions, we
also compared the results against field data for a study site in subtropical China. The model’s overall
performance, as well as the influence of its features were evaluated.

The drive to develop the SSMF came from field observations at the Sunjia Critical Zone Observatory
(CZO) in Jiangxi, China (see, e.g., [23,24]). At this site, large changes in surface soil pore structure and
moisture were observed over time, due to seasonal shifts from long dry periods to intense monsoon
rainfall. The red clay soils (Acrisols, WRB) at this CZO were derived from kaolinitic quaternary red
clay with poor exchange capacity [25]. These soils are highly unstable and prone to erosion [26].
They have pore structures that change depending on vegetation or soil management [27], so there is
potential to manage unfavourable conditions and decrease overland flow, erosion and contaminant
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leaching. Red soils are extremely important globally, covering 20% of each of China, India and Brazil.
In China, the red soil area provides food to support 40% of the population [25]. Large inputs of water
and fertilizers are typically used to maintain productivity, resulting in considerable leaching to the
wider environment [25]. Similar challenges to those observed in Sunjia are faced in other sub-tropical
regions. The gradual changes observed in the upper soil structure and their impact on short-term,
as well as long-term soil water fluxes and storage are challenging to implement in commonly used
models, such as HYDRUS, hence triggering the need to develop a more flexible modelling approach.
This study is the first step in the development of SSMF was a proof of concept, and it aimed to validate
its basic principles. It involves a detailed explanation of the physics involved in the SSMF structure
and equations, and a comparison of its results with those from a Richards equation solution.

2. Site Description and Data

The SSMF framework was developed and tested using hydrological parameters from HYDRUS
for six generic soil textures. In addition, an unstable, clay loam soil from south-east China was also
used. This soil was from the Sunjia CZO site (116◦53′58”–116◦54′28” E, 28◦13′45”–28◦14′12” N), which
drains an area of 51 ha and is located 4 km northwest of the Red Soil Ecological Experimental Research
Station in Yingtan, Jiangxi Province, south-east China (Figure 1). The area has a typically warm, humid
subtropical monsoon climate with extreme seasonality. The annual precipitation is ~1800 mm, with a
strongly marked rainy season between February and June providing 80% of the annual precipitation.
The potential evapotranspiration is ~1200 mm and the mean annual temperature is around 17.8 ◦C.
June, July and August are the warmest months, with 70% of the potential evapotranspiration occurring
during this period. The elevation at Sunjia ranges between 41 and 55 m above sea level. Its soil is a
“red soil” composed mostly of iron oxides and kaolinite clay, with a clay loam soil texture (referred
to hereafter as “CZO clay loam”), following the USDA taxonomy [27]. For the purpose of this study,
we focused on the main land use in the Sunjia CZO catchment area during the study period; i.e.,
upland rainfed fields of peanuts (49.5%). Other key land uses included irrigated paddy fields (20.2%)
and citrus trees (17.0%). A more detailed description of the Sunjia CZO site can be obtained from
Tahir et al. [23].
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All simulations used meteorological data recorded at the Red Soil Experimental Station (116◦55′ E
and 28◦12′N). Soil moisture data were collected continuously between 23 October, 2012 and 31 December,
2013 using a frequency domain reflectometry (FDR) probes (ML-2x, Delta-T Devices Ltd., Cambridge,
UK). These were buried at 0.05, 0.2, 0.4 and 0.8 m depths at three different locations under a peanut crop.
The measurement frequency was a 30-min interval, with continuous measurements from 23 October,
2012 to 31 December, 2013, available only at 0.4 and 0.8 m. Soil moisture under the citrus trees has
been the subject of study in the past [23], but have not been included in this study for simplicity. Soil
moisture was also monitored manually with a time domain reflectometry (TDR) probe (Trime, PICO,
IMKO, Ettlingen, Germany) every 15 days from July 2013. These data showed that the soil can be
divided into two layers with different hydrological properties; a more permeable layer from 0 to 0.3 m,
and another deeper one from 0.3m onwards (analysis not shown). Four runoff plots (6 m by 20 m) were
constructed at the up and foot slope positions of citrus and peanut fields, which monitored overland
flow (Figure 1). The runoff from these plots was recorded by a tipping bucket system [28] with a
counter (Onset Computer Corporation, Bourne, USA).

Modelling extended from 23 October, 2012 to 31 December, 2013, corresponding to soil water
content monitoring. In 2013 (January to December 2013), the annual precipitation was slightly less
than usual (1584 mm) and the potential evapotranspiration accounted for 60% of the precipitation.

3. Development of the Shallow Subsurface Modelling Framework

3.1. Model Requirements

The SSMF was developed to meet the following requirements:

1. Its results should be comparable to the Richards equation solution;
2. It should be computationally simple and parsimonious, with a minimum number of

calibrating parameters;
3. It should be computationally flexible, allowing future accommodation of any type of soil or

vegetation process, yet able to compute relatively short-term depth-averaged volumetric soil
water content θd (m3/m3) as well as soil water flux Ld (e.g., m/d) across a shallow depth zr (m).

3.2. Model Conceptualization and Development

Figure 2 provides a schematic summary of the general study methodology. The model was
tested with the climatic conditions and soil properties of the experimental agricultural study site at
the Sunjia CZO. In order to evaluate its viability compared to fully physically-based approaches, and
given a known set of soil hydraulic parameters, it was directly evaluated against simulations based
on the Richards equation solution from HYDRUS [6] (Figure 2). However, simply calibrating the soil
parameters used in the SSMF framework against field data would not allow for the new assumptions
to be evaluated independently. As such, the soil hydrological parameters from the van Genuchten
soil-water retention function θr, θs, n, l, Ks and αwere also obtained from the literature values provided
in HYDRUS by the ROSETTA pedotransfer model [29], for six generic soil textures (a loam, a loamy
sand, a sandy clay loam, a sandy loam, a silt loam and a silty clay loam), in addition to the CZO clay
loam soil. This procedure is described in the Supplementary Material.
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Figure 2. Schematic representation of the general study methodology; the goal of the Shallow
Subsurface Modelling Framework (SSMF) is to use widely available input data of soil water content θd;
i.e., soil water retention properties and climate variables (precipitation Pd and evapotranspiration ETd),
to predict future soil water content, θd,mod, and the dynamics of water fluxes, Ld,SSMF. To assess the
performance of the SSMF, we compared the model outputs with Richards equation solution values,
θd,HYDRUS and Ld,HYDRUS.

The model considers a soil profile of depth z (m) within the unsaturated zone of the soil (Figure 3).
In this study the depth extends from the land surface zls (z = 0 m) to a relatively shallow depth, zr (m)
so that the dominance of the top surface soil to hydrological behaviour can be adequately represented.
Averaging over greater depths, as is common practice in hydrological modelling, would not simulate
the strong depth dependent changes in water content observed at the Sunjia CZO with soil sensors.
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Figure 3. Model conceptualization of the Shallow Subsurface Modelling Framework (SSMF). The fluxes
are P, the precipitation at the land surface, E, the evaporation from the soil, R the overland flow and L,
the vertical losses through the bottom boundary of zr, the upper zone of the soil. θ is the depth-averaged
volumetric water content over zr and SHP stands for Soil Hydraulic Properties over zr. The vertical
axis is positively oriented from the surface down the soil profile. The values in blue are the inputs to
the SSMF; the values in green are the outputs.
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A range of pedological drivers of hydrological significance could influence the depth of this
shallow to surface layer, such as the tillage depth [30], the action of plant roots [31] and disaggregation
from intense rainfall. The soil water content considered here was the average volumetric soil water
content over the depth zr and the vertical soil water flux was the total water flux across zr. We considered
a daily time step. A shorter time step than one day could potentially have been implemented, but
in hydrological studies the daily step is commonly used and is relevant to nutrient cycling and
agricultural practices.

The first main feature of the SSMF is the introduction of a threshold value of depth-averaged soil
water content in the soil layer of interest, θe (m3/m3), above which a negative surface water balance
(P − E < 0) generates an upward flux across the boundary of the soil layer of interest at depth zr.
This process is a simple representation of a non-gravity driven flow process, triggered by a negative
water balance at the surface, which may be important for relatively thin layers of soil. If the soil is
near saturation in zr, both upwards and downwards water flux across zr occurs, balanced between
evaporative forcing and precipitation input into the system. The resulting total flux over a given
integration time is therefore the sum of evaporative forcing and precipitation, with each having an
opposite sign because of the flux direction. θe is also indirectly related to the soil water content in
the soil below zr, with hydraulic conductivity in both layers being positively correlated at any given
time. To restrict the complexity of the SSMF to a minimum, the upwards flux was set to the surface
evaporative forcing, and does not account for capillary forces that may play a role. The values of θe are
expected to be mostly a function of the soil texture.

The second main feature is the introduction of a proxy parameter a [–] for non-unit hydraulic
gradient conditions. A differential in hydraulic pressure between the land surface and zr, which
results in a non-unit hydraulic gradient, mitigates the otherwise Darcy flux [7]. Solving the water
balance in the soil under non-unit hydraulic conditions is not trivial: It is typically omitted in simple
conceptual approaches, limiting their use to conditions under which it can be neglected (deep soil and/or
steady-state), or represented explicitly, as in the Richards equation. In the SSMF, the non-unit hydraulic
gradient conditions are not accounted for explicitly, but rather approximated with a dimensionless
parameter a which mitigates the vertical flux across zr based on the total value of the previous fluxes.
A large total value of previous fluxes relative to the influx at the surface signifies a relatively wet soil
profile below zr, and will result in a large negative gradient, thus limiting the amount of water that can
be transferred downwards through zr. The parameter a is, therefore, expected to be affected by the soil
properties and by the conditions at the surface. In the SSMF, we tested it as a site-specific parameter.
Since the unit-hydraulic gradient assumption becomes more valid with large values of a, it is also
expected to exhibit a decreasing trend with an increase of zr.

The third main feature of the SSMF, which differentiates it most from existing hydrological models,
is a varying computational timestep that is dependent on the relative soil saturation. Conceptually, this
results from standard and widely used relationships between soil saturation and hydraulic conductivity,
which show that the hydraulic conductivity rapidly increases with soil saturation [32–34]. Therefore,
periods with high soil water contents can be seen as being in a transient-like state at daily or sub-daily
time steps. This becomes even more apparent when the depth of the soil layer is relatively small (i.e.,
less than a meter) and/or when the soil is fine-textured. In those conditions, hydrological models need
to be computed at a very small timestep, at the cost of a long computing time. Total computing time
may then become critical for semi-distributed or distributed models, especially at larger (catchment)
scales, where a model is required to compute soil water content and vertical fluxes for several dozens
to hundreds of plot-scale zones (e.g., [35]). In the SSMF, the computational time step is short when
the soil is saturated, reaching a value of dtsat (hr), and longer when the soil is dry, reaching a value of
dtdry (hr). Between those two values the time step follows a linear relationship. For a daily time-scale,
the minimum and maximum values for dtsat and dtdry vary between 0 and 24 h, respectively, with
dtdry > dtsat. The values of dtsat and dtdry are expected to be a function of the soil texture and zr.



Water 2019, 11, 1725 7 of 20

The routine for the SSMF is as follows. For each day, the potential soil water recharge across the
upper boundary of the layer (land surface) was determined from a simple surface water balance qls

d,pot
(m/d), computed from the daily total evapotranspiration ETd (m/d) and the total daily precipitation Pd
(m/d) as shown in Equation (1):

qls
d,pot = Pd − ETd (1)

with

ETd = ET0,d.
(
θd−1 − θr

θs − θr

)c
(2)

where ET0,d is daily total potential evapotranspiration (m/d), θd−1 (m3/m3) is the soil water content
of the previous day, as calculated in the following routine (Equation (8)), θr is the residual water
content (m3/m3), θs is the saturated water content (m3/m3) and c is an empirical calibrated parameter
(no units). This relationship conforms to Laio et al. [36], but does not include a plant transpiration
component, where the evapotranspiration is related to the soil moisture thresholds that trigger
stomatal closure. In addition, the empirical parameter, c, was added to the original linear equation
presented by Laio et al. [36] to gain in generality, and to compensate for the fact that the parameter, Ew,
(evapotranspiration at the wilting point) from the original publication is omitted here for simplicity.
Rather than using this method to obtain ETd, the SSMF used Penman–Monteith to estimate ET0,d.

The daily subroutine was then divided into consecutive time steps t by the following equations.
We first determined how much of qls

t,pot infiltrated into the soil at the time step t (qls
t (m/d)).

The water that exceeds the available pore space, defined by (θs − θt−1) zr, for each time step t triggered
the computation of a subsequent time step within the daily subroutine (Equation (3)).

qls
t = min

(
qls

t,pot, (θs − θt−1
)
.zr). (3)

This input of water led to a temporary soil water content θt,1(m3/m3), as defined in Equation (4):

θt,1 =
(
θt−1.zr + qls

t

)
/zr (4)

θt,1 then determined the time step at which the downwards vertical flux across zr was calculated
from the relative soil water saturation according to Equation (4) as:

dtt =min
(
ttot −

∑i=t−1

i=0
dti,

(
dtsat − dtdry

)
.
θt,1 − θr

θs − θr
+ dtdry

)
(5)

for which dtsat (hr), and dtdry (hr), are calibrated parameters, which are the time step at saturation
and the time step at a relative saturation of 0, respectively. These parameters are, therefore, unique,
time-independent variables calibrated for a given simulation. By definition, dtdry must be relatively
high, while dtsat must be relatively low, between 0 h and dtdry. The sum of the subroutine dt values
should not lead to a total time of the subroutine greater than the total time of the considered time
step ttot (equal to 24 h in the case of the daily time step in this study). The vertical downwards flux
across zr for this time step qzr

t,down (m/d) was then calculated from the constitutive relationship between
soil water content and hydraulic conductivity Kt (m/d). In our study, we used the Mualem–van
Genuchten relationship to evaluate Kt, with the Mualem approximation (m = 1 − 1/n) [37]. For the
application to the Sunjia study site, we also considered a modified air-entry value of −0.02 m to
represent conditions for the CZO clay loam. Such a small negative air entry value was shown to reduce
the effect of non-linearity of the hydraulic conductivity function close to saturated conditions, while
still preserving the S-shaped curve typical for the van Genuchten model [38]. This resulted in the
relationship presented in Equation (6):
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Kt(θt,1) = Ks

(
θt,1 − θr

θs − θr

)l
1−

1−
(
θt,1 − θr

θs − θr

)1/mm
2

(6)

where θs (m3/m3) is the saturated water content, θr (m3/m3) is the residual water content, l (no units),
and m (no units) are empirical parameters, and Ks (m/d) is the saturated hydraulic conductivity.

The vertical downwards flux across zr for the time step t, qzr
t,down was then defined as

qzr
t,down = dtt/ttot.Kt. exp

a.
∫ k=t−1

k=0
qzr

k,downdk

 (7)

with a [–], a calibrated parameter (here between 0 and 100, Table 1), and, k the dummy variable, used

to compute the total previous flux through zr. The term exp
(
a.

∫ k=t−1
k=0 qzr

k,downdk
)

mitigates the vertical

flux through zr. This exponential function was chosen to approach the theoretical water-retention
relationship between the hydraulic conductivity and the matric potential. Following Equation (7),

a low integral value
∫ k=t−1

k=0 qzr
k,downdk of the previous vertical fluxes, which indicates very dry conditions

in the soil below zr, results in an exponentially-related small vertical flux qzr
t,down. In this sense, a can be

viewed as a proxy parameter for non-unit hydraulic gradient conditions.
This then allowed for the determination of the depth-averaged soil water content across zr and θt:

θt =θt,1 − qzr
t,down/zr (8)

Finally, the potential soil water recharge from the land surface for the next time step qls
t+1,pot

was updated
qls

t+1,pot = qls
t,pot − qls

t . (9)

The sub-daily routine stopped when the condition
∑t

0 dti = ttot was met. The daily depth-averaged
soil-water content value θd and vertical downwards flux across zr, qzr

d,down were, therefore, the values at
the last time step of the sub-daily routine (t = tend) and the sum of the downwards flux across zr over
the sub-daily routine, respectively, calculated as:

θd = θtend (10)

qzr
d,down =

i=tend∑
i=0

qzr
i,down (11)

The vertical upwards flux across zr qzr
d,up (Equations (12a) and (12b)) was triggered when the soil

water content was large, above θe, and when Pd − Ed < 0:

qzr
d,up = q ls

d,pot, θd ≥ θe and Pd−Ed ≤ 0 (12a)

qzr
d,up = 0, θd < θe or Pd−Ed > 0 (12b)

The total daily resulting vertical flux across zr, Ld (m/d) was therefore the sum of the upward flux
and the downward flux:

Ld = qzr
d,down + qzr

d,up (13)

Eventually when the total time ttot was reached, the excess water constituted the overland flow
Rd (m/d),

Rd = Pd − ETd − Ld − ∆Sd (14)

where ∆Sd (m/d) is the change in the soil water storage over zr; ∆Sd = (θd − θd−1)/zr.
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For the first day of the modelling time period, d = 1, the soil water content was equal to the
initial value

θd=0 = θ0 (15)

At the first step of the sub-daily routine (t = 0), the value of water recharge across the land surface
was the daily potential infiltration qls

t=0,pot = qls
d,pot when Pd − Ed ≥ 0. When Pd − Ed < 0, i.e., the surface

evaporative forcing was greater than the precipitation, then the sub-daily routine was computed with
water recharge from the surface equal to 0; qls

t=0,pot = 0. The initial value of the soil water content was
the soil water content of the previous day (Equation (16)):

θt=0 = θd−1 (16)

3.3. Model Evaluation

For all seven soils, HYDRUS was used to derive daily soil water content θd,HYDRUS and soil water
flux dynamics Ld,HYDRUS (m/d) at eight depths of zr: 0.10, 0.15 0.20, 0.25, 0.30, 0.40, 0.50 and 0.70 m,
which were chosen so that the upper soil was more finely represented than the lower soil, where
the assumption of a unit gradient is more likely to be valid. Since the CZO clay loam properties are
vertically heterogeneous (see Supplementary Material), a weighted arithmetic average as proposed by
Destouni [39] was calculated for the calibrated parameters. These averaged soil property parameters
were then used as inputs to the SSMF, whereby the initial depth-averaged value over zr of the soil water
content was θ0 = θd=1,HYDRUS. Next, the SSMF was calibrated against the soil water content θd,HYDRUS
through a Monte–Carlo simulation (10,000 runs) and its results Ld,mod were compared with Ld,HYDRUS.
Figure 2 provides a summary of this procedure and Table 1 provides the input soil parameters θr, θs, n,
l, Ks, α and SSMF parameter calibration ranges for dtdry, dtsat and θe (as a value relative to the saturated
water content θs, a and c.

Table 1. Input soil parameter values and the range of the calibration parameters used in the Shallow
Subsurface Modelling Framework (SSMF). The procedure to determine the value of the soil parameters
is described in the Supplementary Material. For the CZO clay loam profile, the soil parameters θr, θs,
n, l, Ks and α reported in this table were obtained from the calibration of the Richards equation with
HYDRUS on soil data from the Sunjia catchment. For the six generic soil texture profiles, they are the
literature values provided in HYDRUS by the ROSETTA pedotransfer model [29]. For all soil profiles,
dtdry, dtsat a, θe and c are the SSMF parameters. The ranges that were used for the calibration of the
SSMF are given in the table.

θr
(m3/m3)

θs
(m3/m3) n (-) l (-) Ks

(m/d)
α

(1/m)
dtdry
(hr)

dtsat
(hr) a (-) c (-) θe/θs

(-)

CZO clay loam
0–0.3 m 0.050 0.390 1.256 0.5 0.035 0.05 [0;24] [0;dtdry] [0;100] [0;10] [0,1]

CZO clay loam
0.3–3 m 0.050 0.385 1.438 0.5 0.029 0.086 [0;24] [0;dtdry] [0;100] [0;10] [0,1]

Loam 0–3 m 0.078 0.430 1.56 0.5 0.250 3.6 [0;24] [0;dtdry] [0;100] [0;10] [0,1]
Loamy sand

0–3 m 0.035 0.437 1.5 0.5 1.466 4.85 [0;24] [0;dtdry] [0;100] [0;10] [0,1]

Sandy clay
loam 0–3 m 0.1 0.39 1.48 0.5 0.314 5.9 [0;24] [0;dtdry] [0;100] [0;10] [0,1]

Sandy loam
0–3 m 0.041 0.453 1.378 0.5 0.621 3 [0;24] [0;dtdry] [0;100] [0;10] [0,1]

Silt loam 0–3 m 0.067 0.45 1.41 0.5 0.108 2 [0;24] [0;dtdry] [0;100] [0;10] [0,1]
Silty clay loam

0–3 m 0.089 0.430 1.23 0.5 1.466 1 [0;24] [0;dtdry] [0;100] [0;10] [0,1]
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Based on the HYDRUS Richards equation simulations, the performance of the SSMF was evaluated
using the value of the normalised root mean square deviation (NRMSD), defined as the normalised
square root of the variance (no units, Equation (17)).

NRMSD =

√∑N
d=1 xd,SSMF − xd,HYDRUS

N
/xHYDRUS (17)

In this relationship N is the total number of days and x refer to the variable of interest.
The results are shown for the best simulation; i.e., the one that minimizes the value of NRMSD for

the soil water content time series (in Equation (17), x is then θ); and for the behavioural simulations,
defined as the simulations that lead to a NRMSD < 5% of the NRMSD of the best simulation. The model
was also evaluated based on the Nash–Sutcliffe efficiency [40] and Kling–Gupta efficiency [41] criteria.
The results were very similar to the ones obtained based on the NRMSD, and are, therefore, not
presented here.

The resulting time series are presented for the CZO clay loam at zr = 0.40 m which corresponds
to one of the depths for which there were continuous soil water content data available at the field
site (see Supplementary Material). At zr = 0.40 m the impacts of soil management in the top 20 cm
and rapid fluxes due to intense rainfall were greater than the other continuous measurements at
zr = 0.80 m. Moreover zr = 0.40 m is very relevant to deep water storage that can be captured by crop
roots. The results of the other soil textures and the values of zr in the CZO clay loam are presented in
summary figures. As described in Section 3.2, the SSMF is based on the three concepts of: (i) a threshold
value of depth-averaged soil water content in the soil layer of interest; (ii) the introduction of a proxy
parameter a [–] for non-unit hydraulic gradient conditions; and (iii) a varying computational timestep
that is dependent on the relative soil saturation. To evaluate the influence of each of these three main
concepts of the SSMF, we evaluate the SSMF’s performance, excluding the parameters one at a time.
To evaluate the influence of the parameters a and θe, they were set to 0 (Equations (7), (12a) and (12b),
respectively), and to evaluate the influence of the parameters dtdry and dtsat, the SSMF was computed
with a constant hourly timestep (dtt = dt = 1 h, Equation (5)).

The potential evapotranspiration ET0,d used in all simulations was calculated using the FAO
56 guidelines [42] based on the daily relative humidity, temperature, wind speed and solar radiation
data. To isolate the soil water content dynamics from the effects of the vegetation, the Richards equation
solver was calibrated without root water uptake (bare soil conditions) for the CZO clay loam soil.
This implies that the soil water fluxes and storage changes are a function of the climate and the soil
properties only, which leads to slightly biased soil water retention properties. This is discussed more
in Section 4.

The actual evapotranspiration ETd calculated by the SSMF cannot be directly compared to the
value obtained from HYDRUS. This is because ETd resulting from Equation (2) is a calibrated value
that corresponds solely to the outwards flux from the depth of interest, zr, while the value calculated by
HYDRUS is the daily integral over an unknown and time-varying depth. Since the SSMF framework is
not designed to be a standalone hydrological model, it can accommodate changes in the representation
of the processes that are not the focus of the present study. In particular a different representation of
ETd could be implemented, if those fluxes were the focus of interest.

4. Results

4.1. Evaluation of SSMF against Data and HYDRUS Simulations

The calibrated HYDRUS soil water content for the CZO clay loam fell mostly within the range
of measured values over the time series (Figure 4b). The value of NRMSD between the average of
the measured soil water content time series and the calibrated HYDRUS soil water content was 0.09.
The low values of observed data (θd < 0.2) at the beginning of August were biased by one soil water
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sensor. Similar to the HYDRUS simulations, the SSMF also mostly fell within the range of the measured
θd (Figure 4b), and the NRMSD between the SSMF values and the data was 0.07, slightly lower than
for HYDRUS. The NRMSD between the SSMF values and the HYDRUS values was 0.09.

Although both models simulated the observed data similarly well, the SSMF simulations
overestimated the soil moisture measurements during the wetting up phase after the dry season
(November 2013). HYDRUS slightly underestimated the soil water content for the first main rainfall
events, but its simulations still fell within the range of the measured soil water content values.

For overland flow, the SSMF Rd values (Figure 4c) were close to those simulated by HYDRUS
(NRMSD < 0.01). Even though the overland flow simulated by the HYDRUS and SMMF models
reproduced the major event that occurred on 19 June, neither reproduced any of the small values of
observed overland flow prior to that (Figure 4c). There were no overland flow data available from
11 September 2013 onwards. For the vertical fluxes, SSMF Ld values were overall underestimated
compared to HYDRUS (Figure 4d). Nevertheless, the relative dynamics of vertical fluxes were similar
between HYDRUS and the SSMF (Figure 4d, NRMSD < 0.01).

The SSMF was two orders of magnitude faster than the HYDRUS simulations (for example, the
simulation for the clay loam soil took 36 s in HYDRUS and less than 1 s with the SSMF on a 2.70 GHz
computer), supporting the aim of this study to develop a simplified framework for hydrological
modelling that can be applied to complex conditions, such as the depth dependent structural variability
and climatic extremes observed in subtropical regions. We also ran the same soil setups in HYDRUS
1D, leading to computation times that were on average two to three times faster than in HYDRUS 2D.
However, the analysis was made based on HYDRUS 2D values to allow the validation of the SSMF
against a more complex but more realistic representation of the soil water storage and fluxes in the
different soil textures.
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Figure 4. Daily observed precipitation (a), soil water content θd (b), overland flow Rd (c), and vertical
flux Ld (d) in the CZO clay loam profile of the Sunjia catchment at zr = 0.40 m, from November 2012
until December 2013. In (b–d), the time series are obtained from the calibrated HYDRUS software (red)
and from the Shallow Subsurface Modelling Framework (SSMF, blue). For θd (b) and Rd (c), the data
range and its average value across the 12 sensors are represented respectively by a green shaded area
and a green line.
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For each of the seven soil textures and eight different depths, Figure 5 shows the SSMF versus the
HYDRUS simulations of soil water content. For the CZO clay loam (CL) down to 0.25 m, θd values were
relatively evenly distributed around the 1:1 line, reflecting an absence of pattern (under/over-estimation).
Beyond 0.30 m, the clouds of points reflect a slight skew towards an underestimation of the mid-range
values (dots below the 1:1 line). This pattern was, however, less marked for the soil textures. In general,
the clouds were typically above the 1:1 line at deeper depths, and mostly for the dry values, reflecting
a tendency of the SSMF to overestimate θd relative to the HDYRUS modelled values. This was most
marked for the two silty textures, silty loam, SiL and silty clay loam, SiCL. A narrower cloud centred
around the 1:1 line suggests that the wetter values, in all but the two silty textures, were relatively well
represented by the SSMF, when compared to the HYDRUS simulations.Water 2019, 11, x FOR PEER REVIEW 12 of 20 
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Figure 5. Scatter plots of the soil water content θd values [m3/m3] from the Shallow Subsurface
Modelling Framework (SSMF) (y-axis) and from HYDRUS (x-axis), across the eight studied depths
zr (rows), and for the seven soil profiles (columns): CZO clay loam (CL), loam (L), loamy sand (LSa),
sandy clay loam (SaCL), sandy loam (SaL), silt loam (SiL) and silty clay loam (SiCL). The black line
represents the 1:1 line.

4.2. SSMF Parameters Influence

Figure 6 illustrates an extreme case of ignoring θe or a, or setting dt to a relatively fast 1 h interval
to determine impacts on SSMF performance for the CZO clay loam at zr = 0.30 m. Whilst the impact
during the wet period was minimal, altering any of these parameters had a significant influence
during the long dry period (July to November). During other times, θd remained high (around 50%
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higher than when θe was included in the SSMF) while a resulted in relatively faster and stronger
drying of the soil between rainfall events. The SSMF set with a constant dt of 1 h performed similarly
regarding the representation of θd dynamics to when dt was variable in time, within the dtdry; dtsat

range. The influences of the parameters on Rd (Figure 4b) and Ld (Figure 4d) were not as marked as on
θd, and all setups performed relatively well, with their values and time dynamics remaining close to
the values modelled by HYDRUS.
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Figure 6. Influence of ignoring θe or a, or setting dt to a relatively fast 1 h interval on SSMF performance
versus HYDRUS. The outputs are (a) daily observed precipitation, (b) overland flow Rd, (c) soil water
content θd and (d) vertical flux Ld for the CZO clay at zr = 0.30 m. In (b–d), the time series are obtained
from the calibrated HYDRUS software (red) and from the Shallow Subsurface Modelling Framework
(SSMF, blue), as well as for the SSMF, for which one of those parameters was ignored: θe (pink line),
a (black line), and dtdry and dtsat (green line).

Figure 7 provides a general summary of SSMF performance compared to HYDRUS for all soils,
and different depths for each of the SSMF parameters, and the SSMF overall. For θd (Figure 7, left
column), the SSMF generally performed increasingly better with increasing zr (from NRMSD = 0.09
at zr = 0.10 m to NRMSD = 0.06 at zr = 0.7 m, across all soil profiles), except in the CZO clay loam
(CL), where the values of NRMSD slightly increased at 0.30 m. More specifically, where θe was set
to 0, the NRMSD was consistently poorer, leading to worse performance across all soils and depths
(NRMSD = 0.12 on average). If the hydraulic gradient was assumed to be uniform, a = 0 or dt fixed to
an 1 h interval, a better NRMSD (NRMSD = 0.08 on average) was observed, almost as good as the
complete SSMF (NRMSD = 0.07). Generally, the complete SSMF performed best over individual zr

regardless of soil, particularly as zr increased.
For Ld (Figure 7, right column), all the NRMSD values were relatively low (NRMSD < 0.07) except

for the silty clay loam (NRMSD > 0.2). The changes in performance with depth were also different
from those for θd. Unlike for θd, there was no clear increasing or decreasing trend in the NRMSD
values with the increasing values of zr. For Ld and up to 0.3 m, the setup where a = 0 performed
better (NRMSD = 0.03 on average) than the SSMF overall (NRMSD = 0.04 on average). For the deeper
depths, the SSMF and the setups where dt fixed to an 1 h interval or with a = 0 performed slightly
better (NRMSD = 0.06 on average) than the setup with θe = 0 (NRMSD = 0.07 on average).
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Figure 7. Normalised root mean square deviation (NRMSD) between SSMF and HYDRUS for the daily
soil water content θd (left column) and for the daily vertical flux Ld (right column). Simulations are for
the eight soil texture profiles: CZO clay loam (CL), loam (L), loamy sand (LSa), sandy clay loam (SaCL),
sandy loam (SaL), silt loam (SiL) and silty clay loam (SiCL). The values of the studied depths (zr) are on
the x-axis; the NRMSD values on the y-axis. The NRMSD values are presented for the simulations
from the SSMF (blue crosses), and for the setups where the individual parameters were omitted: θe = 0
(pink circles), a = 0 (black squares) and dt = 1 h (green triangles).

5. Discussion

5.1. General Performance of the SSMF

The SSMF reproduced values close to those generated by more complex and computationally
intense HYDRUS simulations of both soil water content and vertical fluxes across all values of zr, and
in all soil textures (Figures 4, 5 and 7). θd values simulated by HYDRUS for dry conditions were
slightly higher than those simulated by SSMF. The overall NRMSD between the data and the SSMF
was 0.07 while it was 0.09 between HYDRUS and the data, and between HYDRUS and the SSMF for
the entire time series across all depths and soil profiles. Wetter soil water contents values were well
represented by the SSMF (Figure 5).

In general, the SSMF performed increasingly better with increasing zr. This is consistent with
changes in the validity of the underlying assumptions of gravity driven flow and unit hydraulic
gradient, which hold better with increasing depth and thickness of a studied soil layer, making the
simulations with the SSMF less sensitive towards its specific parameters. That highlights the benefits
of the SSMF, particularly in shallow soils. For the CZO clay loam, performance of the SSMF slightly
decreased at 0.30 m, and increased again for deeper depths. That reflects the change in soil properties
in the CZO clay loam at around 0.3 m, driven by its long-term agricultural management (Table SM2
in the Supplementary Material). Therefore, in the presence of such vertical sharp heterogeneity, the
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SSMF can be expected to perform less well at said vertical interface. This is a direct result of the proxy
parameter a being calibrated with a set of soil hydraulic parameters encountered in above zr and that
may not represent accurately the properties lower than zr.

The SSMF was mainly optimized on the soil water content, and not on the vertical fluxes time
series, since the soil water content is typically more of interest in most hydrological studies and
processes. Nevertheless, the evaporation upwards fluxes of water for all soil textures were mostly
well represented, with an average NRMSD of 0.05. However, it can be argued that none of the model
efficiency criteria used in this study (NRMSD, Kling-Gupta and Nash-Sutcliffe efficiency criterions)
accurately evaluates SSMF vertical flux predictions, as detailed observations were only available for
soil water content.

5.2. Evaluation of the Influence of the SSMF Parameters

Optimised performance of the SSMF requires variables θe and a, with processing speed enhanced
considerably by using a variable rather than fixed dt. Of these parameters, θe when fixed at 0 leads to a
large overestimation of the soil water content values, demonstrating its importance to the quality of
predictions (Figure 6). This is a key attribute of the SSMF setup. In Equation (12a), if evapotranspiration
(ETd) exceeds the precipitation (Pd), as would occur during dry periods, setting θe to 0 results in
an upwards flux, qzr

d,up, that equals the total potential flux (q ls
d,pot). The upwards flux recharging zr is

therefore overestimated, so θd remains relatively high. This impact was greater than using a fixed time
step or setting a to 0 (Figure 7), highlighting the value of the θe parameter.

The parameters dtdry, dtsat, and a had a more marginal influence than θe on the overall performance
for θd predictions. Their influence was noticeable when daily dynamics were examined. For the
CZO clay loam at 0.30 m presented in this study (Figure 6) a representative pattern of strong and
fast decreases in soil water contents resulted when a = 0 and dt was set to a 1-h interval. As stated
previously, equating the exponential term in Equation (7) to 1 (a = 0), neglects the conditions in the soil
below zr (Equation (7)), so the vertical flux equals the hydraulic conductivity corresponding to the
conditions in the upper zone zr (unit-hydraulic gradient condition). This causes the differential in soil
water content between the upper zone and the soil below zr to be large and positive, producing wetter
conditions in the upper soil than in the soil below zr when rain infiltrates through the soil surface.
As the simulated vertical flux is overestimated, water subsequently drains too rapidly from the upper
zone. A constant value of dt had a similar effect on the water content dynamics as this also resulted in
an overestimation of the vertical flux through zr (Equation (7)) for wet water contents.

5.3. Overland Flow

We evaluated the SSMF performance against one of the most commonly used approaches for
simulating soil water storage and fluxes; that involved solving the Richards Equation in HYDRUS.
By developing a simpler approach that performs as well, we provided a new modelling framework
that can be flexibly implemented in a wide range of hydrological models. Nevertheless, evaluating
a model against other model simulations assumes that the reference model is right and not biased.
In the SSMF, overland flow was implemented in order to close the daily water balance, rather than as
an explicit and independent process. In HYDRUS, it is both used to close the water balance, as well as
represent it independently as Hortonian flow. Since the overland flow implementations were similar
for the two modelling approaches, we assumed that this did not affect our ability to assess how well
the other key storage and flow processes were represented. In fact, neither HYDRUS nor SSMF showed
significant overland flow. However, overland flow in tropical regions is an important process [43],
and leads to large erosion rates at the catchment scale [44]. In the Sunjia catchment, during the wet
season and due to the high clay content of the soil, overland flow is generated as a result of infiltration
excess [45], which cannot be appropriately accounted for when considering solely a daily water balance
model. Therefore, the implementation of an independent overland flow generation process could
significantly improve the applicability of the SSMF in subtropical regions. Moreover, the simple binary
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trigger of upwards flux implemented in the SSMF (with the threshold value of soil water content θe)
provided insufficient resolution of this process so that the SSMF was not capable of simulating upward
fluxes of the smallest magnitudes. This would be important for modelling solute transport, and can be
addressed when including the SSMF in a hydrological model that does contain a dedicated overland
flow module, such as EROSION 3D [46] or the USDA-Water Erosion Prediction model [47]

5.4. The SSMF Concept Application in the Context of Soil Hydraulics Modelling

The SSMF was developed to meet three key requirements (Section 3.1), derived from current
limitations of the modelling of soil hydraulics (Introduction). Firstly, its results should be comparable
to Richards equation solution. We showed that the SSMF results were indeed in most cases comparable
with the solution to the Richards equation provided by HYDRUS. The optimization based solely on
θd lead to relatively low NRMSD, even for Ld. The second requirement involved a parsimonious
approach. The SSMF computation was simple, and while the three sets of parameters (dtdry and dtsat, a,
and θe) together lead in almost all the soil profiles and all values of zr with the best performance, θe

remained the most critical. A relatively short but constant value of dt could suffice to obtain overall
good results when the absolute daily values are not of primary importance. Finally, we have provided
an approach which is computationally flexible. The SSMF Matlab implementation is provided in the
Supplementary Material. It is light and flexible, and its set of equations, presented in this study, can
easily be included in any numerical model. The running time is also very fast (two orders of magnitude
faster than HYDRUS 2D). In addition, while more simple than other approaches like HYDRUS, the
SSMF is parameterised using measurable physical properties, so that their dynamic nature, and the role
these play on hydrological processes, although not specifically addressed here, can still be considered.

For the SSMF to be implemented in larger scale models, spatial variability would have to be
carefully considered, in particular because SSMF was compared here with, and validated against, point
scale measurements and a Richards equation solution. Beven [48] and more recently Or et al. [49]
pointed out that Mualem–van Genuchten relationships, and therefore the Richards equation, rely on
the assumption of capillary equilibrium with soil water content. This limits its validity to 0.05–0.4 m
of spatial extent, as suggested by Vogel and Ippisch [50]. Nevertheless, a rapid computational time
achieved by the SSMF lends itself well to distributed or semi-distributed models that bring together
small spatial units. When thousands or more units are to be simulated, even fast computers could not
make the more parsimonious approach of SSMF, and such a reduction in simulation time, redundant.
The heterogeneity of field scale soil water processes could also be better implemented, building on
earlier research using randomly distributed hydraulic conductivity to represent field scale soil water
processes [51,52].

In the presence of steeper slopes, horizontal fluxes may have to be implemented in the SSMF.
The addition of the threshold soil moisture value similar to θe, above which horizontal flux is triggered,
could, for example, be tested. A thorough comparison again with Richards equation solution in 2D
would have to then be carried out. However, the three main features of the SSMF would not change,
only their calibrated value against a 2D model differ from the 1D version presented in this study.

The results suggested that the SSMF and its three main concepts are representing the soil water
content and vertical fluxes well even in cases where the soil is heterogeneous and comprises distinct
layers with different hydraulics properties. This is where simple hydrological models normally have
strong limitations. The SSMF has been tested in this study with one vertically heterogeneous soil, the
CZO clay loam that presents a relatively sharp change in soil properties around 0.3 m. Although θd
and Ld were represented relatively well, the NRMSD was slightly poorer below 0.3m (Figure 7), where
the simulated values of θd by the SSMF were lower than the ones simulated by HYDRUS (Figure 5).
Testing the SSMF for a larger range of vertically heterogeneous profiles is the next step to validate the
SSMF principles. Calibration may still be needed in silty soil textures, where the SSMF performance
was poorer in dry conditions (Figure 5).
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In summary, the SSMF results can be seen as a proof of concept that the simple representation
of non-gravity-driven flow and non-unit hydraulic gradient, as presented in this study, can give a
good overall representation of soil water dynamics for a thin upper layer of the soil. Its parsimonious,
flexible and faster approach, as opposed to solutions in more complex models like HYDRUS, could
provide a wide range of new opportunities. These include cases with large spatial heterogeneity and
implementation in larger scale models that typically resort to the assumption of a unit-hydraulic gradient
and limit their use to steady-state conditions. Therefore, the SSMF has provided a middle-ground
framework that eliminates the key issues of the two extreme approaches normally available.

6. Conclusions

The Shallow Subsurface Modelling Framework (SSMF) proposed here offers a combination of
three new concepts for simulating near surface water storage and flow dynamics. It performed as well
as a more complex and less flexible Richards equation solution computed by HYDRUS at predicting
soil water content and vertical fluxes in soil profiles within a relatively thin surface layer.

We tested this new framework for a data-based clay loam red soil, for a range of eight different
soil layer depths (0.10 to 0.70 m). The results were in good agreement with simulations from the widely
used, but more complex, Richards equation solution in HYDRUS, and fell within the range of the
recorded data. We also tested the SSMF for six homogeneous generic soil profiles of various textures.
That also showed relatively good performance for the soil water content and adequate performance for
the vertical fluxes. Therefore, the three main features of the proposed approach could be introduced in
other hydrological models to represent the processes occurring in the upper soil more accurately than
current simple approaches and more efficiently than complex ones. The data necessary for applying this
framework are widely available, although a calibration using a soil-water-content time series would be
advised. Future improvements may include the computation of a more elaborate relationship between
the upwards flux magnitude, soil water content and evaporative forcing. Being computationally
simple and flexible, yet with results comparable to the Richards equation solution, the approach
has the potential to be implemented in complex modelling frameworks to represent hydrological
processes; e.g., in environments with large spatial variability. Since its results are comparable at a site
under a monsoonal climate, we have shown that the SSMF can also be implemented under extreme
precipitation patterns, such as those found in sub-tropical environments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4441/11/8/1725/s1:
S1. HYDRUS 2D set up and calibration. We provide in the Supplementary Material the Matlab code of the
developed model (ssmf.m), its subdaily routine (ssmf_subdaily.m) and the pedotransfer equations for different
soil textures (pedotransfer_func.m). This is original content, developed by Lucile Verrot, made freely available as
part as this study, and developed in Matlab 2014a.
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