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Abstract: Bayesian model averaging (BMA) is a popular method using the advantages of forecast
ensemble to enhance the reliability and accuracy of predictions. The inherent assumptions of the
classical BMA has led to different variants. However, there is not a comprehensive examination
of how these solutions improve the original BMA in the context of streamflow simulation. In this
study, a scenario-based analysis was conducted for assessment of various modifications and how
they affect BMA results. The evaluated modifications included using various streamflow ensembles,
data transformation procedures, distribution types, standard deviation forms, and optimization
methods. We applied the proposed analysis in two data-poor watersheds located in northern Ontario,
Canada. The results indicate that using more representative distribution types do not significantly
improve BMA-derived results, while the positive effect of implementing non-constant variance
on BMA probabilistic performance cannot be ignored. Also, higher reliability was obtained by
applying a data transformation procedure; however, it can reduce the results’ sharpness significantly.
Moreover, although considering many streamflow simulations as ensemble members does not always
enhance BMA results, using different forcing precipitation scenarios besides multi-models led to
better BMA-based probabilistic simulations in data-poor watersheds. Also, the reliability of the
expectation-maximization algorithm in estimating BMA parameters was confirmed.

Keywords: Bayesian model averaging; multi-model ensemble hydrologic simulation; uncertainty
analysis; Canada

1. Introduction

Different types of hydrologic models, varying from empirical and conceptual to fully distributed
physically based models, have been developed in order to increase the accuracy of hydrological
forecasts. However, none of these models describe all aspects of hydrological processes sufficiently
and without avoiding errors. Therefore, it remains difficult to choose one of them as superior in all
conditions [1,2].

Different uncertainties in rainfall-runoff modeling, arising mostly from parameters, inputs, and
the structure of the model [3,4], need to be quantified reliably and accurately as possible. This can
be done by generating a streamflow ensemble system [5–7]. Although using streamflow ensemble
based on multi-input and multi-parameter sets can enhance the uncertainty quantification process,
it cannot address the uncertainty within a single hydrologic model structure (i.e., model structural
uncertainty) [8,9]. Consequently, in recent years, some multi-model approaches have been developed
in order to find more reliable results by combining multiple model forecasts.
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The model averaging approaches can be divided into two main groups. The first one includes
methods leading to a one-point deterministic result by using the weighted average of the deterministic
model forecasts or simulations, such as simple model averaging, Granger–Ramanathan averaging [10],
and artificial neural network (ANN) methods [11,12]. The second group contains combination
techniques like Bayesian model averaging (BMA) [13–16] which quantify the predictive uncertainty
and provide probabilistic results. In the BMA method, individual models are weighted using their
likelihood measures and probabilistic results are generated by combining the probability distribution
of various individual forecasts. It has been shown that BMA is one of the most promising multi-model
combination approaches in producing more reliable and accurate results in comparison to the other
methods [16–18].

There are many different fields, from medicine to management, where the BMA method is
applied [19]. Bayesian model averaging has been largely used in meteorology [16,20–23]. In recent
years, the BMA approach has been applied in various water resources and hydrologic studies ranging
from groundwater modeling [24–26] to flood frequency analysis [27]. Moreover, various studies have
successfully applied the BMA method in the field of hydrological modelling [28–35].

There are some potential issues and limitations for the standard Bayesian model averaging
approach. One of the main assumptions of the classic BMA methodology is estimation of forecast
posterior probability distribution by a Gaussian function. It has been raised that this assumption leads
to inappropriate results in the case of non-normal data, such as streamflow or precipitation where
skewed distributions (e.g., gamma) are more representative. This has motivated some research to relax
this assumption by considering different types of distributions [9,22] or applying a data transformation
procedure in order to generate approximately normal data [27,30,32,34,36]. Additionally, in the
original BMA, a single constant variance for conditional probability distribution functions (PDFs) is
implemented. This seems to be unsuitable for streamflow data where the larger errors are expected
regarding high flows. Consequently, some studies proposed considering heteroscedastic (non-constant)
variance changing monotonically with the flow level in order to enhance the predictive performance
of the BMA model [9,37]. Although a significant number of studies tried to reduce the effect of the
aforementioned assumptions, none have comprehensively assessed the sensitivity of BMA methodology
in applying various aforementioned modifications and how they affect BMA final probabilistic results.

Moreover, in the original BMA method, the expectation-maximization (EM) algorithm [38] was
proposed to find the optimal values of BMA parameters. However, it is argued that the EM algorithm
is not always able to find the global solution properly and the final solution is sensitive to the initial
values [9,16,22,30]. As a result, some studies have proposed replacing the EM algorithm with other
global optimization techniques for possessing more reliable solutions [9,39,40], while no studies have
assessed how the accuracy and reliability of the BMA results are influenced by this modification.

Furthermore, the streamflow ensemble for BMA application can be derived in various ways, such
as utilizing different hydrologic models [30,41], considering various forcing inputs scenarios [32,42,43],
or using different parameter sets of each hydrologic model [29]. It has been claimed that a high number
of members in the ensemble does not always increase the potential ability of the BMA method [5,24].
However, there is no thorough evaluation of how an ensemble generated from different sources can
affect the performance of the BMA method.

Although some studies have proposed more complicated BMA-based methods (i.e., GLUE-BMA [25],
BMA-PF [44], Cop-BMA [5], and CBP-BMA [45]), there are still many studies being done using the
original BMA approach based on the aforementioned modifications. Consequently, the need of a
comprehensive assessment of the different BMA variants is strongly felt. This study aims to fill
this gap by closely evaluating how the various previously recommended modifications affect the
accuracy and reliability of the BMA-generated probabilistic results. The conclusions are expected
to contribute toward the improvement of the knowledge of different BMA variants dealing with
streamflow simulations and forecasting and provide practical and useful recommendations about the
effectiveness of various modifications. The organization of this paper is as follows: Section 2 elaborates
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on all materials and methods used in this study, including the study areas and data, the standard
BMA method and its various components, the proposed BMA scenario-based analysis, the different
hydrologic models, and the evaluation performance statistics. In Section 3, the inter-comparison
results of the proposed BMA modifications are presented and discussed, and, finally, a summary and
conclusion section are provided.

2. Materials and Methods

2.1. Study Area and Data

The Big East River (620 km2) and the Black River (1522 km2) watersheds, located in the northern
part of Ontario, Canada, are chosen for the implementation of the proposed BMA scenario-based
analysis (Figure 1). Both basins are mostly forested regions and their landscapes are moderately sloped
with mean elevations of 450 and 300 meters above sea level for the Big East River and Black River
watersheds, respectively. The historical daily streamflow data at the outlet of both watersheds (the
only hydrometric station of each watershed) illustrate that high flows mostly occur in April when the
snowmelt process plays an important role. Moreover, as can be seen from Figure 1, the only six available
Environment Canada (EC) meteorological stations with reliable and sufficient historical data are located
outside the boundaries of both watersheds. This represents an actual condition of watersheds with
limited data availability. Analysis of the precipitation and temperature time-series of these six stations
approximately shows the annual mean precipitation and the daily average temperature of 1050 mm
and 5 ◦C, respectively. Moreover, the winter and summer average temperature are −9 ◦C and 18 ◦C,
respectively, showing that all four seasons are defined clearly in both study areas (Figure 2).

Besides the ground-based precipitation data, the archive of the daily aggregated form of the
Canadian Precipitation Analysis (CaPA) was used as an alternative precipitation forcing input for
hydrologic modeling of both watersheds. The CaPA is a gridded precipitation product with a spatial
resolution of 15 km produced by the Meteorological Service of Canada based on the combination of
various data sources, such as radar data, climate model data, and observations [46]. It was shown
that the archived CaPA is a potential reliable source of precipitation for data-scarce regions [47].
In order to initially assess the precipitation variability of each basin using different datasets, primary
analysis was performed. Two mean areal precipitation time-series for each watershed were derived
from interpolated EC ground-based data using an inverse distance weighting method [48] and the
CaPA data by applying a Thiessen polygon approach [49]. As can be seen from Figure 3, although
CaPA provided more intense rainfalls specifically in the Black River watershed, it underestimated the
amount of precipitation compared with the EC data in both watersheds. Moreover, the calculated
daily correlation coefficients between EC- and CaPA-derived datasets (0.83 and 0.87 for the Big East
River and Black River watersheds, respectively) show evidence of a linear relationship. However,
by focusing on intense rainfall events (precipitation > 10 mm/day), the correlation coefficients were
dramatically decreased to 0.42 and 0.48 for the Big East River and Black River watersheds, respectively.
Therefore, there are remarkable differences between two datasets, especially at intense rainfall events,
suggesting a significant amount of input uncertainty in poor-data watersheds. So, the authors used
CaPA as a second forcing data for hydrologic models, which can help obtain a better quantification of
the predictive uncertainty in the rainfall-runoff process using a Bayesian model averaging approach.
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Figure 3. The scatter plots of the mean areal interpolated Environment Canada (EC) and Canadian
Precipitation Analysis (CaPA) data and their corresponding cumulative precipitation of the driest and
wettest years during the period 2006–2015 for both the (a) Big East River and (b) Black River watersheds.

2.2. Standard Bayesian Model Averaging Technique

Bayesian model averaging is a statistical method for estimating probabilistic prediction based on
various competing forecasts, possessing more reliability and accuracy than initial ensemble predictions.
In this approach, the weighted averages of the individual forecasts’ probability distribution functions
(PDFs) are used for generating the posterior distribution of forecasting variables. It was claimed
through different studies that the higher weights are considered for better performing predictions in
the training period [30,32,35,40,45].

Consider y as a quantity which is going to be forecasted (i.e., predictand) and, therefore,
Y = (y1, y2, . . . , yT) denotes the training period of observation with data length T. Having K different
models (i.e., M = (M1, M2, . . . , MK)) results in Y f =

(
YM1 , YM2 , . . . , YMK

)
, the ensemble of model

predictions for the aforementioned training period, where YMi =
(
yMi

1 , yMi
2 , . . . , yMi

T

)
. Based on the

law of total probability and the assumption about the independence of different model forecasts, the
PDF of the predictand conditioned on the models over the given training period can be formulated as
follows [15]:

P
(
y|YM1 , YM2 , . . . , YMK , Y

)
=

k∑
i=1

P(y| YMi , Y) × P
(

YMi
∣∣∣Y)

(1)

where P(y
∣∣∣YMi , Y) is the posterior distribution of y given the prediction of model Mi and observed

data Y, which simply can be considered as the forecast PDF of y based on model Mi. Moreover,
P
(
YMiY

)
is the posterior probability or the likelihood of the model’s Mi prediction being correct over

the training period. Due to the assumption of models’ independency, the posterior probabilities of
models should sum to unity,

∑K
i=1 P

(
YMi

∣∣∣Y)
= 1, and, consequently, they can be considered as weights
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(i.e., wi = P
(

YMiY
)

is the weight of model i). Furthermore, in the BMA approach, it is assumed that the
model forecasts are unbiased, meaning that the expected value of the difference between observation
and each model forecast should be equal to zero (i.e., E

(
Y −YMi

)
= 0 for i ∈ [1, K]). So, before BMA

implementation, a bias-correction method should be used in order to create an unbiased ensemble
of predictions. Although there are several bias-correction methods which all can be used for this
aim, a linear-regression technique is utilized in the original BMA [16]. The bias-corrected results,
FMi = ai ×YMi + bi (where ai and bi are the coefficients of the linear regression model), are replaced
with the original model forecasts (YMi). Therefore, the BMA predictive model (Equation (1)) can be
rewritten as follows:

P
(
y
∣∣∣YM1 , YM2 , . . . , YMK , Y

)
=

k∑
i=1

wi × P(y| FMi , Y) (2)

On the other hand, in the original BMA method, it is assumed that the aforementioned posterior
probability (i.e., P

(
y
∣∣∣FMi , Y) ) follows the normal (Gaussian) distribution, g(y

∣∣∣FMi , σ2
i ) , with mean

FMi and variance σ2
i , reflecting the uncertainty within the individual model i. As explained in the

introduction, some studies discussed that this assumption is a poor choice for a non-Gaussian forecast
variable like streamflow. Therefore, they proposed implementing more representative distribution
types (e.g., gamma distribution) or applying data transformation procedures (e.g., the Box–Cox
transformation method [50]) for transforming data from their original space to a Gaussian space. It is
worth mentioning that in the case of applying a data transformation procedure, the reverting process
has to be able to apply in order to revert back to the original variable space.

Finally, based on Equation (2) and considering the Gaussian distribution, the BMA predictive
mean and its associated variance can be determined using the two following equations [15,16].
The mean value is the weighted average of individual predictions, and the BMA variance consists of
(1) between-model variance, reflecting the spread of the ensemble, and (2) within-model variance that
represents the uncertainty regarding each model having the best forecast.

E
(
y
∣∣∣YM1 , YM2 , . . . , YMK , Y

)
=

k∑
i=1

wi × FMi =
k∑

i=1

wi ×
(
ai ×YMi + bi

)
(3)

Var
(
y
∣∣∣YM1 , YM2 , . . . , YMK , Y

)
=

k∑
i=1

wi

(
FMi −

k∑
n=1

wn × FMn

)2

+
k∑

i=1
wiσ

2
i

=
k∑

i=1
wi

((
ai ×YMi + bi

)
−

k∑
n=1

wn ×
(
an ×YMn + bn

))2

+
k∑

i=1
wiσ

2
i

(4)

Successful implementation of the BMA method relies on the proper estimation of the parameters
including weights (wi) and variances (σ2

i ) of each individual prediction (i = 1, . . . k). Following
Raftery et al. [16], in the standard BMA, the EM algorithm is utilized in order to maximize the log-likelihood
function of the parameter vector (θ =

{
wi,σ2

i , i = 1, 2, .., K
}
) being approximated as follows:

L(θ) = Log
(
P
(
y
∣∣∣YM1 , YM2 , . . . , YMK , Y

))
= log

 k∑
i=1

wi × g(y|FMi , σ2
i )

 (5)

Given that there is no analytical solution for maximizing the summation of the aforementioned
function over the training period, an iterative procedure such as the EM algorithm was used. In this
procedure, the optimization problem was set by introducing a latent variable (Zk). Apart initialization,
this algorithm included an (1) expectation step, where the latent variable was calculated based on
the current values of parameters, and a (2) maximization step, where the parameters were estimated
according to the determined value of the latent variable (Figure 4b). It is worthy of note that, although
the EM algorithm is computationally efficient, it is argued that using other optimization methods can
lead to more robust estimation of the parameters.
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According to the above equations, the flowchart of the classical BMA implementation is depicted
in Figure 4a. As previously stated, some studies have been done in order to improve the reliability of the
standard BMA approach by modifying some parts of the BMA structure. However, no comprehensive
evaluation has been completed in order to clarify the effects of these modifications.

2.3. BMA Scenario-Based Analysis

In order to achieve the main goal of this research, we designed a BMA scenario-based analysis
(Table 1) to see how the predictive streamflow simulation of the BMA approach was affected by
modifying or changing some steps of the original BMA procedure. Implementation of the proposed
evaluation allowed to assess how the accuracy and reliability of the BMA probabilistic results are
sensitive to considering (1) different streamflow ensemble scenarios; (2) various data transformation
methods; (3) more representative distribution types; (4) different standard deviation definitions; and
(5) different optimization methods for parameter estimation. These scenarios are chosen in a way that
cover most of the aforementioned modifications proposed by previous studies (explained in Section 1).
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Therefore, the effects of each modification or the combinations of modifications on BMA results can
be assessed completely through the proposed analysis. The following paragraphs present a brief
description of all aforementioned modification sections.

Table 1. The BMA scenario-based analysis.

Streamflow
Ensemble

Data Transformation
Method Distribution Type Standard Deviation Type Optimization Method

Multi-Model(M-M1) No Transformation (T0) Normal (C1) Common Constant (V1) Expectation-Maximization
Algorithm (EM)Multi-Model

Multi-Input (M-MI) Box–Cox Type 1 (T1) Gamma (C2) Individual Constant (V2)

Multi-Model
Multi-Parameter

(M-MP)
Box–Cox Type 2 (T2) Log-Normal (C3) Common Non-Constant (V3) Dynamically Dimensioned

Search (DDS)

Multi-Model
Multi-Input

Multi-Parameter
(M-MIP)

Logarithmic Transform
(T3) Weibull (C4) Individual Non-Constant (V4)

Empirical Normal
Quantile Transform (T4)

Common Non-Constant +
Constant Value (V5)

Individual Non-Constant +
Constant Value (V6)

1 The ID of each scenario is presented in the parentheses.

2.3.1. Streamflow Ensemble

As mentioned before, the ensemble can stem from different sources. Apart from considering
different hydrologic models, various forcing precipitation inputs, as well as different reliable parameter
sets of each rainfall-runoff model, can be considered for generating an ensemble of streamflow
simulations. In this study, four different scenarios were determined to see how the BMA performance
would change by considering a different number of ensemble members coming from various
sources. In the first scenario, which was named “Multi-Model”, the ensemble was only based
on different hydrologic models. In the two other scenarios (i.e., Multi-Model Multi-Input and
Multi-Model Multi-Parameter), besides multiple hydrologic models, different precipitation datasets
and various parameter sets were respectively utilized. Moreover, the last scenario was defined using
all aforementioned sources (i.e., Multi-Model Multi-Input Multi-Parameter).

2.3.2. Data Transformation Methods

Four different data transformation procedures were assessed in the case of assuming normal
function for the posterior distributions. The Box–Cox transformation method is a family of power
transformations, and one of the common approaches is formulated as follows [50]:

Z′ =
{ Z−1

λ λ , 0
log(Z) λ = 0

(6)

Z and Z′ are the original and transformed data, respectively. λ is the Box–Cox coefficient and its
common optimum value will be estimated using (1) observation data (i.e., Type 1) or (2) observation and
simulations data (i.e., Type 2) by maximizing the log-likelihood function. Moreover, in the logarithmic
transformation method, the daily streamflow data are transformed using natural logarithm in order
to make them approximately follow the normal distribution. Another data transformation method
evaluated in this study was the Empirical Normal Quantile Transformation (ENQT) procedure [51].
In this approach, the transformed data were calculated using the following equation, where Q−1 is the
inverse of the standard normal distribution and the empirical cumulative distribution of each value is
denoted by eCDF(Z).

Z′ = Q−1(eCDF(Z)), (7)

It is of note that, instead of the empirical distribution, the generalized Pareto distribution is fitted
to extrapolate the upper tail of the sample in the case of having a value which falls outside the range of
the calibration data.
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2.3.3. Distribution Types

Apart from using normal distribution, which is the main assumption of the original BMA method,
the log-normal, gamma, and Weibull distributions are implemented as the conditional probability
distribution function P

(
y
∣∣∣FMi , Y) in Equation (2). These distributions are more representative for highly

skewed data such as daily stream flows and may lead to better results.

2.3.4. Standard Deviation Types

In this study, following Vrugt [37], six various standard deviation parameterizations of the forecast
distributions were assessed. The terms “common” and “individual” are used when all members of the
ensembles have the same and distinct standard deviations, respectively. The other two terms illustrate
if the standard deviations are dependent on the magnitude of the streamflow data (“non-constant”) or
not (“constant”). Moreover, the last two types are defined by adding constant value in order to make
the standard deviation be more than zero in all cases. The equations of all aforementioned standard
deviation types and their corresponding number of parameters are presented in Table 2. In these
equations, σi, j and Qi, j, respectively, denote the standard deviation and the daily discharge of the ith
simulated streamflow at time-step j. Also, K is the total number of members in the ensemble.

Table 2. The definitions and formulations of different standard deviation parameterizations.

Standard Deviation Type Formulation BMA Parameters

Common Constant (V11) σi = σ θ = {wi, σ} i ∈ [1, K]
Individual Constant (V2) σi = {σ1, σ2, . . . , σK} θ = {wi, σi} i ∈ [1, K]

Common Non-Constant (V3) σi, j = c×Qi, j θ = {wi, c} i ∈ [1, K]
Individual Non-Constant (V4) σi, j = ci ×Qi, j θ = {wi, ci} i ∈ [1, K]

Common Non-Constant Type 2 (V5) σi, j = c×Qi, j + d θ = {wi, c, d} i ∈ [1, K]
Individual Non-Constant Type 2 (V6) σi, j = ci ×Qi, j + di θ = {wi, ci, di} i ∈ [1, K]

1 The ID of each type is presented in the parentheses.

2.3.5. Optimization Methods

Given the criticism of the EM algorithm regarding its ability to achieve the global optimum
estimation and its lack of flexibility in applying to the various aforementioned modifications, the
dynamically dimensioned search (DDS) method [52] was used as the alternative optimization technique
for estimating the BMA parameters. Dynamically dimensioned search is a single global optimization
method which finds the optimal solution by dynamically rescaling the search space dimension. Similar
to the EM algorithm, the log-likelihood of the BMA parameter vector is considered as the objective
function in the DDS optimization approach. Correspondingly, the DDS parameter estimations can be
utilized as benchmarks for evaluating the application of the EM algorithm.

2.4. Hydrological Models

Using different hydrologic models for generating an ensemble of competing simulated stream
flows is the main basis of the BMA approach [9]. As listed in Table 3, the seven different rainfall-runoff

models implemented in this study are SAC-SMA, MAC-HBV, SMARG, GR4J, and three HEC-HMS [53]
based models. There are different methods available for each part of the hydrologic cycle in the
HEC-HMS platform. In this study, we used the rational combination of loss (i.e., deficit and constant,
and soil moisture accounting) and baseflow (i.e., recession and linear reservoir) methods for generating
the HEC-HMS-based models with different structures. In the HEC-HMS type 1 and 2, the recession
baseflow method is implemented with the deficit and constant and soil moisture accounting loss
approaches, respectively, while HEC-HMS type 3 is developed using the combination of the soil
moisture accounting and linear reservoir methods.



Water 2019, 11, 1707 10 of 27

All of the aforementioned models are lumped conceptual ones, which have been shown to
provide comparable or even better performance in comparison to the more complex models (e.g.,
distributed models) in data-poor watersheds [54–56]. Moreover, by adding the simplified Thornwaite
formula [57,58] to the first four models and feeding HEC-HMS models the average monthly potential
evapotranspiration calculated using Hargreaves equation [59], the only inputs to all models are the mean
areal daily precipitation and temperature. Also, streamflow estimation at the outlet of the watershed
is the only output of these models. It is worth mentioning that due to the importance of the snow
accumulation and melt process in cold regions, three different snowmelt modules are implemented with
different hydrologic models. The available temperature-index method in the HEC-HMS software [53]
was used for the three aforementioned HEC-HMS-based models. The simple degree-day snowmelt
module (DDM) [58] was added to the SMARG and GR4J models, while the SACSMA and MACHBV
models were combined with the more complex SNOW17 snowmelt estimation method [60,61] for
snow–rainfall discrimination and quantifying snowpack changes over the simulation period.

On the one hand, in the DDM approach, the snowmelt is calculated using a linear relationship
between snowmelt and air temperature, where a constant melt rate factor is considered. However,
the antecedent temperature index is used for melt-rate determination in the HEC-HMS snowmelt
approach [62]. On the other hand, the SNOW17 is a process-based temperature-index method that
considers different physical processes in the snowmelt procedure such as energy exchange between air
and snow, heat storage and deficit of the snowpack, liquid water storage, etc. Also, upper and lower
preset temperature thresholds are used for distinguishing between rainfall and snowfall in both the
DDM and SNOW17 models [63]. For a more detailed description of all snow routines, the readers are
referred to the aforementioned citations.

Table 3. Hydrologic models used in this study.

Model ID Full Name Reference Number of
Parameters

SAC-SMA Sacramento Soil Moisture Accounting Burnash et al. [64] 19

MAC-HBV McMaster University Hydrologiska Byrans
Vattenbalansavdelning Samuel et al. [65] 15

SMARG Modified Soil Moisture Accounting and Routing Tan and O’Connor. [66] 14
GR4J Génie Rural à 4 Paramètres Journaliers Edijatno et al. [67] 9

HEC-HMS1 Hydrologic Engineering Center’s Hydrologic
Modeling System-Type 1 USACE-HEC [53] 17

HEC-HMS2 Hydrologic Engineering Center’s Hydrologic
Modeling System-Type 2 USACE-HEC [53] 25

HEC-HMS3 Hydrologic Engineering Center’s Hydrologic
Modeling System-Type 3 USACE-HEC [53] 27

Furthermore, five different objective functions, including Nash–Sutcliffe efficiency (NSE) [68],
Kling–Gupta efficiency (KGE) [69], Nash volume error (NVE) [58], peak-weighted root mean square
error (PWRMSE) [70], and modified Nash volume error (MNVE) were used through the dynamically
dimensioned search (DDS) algorithm for finding the optimized parameter sets of each individual
model. The latter objective function was defined in order to greatly focus on high flows by using the
NSE based on square of discharge (NSES):

MNVE = NSES− 0.1VE (8)

where volume error (VE) is:

VE =

∣∣∣∣∑N
i=1

(
Qsi −QOi

)∣∣∣∣∑N
i=1 QOi

(9)

and NSE based on square of discharge (NSES) is calculated as follows:
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NSES = 1−

∑N
i=1

(
Q2

si
−Q2

Oi

)2

∑N
i=1

(
QO

2
i −Q2

O

)2 (10)

In the above equations, QOi and QSi are the observed and simulated streamflow, respectively, while
N is the data length. The years 2006 to 2011 were considered the calibration period and the validation
was carried out for the 2012–2015 (4 years) period. It is of note that the best performing parameter set of
each individual model, determined based on validation results, is utilized for generating multi-model
and multi-model multi-input ensemble scenarios. For a detailed description of the aforementioned
hydrologic models and objective functions, the readers are referred to the cited references.

2.5. Performance Evaluation Metrics

Five model evaluation statistics are used for comparing the accuracy, reliability, and sharpness
of the results of different BMA variants. The accuracy is defined as the error between deterministic
simulations and their corresponding observations. In this study, besides the well-known Nash–Sutcliffe
efficiency criteria, NSE being calculated according to squared (NSES; Equation (10)) and logarithmic
(NSEL; Equation (11)) transformed streamflow data, were the two other deterministic performance
criteria being, respectively, focused on the accuracy of the high- and low-flow simulations.

NSEL = 1−

∑N
i=1

(
Ln

(
Qsi

)
− Ln

(
QOi

))2

∑N
i=1

(
Ln

(
QOi

)
− Ln(Qo)

)2 , (11)

QOi is the observed variable and QSi represents the simulated variable which is considered to be the
expected value of the BMA predictive simulation. Also, N is the length of the dataset. All NSE-based
criteria vary between −∞ and 1 with the best value of 1.

Furthermore, two other probabilistic performance measurements proposed by Xiong et al. [71]
were adopted for quantitative evaluation of the BMA probabilistic results. The containing ratio (CR) is
defined as the percentage of the observed data which falls within the 95% confidence interval, and the
average bandwidth (B) is the average width of the corresponding bound. The former measures the
reliability while the latter is used for quantifying the sharpness of the results. Given two forecasts with
the same CR (i.e., same reliability), the one with a smaller B shows a greater precision.

CR =
NQin

N
× 100% (12)

B =
1
N

N∑
t=1

(qu(t) − ql(t)) (13)

In the above equations, the number of observations being contained in the 95% confidence interval
is denoted by NQin qu(t) and qu(t), respectively, show the upper and lower boundaries of the 95%
confidence interval at time-step t. In addition, for evaluating the probabilistic performance of different
BMA variants regarding high flows, we calculated the two aforementioned probabilistic indices using
the streamflow values of more than 90 percentiles (denoted by CR90 and B90 for the containing ratio
and the average bandwidth, respectively).

3. Results and Discussion

3.1. Choosing the Best Ensemble Scenario

One of the vague points of the BMA approach in the literature is the optimal number of members of
the ensemble and how they should be generated. The prime step before employing any BMA variants
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is constructing the most reliable ensemble, which provides the best results. Therefore, as the first
section of the proposed analysis, the four aforementioned scenarios of different streamflow simulation
ensembles were used in the original BMA for both the Big East River and Black River watersheds, and
a comparison was made among their results (Table 4). Given the two different input scenarios and five
various parameter sets for each hydrologic model, there were 7, 14, 35, and 70 simulated stream flows
for the Multi-Model (M-M), Multi-Model Multi-Input (M-MI), Multi-Model Multi-Parameter (M-MP),
and Multi-Model Multi-Input Multi-Parameter (M-MIP) ensemble scenarios, respectively.

Table 4. Validation statistics of the BMA model using four ensemble scenarios in both watersheds.

Criteria
Big East River Watershed Black River Watershed

M-MIP M-MP M-MI M-M M-MIP M-MP M-MI M-M

NSE1 0.76 0.74 0.79 0.77 0.82 0.81 0.84 0.81
NSES1 0.45 0.42 0.54 0.49 0.57 0.55 0.62 0.56
NSEL1 0.84 0.84 0.82 0.83 0.79 0.80 0.78 0.77

CR1 0.95 0.94 0.96 0.96 0.92 0.90 0.91 0.88
B1 17 18 19 23 27 28 24 27

CR901 0.72 0.64 0.73 0.68 0.62 0.46 0.62 0.49
B901 39 32 38 34 55 48 41 36

1 NSE: Nash Sutcliffe efficiency; NSES: NSE based on squared transformed streamflow; NSEL: NSE based on
logarithmic transformed streamflow; CR: containing ratio; B: average bandwidth; CR90: containing ratio based on
stream flows more than 90 percentile; B90: average bandwidth based on stream flows more than 90 percentile.

If the BMA performance based on the Multi-Model (M-M) ensemble scenario is considered as the
benchmark, there was no significant improvement when the performance statistics focusing on the
whole and low discharges were considered. However, by focusing on the high flow-based criteria,
the results show that considering the forcing precipitation as another source of uncertainty besides
hydrologic models enhanced both the deterministic and probabilistic BMA results. This improvement
was more significant in the Black River watershed, where the accuracy and reliability of the BMA
using the M-MI scenario increased by about 10 and 25 percent based on the NSES and CR90 criteria,
respectively. It is worth mentioning that, all seven additional members of the streamflow simulations
(generated by considering CaPA as forcing inputs of each individual model) being used in M-MI
compared to M-M, possessed lower individual deterministic predictive skills than existing models in
both ensemble scenarios.

Moreover, surprisingly, although the Multi-Model Multi-Parameter ensemble scenario included
all members being utilized in the benchmark scenario, the overall performances of the BMA method
implementing them slightly deteriorated in both watersheds. This may be due to the main initial
assumption of the BMA methodology, where the law of total probability needs not only collectively
exhaustive but also independent members of the ensemble. Furthermore, using 70 members in
a streamflow ensemble (constructed by considering all aforementioned sources) enhanced the
probabilistic performance of the BMA, specifically in high flows, while its performance was not
as reliable and sharp as in the case where the M-MI scenario was applied.

Altogether, it can be concluded that the M-MI ensemble scenario was the most appropriate one,
providing better probabilistic and deterministic results. Accordingly, for the rest of the application
of the proposed analysis, the Multi-Model Multi-Input ensemble scenario, including 14 members of
streamflow simulations, was implemented for both watersheds. As a result, 48 probabilistic streamflow
simulations were generated considering the combination of the different modifications, including
distribution, standard deviation, and data transformation methods (Table 1). The parameters for all
48 BMA variants were calibrated using the DDS optimization method for the period from 2006 to 2011,
considering one year as a warm-up period, and the years 2012 to 2015 were considered for validation.
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3.2. BMA Weights Versus Models’ Performance Statistics

In the first place, besides assessing the effects of various modifications, a comparison was
made between the BMA weights of different members of the ensemble and the performance of the
corresponding models during the calibration period for both the Big East River and Black River
watersheds (Figure 5).
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Interestingly, it can be seen that the distributions of the weights amongst different members
do not properly agree with the previous belief, where the weights reflect the models’ performance.
For instance, in the Big East River watershed, although M1 was one of the most promising simulations
comparing different performance statistics, its weights were not predominant compared to other
BMA variants. In addition, in the Black River watershed, M10 had relatively high weights, while its
performance was not good in comparison to the other models. Similarly, the first four members of the
ensemble (i.e., M1 to M4) possessed the most reliable deterministic results, although they received
relatively low weights.

Moreover, closer inspection of the graphs (in Figure 5) shows that low flows played an important
role in the determination of the BMA weights, specifically in the Big East River watershed where the
specified weights relatively fit with the NSEL performance statistics. This may be justifiable by the
fact that more than 90 percent of the daily streamflow observations were less than 25 m3/s while this
fraction was around 60 for the Black River watershed (Figure 6).
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Figure 6. Empirical cumulative probability distribution of the daily streamflow observations at the
outlet of the Big East River and Black River watersheds.

3.3. The Effects of Different Modifications

The evaluations of various BMA modifications (i.e., different distribution and standard deviation
types, and data transformation methods) will be provided in this section. As discussed previously, one
recommended solution in order to enhance the performance of the original BMA approach is using
data transformation procedures for generating approximately normally distributed data. Figure 7
compares the accuracy and reliability of the BMA variants with and without application of data
transformation procedures. It can be recognized that, in general, the BMA deterministic performance
did not change significantly by applying data transformation methods. On the other hand, although
the data transformation caused a remarkable enhancement of the BMA’s reliability in high flows, the
sharpness of the results was largely reduced.

Further analysis (Figure 8) shows that the influence of applying data transformation modification
on the BMA performance is highly related to the types of standard deviation being implemented in
the procedure. In the case of considering common and individual non-constant variance types (i.e.,
V3 and V4, respectively), implementation of a data transformation method leads to under confident
and negatively biased probabilistic results. It is much more recognizable in high flows where the
containing ratios of the 95% confidence interval are around one, while their corresponding bandwidths
increase largely. However, for other types of standard deviations where a constant value can play an
important role, the reliability of the high flows’ simulation is partly improved without a drastic drop in
their sharpness.
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Figure 7. The boxplots of the different evaluation metrics for the BMA streamflow simulations by
implementation (With T) or non-implementation of data transformation (without T) methods being
derived from considering normal distribution and different proposed standard deviation types for the
(a) Big East River and (b) Black River watersheds during the validation period.

Moreover, Table 5 represents the performance criteria of different BMA variants, being developed
using normal distribution and variance types V5 and V4, to compare different data transformation
procedures. Based on the results, the only data transformation procedure providing acceptable
probabilistic results with the use of heteroscedastic standard deviation without a constant value (i.e.,
V3 and V4) was the empirical normal quantile transform (i.e., T4) method. However, in general, by
looking at the BMA variants based on variance type V5, as a representative of the other standard
deviation forms, none of the methods appeared superior to the others, indicating that changing the
data transformation approaches had little impact on BMA model performance.

Table 5. Probabilistic evaluation criteria of different BMA variants based on different data transformation
methods for both watersheds in the validation period

Basin Criteria
BMA Variant

C1V5T1 C1V5T2 C1V5T3 C1V5T4 C1V4T1 C1V4T2 C1V4T3 C1V4T4

BE

CR 0.91 0.90 0.91 0.90 0.92 0.93 0.92 0.91
B 25 22 21 24 127 73 53 30

CR90 0.90 0.88 0.88 0.89 1.00 1.00 1.00 0.98
B90 82 65 60 65 720 364 188 87

BL

CR 0.87 0.88 0.87 0.86 0.91 0.91 0.91 0.88
B 27 27 29 27 46 46 52 30

CR90 0.84 0.80 0.92 0.85 0.99 1.00 0.99 0.88
B90 66 64 73 64 143 141 170 76
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Figure 8. The comparison of different performance statistics for various BMA modifications
generated by considering different standard deviation types and non-implementation (“Without”) and
implementation (“With”) of their corresponding best data transformation method for the validation
period in the (a) Big East River and (b) Black River watersheds.
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Besides using data transformation procedures, the two other BMA modifications evaluated in
this study were considering other distribution types and implementing various standard deviation
forms (Figure 9). The comparison between the applications of four different distribution functions
proposed in the scenario-based analysis shows that, in general, the implementation of the log-normal
distribution (i.e., C3) enhances the reliability and sharpness of the BMA results simultaneously.
However, it underestimates when considering high flows, which is not appropriate in most operational
hydrologic fields such as flood forecasting. As can be seen from the figure, in the case of using a
common constant standard deviation type (i.e., V1), even though the coverage of the 95% confidence
interval slightly increased by applying the Weibull distribution, the model lost its sharpness by leading
to a higher bandwidth in both watersheds. Moreover, by assessing the effects of using different
standard deviation types, it is apparent that considering “non-constant” types leads to more reliable
results especially for high flows. However, using “individual” variance types does not affect the BMA
performance in comparison to their corresponding “common” ones.
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Figure 9. Comparison of the probabilistic performance of the BMA models being modified using
different distribution and variance types for the validation period in the (a) Big East River and (b) Black
River watersheds.

Taken together, these results suggest that changing the distribution type of the BMA posterior
probability from normal to more representative ones does not enhance the BMA probabilistic
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performance, significantly. However, implementation of “non-constant” standard deviation types
improved the BMA predictive results specifically regarding high flows.

3.4. Expectation-Maximization Algorithm Versus Dynamically Dimensioned Search Method

The EM algorithm was implemented in the classical BMA method, which is criticized for not
being able to reach global optimum estimations. Here, as a part of the evaluation, six different BMA
variants were calibrated using the EM algorithm, and a comparison was made with the corresponding
DDS-based calibrated models. The results, as shown in Figure 10, indicate that the differences among
estimated BMA weights using EM and DDS methods were negligible, and both methods led to the
approximately similar optimal solution.
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Figure 10. A comparison of the log-likelihood and weights of the calibrated BMA models using
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To specify the logic behind these results, the authors applied the regional sensitivity analysis
(RSA) method [72] to original BMA with “common” (Figure 11) and “individual” (Figure 12) constant
standard deviation types (i.e., C1V1T0 and C1V2T0 BMA variants, respectively). In this method,
the Monte Carlo simulation technique is used for generating various parameter sample sets, and then,
the samples are divided into two behavioral and non-behavioral ones based on a predefined threshold.
So, qualitative comparison of the empirical cumulative distribution functions (CDFs) of the behavioral
and non-behavioral parameter sets illustrate the most sensitive parameter(s). The RSA results for both
the Big East River and Black River watersheds reveal that the objective function is significantly sensitive
to standard deviation values, while the models’ weights can be considered non-sensitive parameters.
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Therefore, the variation of the log-likelihood function is evaluated by changing the most sensitive
parameters (standard deviations) between their lower and upper bounds while the other parameters
are constant and equal to their nominal values (i.e., the calibrated values). The results, illustrated in
Figure 13, show that in all evaluated cases, the negative log-likelihood, which is the objective function
for both optimization processes, is a convex function so that a local optimization method such as the
EM algorithm can lead to global optimal estimation of parameters. Consequently, although the EM
algorithm is considered a local optimization method, it can estimate the original BMA parameters like
other global optimization techniques. It is of note that the original EM method can only be applied for
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the constant variance types and it requires modifications if other distribution or standard deviation
types need to be incorporated. However, DDS or any other global optimization techniques can be used
by different BMA modifications without any difficulty.
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Finally, in order to complete the evaluation and find the most promising types of BMA
modifications, the best combinations were selected for each distribution type and their performances
during the validation period were compared with each other (Table 6). Additionally, for qualitative
inspection of the best models, Figure 14 illustrates the mean and the 95% predictive bounds of the
BMA streamflow simulations for a representative portion of the validation period. What stands out in
Table 6 is that the standard deviation types in all the best-selected BMA models were the non-constant
ones, and most of them were the heteroscedastic variance with a constant value (i.e., V5 and V6).
Moreover, as expected based on the previous comparison, although the best BMA modification
with data transformation procedure provided higher reliability, the sharpness of the results partially
deteriorated in high flows in both watersheds. Also, it can be seen that the best BMA model using
the log-normal distribution type underestimated high flows significantly, while its other performance
statistics showed almost the same predictive performance in comparison to the other best models. It is
worthy of note that there was no significant difference among the accuracy of the various best-selected
BMA variants.
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Table 6. The comparison of the performances of the best-selected BMA types for both the Big East
River and Black River watersheds during the validation period.

Criteria NSE NSES NSEL CR B CR90 B90

Big East
River

C1V6T0 0.77 0.49 0.81 0.95 19 0.80 50
C1V5T4 0.77 0.49 0.82 0.91 21 0.88 60
C2V6T0 0.77 0.49 0.82 0.93 18 0.81 49
C3V5T0 0.78 0.54 0.83 0.96 17 0.74 40
C4V5T0 0.77 0.51 0.82 0.93 20 0.83 56

Black
River

C1V6T0 0.83 0.60 0.80 0.90 26 0.76 61
C1V5T2 0.83 0.59 0.80 0.87 27 0.84 66
C2V6T0 0.83 0.61 0.80 0.89 26 0.75 60
C3V6T0 0.83 0.61 0.79 0.89 25 0.71 50
C4V4T0 0.83 0.59 0.80 0.88 27 0.79 69Water 2019, 11, x FOR PEER REVIEW 23 of 29 
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Furthermore, as it was concluded beforehand, there was not a significant difference among the
predictive performances of the different BMA variants utilizing various distribution types. However,
the implementation of the gamma distribution type seemed to provide more balanced and consistent
results in comparison to the other ones in this case. It is of note that even by comparing the most
promising models, which possessed approximately similar performances, the calibrated weights
showed some changes confirming that there were no specific BMA weight combinations that led to the
best results (Figure 15).
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4. Summary and Conclusions

This study provides the first assessment of the previously proposed modifications for the original
BMA methodology and documents how they affect the probabilistic and deterministic performance of
the BMA-derived results for daily streamflow simulation. A scenario-based analysis was designed
where the application of four diverse streamflow ensemble scenarios, different data transformation
procedures, various distribution types, six different types of standard deviation, and two optimization
algorithms were assessed thoroughly.

The summary of the obtained results from applying the proposed evaluation into two data-poor
watersheds is as follows:

1. Comparing different ensemble scenarios indicated that, besides using multi-models, considering
various forcing precipitation scenarios in generating members of an ensemble leads to better
probabilistic and deterministic results in data scarce regions, where the estimation of mean areal
precipitation always comes with noticeable errors. However, not only using a multi-model
multi-parameter scenario did not provide better results, it also slightly reduced the reliability of
the BMA simulations.

2. In contrast to earlier findings, however, the results showed that the BMA weights were not
completely in accordance with individual model performance. There were some highly weighted
hydrologic models with relatively lower performance in comparison to the others in both
watersheds. In addition, various BMA modifications led to different combinations of weights and
all had almost the same predictive power.

3. Applying data transformation generally yielded an improvement in the reliability of the
BMA results. However, except for the empirical normal quantile approach, using other data
transformation methods concurrent with implementing non-constant standard deviation without a
constant parameter dramatically deteriorated the sharpness of the results, specifically in high flows.
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4. Incorporation of the more representative distribution types did not show a particular superiority
over the classic BMA method, where the posterior predictive distributions were assumed to be
Gaussian. However, implementing non-constant standard deviations enhanced the predictive
capability of the BMA model, especially for high flows that are often of particular attention in
operational hydrology.

5. The expectation-maximization algorithm provided almost the same results as the dynamically
dimensioned search (DSS) method, which showed its ability to estimate BMA parameters well
enough. However, the only drawback was that it could not easily be applied for all BMA variants
when the distribution or standard deviation types were changed.

In general, the findings of this study suggest that the simulation skill of individual members
are less important than how the whole ensemble captures the variability of the observation without
overlapping. In other words, using ensemble members with diverse simulation skills can enhance
the quality of the BMA results, while simply increasing the number of members in the ensemble
does not always lead to better results. Although possessing high-performance models is necessary
for obtaining reliable results, there is some information that is only provided by the relatively lower
performing models and, consequently, considering them as members of the ensemble can enhance
the BMA’s predictive performance. The notable BMA weights of some of these models are another
convincing justification for this conclusion. In addition, it was shown that in regions where the network
of meteorological stations was sparse, using other sources of precipitation data, such as archived
radar- or satellite-based products as inputs into the hydrologic models, can lead to a more exhaustive
streamflow ensemble that enhances the BMA’s performance.

Moreover, another implication of these results is that the most effective BMA modification in the
positive direction (i.e., enhancing the predictive performance) is the implementation of non-constant
standard deviation. Increasing the variance of errors in line with flow level seems to be more realistic
and enhances the reliability of the BMA results significantly for high flows (an average of 20%
improvement in the reliability of high-flow simulations in both the Big East River and Black River
watersheds over the whole period). However, considering the more representative distribution types
does not highly affect the BMA-derived probabilistic and deterministic results. Moreover, although
using data transformation procedures enhanced the reliability of the results, even more than applying
non-constant variance, it can lead to a notable wide confidence interval width in high flows. Therefore,
much more attention must be paid to the sharpness of the high-flow probabilistic simulation in the
case of implementing data transformation. Furthermore, the results showed the robustness of the EM
algorithm for estimating the original BMA parameters, while it was not easily applicable to all BMA
modifications. Thus, applying a global optimization method is recommended in the case of using
various BMA variants.

Although the two watersheds in this study share approximately the same land use and climatology,
their hydrologic responses are not quite similar and lead to two different empirical CDFs of streamflow
data. Therefore, it can be said that the aforementioned conclusions about the effects of different
modifications on BMA results can be considered as useful recommendations in future studies.
However, in order to provide more comprehensive conclusions, it is worth applying the proposed
BMA modifications analysis in watersheds with very different topography and climatology (e.g.,
mountainous or coastal areas and tropical or semi-arid regions) in future studies. Furthermore,
although possessing mutually exclusive and collectively exhaustive ensemble members is one of the
main assumptions of the BMA method, no studies have tried to overcome this issue. Although this
study assessed the effects of various ensemble scenarios on BMA performance and provided fresh
insight into the importance of establishing an ensemble with the aforementioned properties, there has
not been a specific method about how these members should be generated and selected. Consequently,
further studies need to be carried out to establish new ideas for solving this remaining challenge.
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