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Abstract: For almost 30 years, the Soil and Water Assessment Tool (SWAT) has been successfully
implemented to address issues around various scientific subjects in the world. On the other hand, it
has been reaching to the limit of potential flexibility in further development by the current structure.
The new generation SWAT, dubbed SWAT+, was released recently with entirely new coding features.
SWAT+ is designed to have far more advanced functions and capacities to handle challenging
watershed modeling tasks for hydrologic and water quality processes. However, it is still inevitable
to conduct model calibration before the SWAT+ model is applied to engineering projects and research
programs. The primary goal of this study is to develop an open-source, easy-to-operate automatic
calibration tool for SWAT+, dubbed IPEAT+ (Integrated Parameter Estimation and Uncertainty
Analysis Tool Plus). There are four major advantages: (i) Open-source code to general users;
(ii) compiled and integrated directly with SWAT+ source code as a single executable; (iii) supported by
the SWAT developer group; and, (iv) built with efficient optimization technique. The coupling work
between IPEAT+ and SWAT+ is fairly simple, which can be conducted by users with minor efforts.
IPEAT+ will be regularly updated with the latest SWAT+ revision. If users would like to integrate
IPEAT+ with various versions of SWAT+, only few lines in the SWAT+ source code are required to be
updated. IPEAT+ is the first automatic calibration tool integrated with SWAT+ source code. Users
can take advantage of the tool to pursue more cutting-edge and forward-thinking scientific questions.
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1. Introduction

To better represent hydrologic and nutrient processes in natural systems, watershed simulation
models such as the Soil and Water Assessment Tool (SWAT) [1], WetQual [2], Agricultural
Policy/Environmental eXtender (APEX) [3], and Hydrological Simulation Program-Fortran (HSPF) [4],
have been intensively developed and implemented in various scientific projects in the past 30 years.
Among the commonly adopted models, the SWAT model is one of the most popular platforms which
generated thousands of peer-reviewed publications in academic community (SWAT Literature Database
for Peer-Reviewed Articles; https://www.card.iastate.edu/swat_articles/INDEX.ASPX). In addition to
educational contributions, SWAT is also used by government policy makers such as the Conservation
Effects Assessment Project conducted in the United States (CEAP) [5–7].

SWAT is used to perform watershed-scale simulations for flow, sediment, nutrient, pesticide,
and bacteria [8–12]. Before one can apply SWAT for actual practices such as assigning conservation
scenarios or investigating climate change impacts, the corresponding model parameters should be
properly adjusted in model calibration processes to reflect watershed systems [13–17]. However, a
complex watershed simulation model like SWAT comes along with a large number of undefined model
parameters, whereas the ordinary manual calibration approach may not well serve some projects
in a timely matter (note that manual calibration approach is so far the best way for modelers to
understand detailed model processes). Fortunately, programs and software are available for users
to carry through calibration routines such as SWAT-CUP [18] and IPEAT (Integrated Parameter
Estimation and Uncertainty Analysis Tool) [19]. Users can take advantage of such tools to conduct
model calibration by optional parameter searching algorithms.

After almost 30 years development, proficiency of the SWAT model has reached to the limit where
potential flexibility is restricted by the current structure. Therefore, a new generation SWAT, dubbed
SWAT+, has recently been release with entirely new coding features [20]. SWAT+ is a lot more flexible
in terms of spatial representation and the associated modular codes were designed to facilitate future
applications and development for general users. One of the new features is that users may conduct
manual calibration in easier ways via the calibration.cal file, whereas users can define parameter values
in basin, subbasin, and HRU (Hydrologic Response Unit) levels. However, one may need automatic
calibration tool(s) once the required calibration load is significant. For example, manual calibration is:
(i) More time consuming in altering parameters one by one; (ii) highly dependent on users’ experience
in both hydrologic or water quality processes; and, (iii) users must be very familiar with the structure
or organization of a model (e.g., groundwater parameters).

IPEAT was developed to perform automatic calibration with the SWAT model [19]. The overall
goal of IPEAT is to provide a computational framework that can be applied to other models, such as
APEX-CUTE [21]. The main advantage of IPEAT is that users could flexibly add additional functions
based on their needs since the source code is open to the public, unlike other calibration tools. For
example, uses can assign soft data constraints to address interior watershed processes during model
simulations (non-temporal data such as denitrification rate, [22]). In addition, the corresponding
optimization algorithm can also be replaced with minor efforts. On the other hand, the hitch of IPEAT is
that it’s currently a MATLAB-based program. Therefore, users are required to have MATLAB installed
on their operation systems.

As it was mentioned earlier, there are some automatic calibration tools available for the SWAT
model. However, some users still feel the need of developing their own tools because of the conceivable
limitations (e.g., not open source, required software to operate, or difficult to upgrade for advanced
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explorations). Therefore, much unnecessary time was spent on research for the tedious computer
programming skills and operations research. Until now, no automatic calibration tool is available
for SWAT+. It is necessary to have this issue resolved while the new generation SWAT (SWAT+) is
officially released.

The goal of this research is to develop an open-source, easy-to-operate automatic calibration tool
(IPEAT+) for SWAT+. Specifically, IPEAT+ offers the following five advantages: (i) IPEAT+ is an
open-source program so that users can modify or customize it freely; (ii) IPEAT+ is compiled directly
with SWAT+ under the FORTRAN coding environment and can be executed without installing any
additional program; (iii) IPEAT+ is supported by the SWAT developers group and the corresponding
technical support is available; and, (iv) IPEAT+ is using a fast optimization algorithm (which can also be
replaced by other algorithms with minor efforts) to ensure computational efficiency during calibration.

In this study, the SWAT+ model was used to conduct watershed simulation at the Middle Bosque
River Watershed (MBRW) in the State of Texas, USA. Nine parameters were calibrated and validated for
hydrologic processes and corresponding comparisons by implementing statistical measures, behavior
definition, and uncertainty analysis.

2. Materials and Methods

2.1. The SWAT/SWAT+ Model

2.1.1. SWAT

The SWAT model was developed in the early 1990s by the United States Department of
Agriculture—Agricultural Research Service (USDA-ARS) to address the fate of pollutants caused by
anthropogenic activities, especially nonpoint sources pollution (NPS) [1]. The early version of SWAT was
the combination of coupling ROTO [23] and SWRRB [24] models. It is a continuous-time, process-based,
spatially distributed model that has been used to perform wide variety of watershed-scale applications
by providing scientifically credible solutions. Hydrologic (surface and subsurface flows), sediment,
and nutrient/pesticide processes with changing management practices can be reasonably simulated by
large amount of governing functions. The special feature of SWAT is the use of HRUs where designated
land use, soil type, and slope information can be grouped into files for each subbasin. Outputs at the
HRU level are aggregated at subbasin level, and eventually delivered from upstream to downstream
subbasin via channel routing. This approach is fairly useful back in the time when computational
speed was still quite slow. On the other hand, users can assign one HRU per each subbasin so that the
SWAT project will be closer to a physically-based model (instead of semi-physically-based) with given
modern computer technology. SWAT has been applied globally on various subjects such as Great
Lakes in the United States [25–27], Blue Nile Basin in Africa [28], and Yellow River Basin in China.
More than 3,000 peer-reviewed articles are available as references for users in the official database of
SWAT community [29].

2.1.2. SWAT+

SWAT+ is the new generation SWAT model developed to be more flexible in advanced upgrades and
expansion. The primary contribution of SWAT+ is that the model has been reconstructed as independent
modules (objects) so that it’s a lot easier in terms of model maintenance and the corresponding
development as well. In addition to modularization, there are also some key developments to enhance
the performance of the model. For example, new functionalities of aquifers and reservoir operation
rules are available in SWAT+. Aquifers are used to be controlled exclusively in HRUs. Now the
corresponding aquifer boundaries can be defined flexibly without following the limitations by HRUs.
As for reservoir functions, it was one of the primary setbacks of the SWAT model. Reservoir releases
may play significant role in watershed responses especially for those with relatively larger ones. Users
now can assign detailed operation rules effortlessly in SWAT+ so that reservoir simulation outputs can
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be a lot closer to actual operation routines. Primary differences between SWAT+ and SWAT models are
shown in Table 1.

Table 1. Primary differences of functionalities between SWAT and SWAT+.

Category SWAT+ SWAT

Calibration Support Users can manually calibrate
SWAT+ by using calibration.cal Not Supported

Reservoir Operation Users can assign operation rules Not Supported

Coding Flexibility Easy to modify/upgrade
modularized coding structure Conventional

Aquifer Boundary Can be defined flexibly
without limitations Used to be linked with HRUs*

Connectivity Users can define individual
watershed objects Limited spatial flexibility

HRUs*: Hydrologic Response Units.

There are others spatial modules with designate functions: (i) outlets, can be used to add/remove
water from the watershed; (ii) canals; can be used to conduct water diversion among irrigation regions;
(iii) pumps, can be extracted from any aquifer to specified spatial object; (iv) herds, can be applied to
biomass and the associated grazing conditions; and, (v) water rights, can be assigned by different share
of water demand. More details can also be found in [17].

2.2. IPEAT/IPEAT+ Framework

Some commonly adopted SWAT automatic calibration programs are not open-source to the
public. It is difficult or sometimes impossible to explore more advanced subjects (e.g., incorporation of
non-temporal-based soft data within interior watershed processes, [22]) without changing the program
accordingly. IPEAT is a computational framework that was developed to not only conduct automatic
calibration but also investigate uncertainty from multiple sources such as model parameters, system
structure, forcing inputs, and measurement outputs [19]. IPEAT was initially linked with SWAT under
the MATLAB environment whereas users have to install the corresponding program to execute all
functions. In IPEAT, the Dynamically Dimension Search (DDS) was selected to be the default parameter
searching engine. It has been shown that DDS outperformed mainstream optimization techniques
with superior performance in terms of computational speed and the ability to break through local
solutions [30].

The same framework was also implemented to other model such as APEX (referred as APEX-CUTE,
available in both MATLAB and Python programs) which is the version that incorporates IPEAT
framework [21]. It is a field-scale watershed simulation program maintained by the Texas A&M
University and the U.S. Department of Agriculture. Applications of IPEAT can be found in literature
which is off the focus of this manuscript.

The primary pitfall of IPEAT with SWAT is that it is still a MATLAB-based platform. One needs to
prepare/purchase MATLAB package to execute the program, which could potentially be a hindrance
to some international users. In addition, similar to other automatic calibration programs, MATLAB
is serving the purpose of data management routines before and after SWAT (or other models as
well) execution. Specifically, open & read targeted files; write & save updated information (e.g., new
parameter values) into targeted files; calculation of error statistics; print desired (organized) modeling
outputs; and, preparation of next runs(s) or proceed termination criteria. However, thousands of
simulations may be conducted for calibration purposes in a general SWAT project so the projected
computational speed could be prolonged due to the communication between FORTRAN executable
and MATLAB-based IPEAT program. Therefore, IPEAT+ is developed in FORTRAN and linked with
SWAT+ directly in the source code to save communication time between programs and users do not
need to install any additional programs anymore.



Water 2019, 11, 1681 5 of 17

As shown in Figure 1, the computational structure of IPEAT+ can be categorized into five parts:
(i) Model initialization; (ii) model simulation; (iii) execution of parameter estimation technique; (iv)
calculation of statistics; and, (v) implementation of termination criteria. The calculation routines are
similar to most available calibration approaches. On the other hand, some detailed controlling setups
are described in the following sections.
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2.3. IPEAT+ Control Panel and Settings

There are three primary control files to conduct automatic calibration: (i) Technical Control
File [IPEAT_Control.set]; (ii) Parameter Setting File [IPEAT_Para.set]; and, (iii) Observation File(s)
[IPEAT_ObsXY.set]. Detailed description is as follows.

2.3.1. Technical Control File

IPEAT_Control.set is the most important control file in IPEAT+ operation. As shown in Figure 2,
users shall define many simulation details here. The first part of the control file is to define variables in
conducting optimization algorithm: (i) Perturbation Factor (PF): The default value of PF is 0.2, which
has been validated in literature and users do not need to adjust this value to find better solutions [31];
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(ii) Total Number of Model Evaluation (TotalRuns): The maximum simulation runs defined before
conducting calibration routines; (iii) Initial Para Index (InitialParaIndex): Users can start automatic
calibration from randomly selected initial parameter set (InitialParaIndex = 0), or, it is also supported
to begin with designated one (InitialParaIndex = 1); and, (iv) Restart Mechanism (RestartIndex): Users
can choose to start from the 1st run (RestartIndex = 0), or, restart model simulation from the breaking
run while terminated in case simulations are unfortunate incidents (RestartIndex = 1).
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Figure 2. Illustration of IPEAT+ input files: IPEAT_Control.set with required settings.

The second part of the control file is to define calibration variables. There are nine major
components: (i) Total Variable: The number of output variables that users are trying to calibrate;
(ii) Total Soft Data Constraint(s): The number of soft data constraints that users are trying to incorporate
during automatic calibration; (iii) Outlets: Designated number of outlet(s) that users are going to
calibrate; (iv) IPRINT: Simulation time period that users intend to calibrate; (v) Output Variables:
Desired output variables during calibration (units for streamflow, sediment and nutrient loads are
m3/sec, ton/day, and kg/day): (vi) Statistics (as Objective Functions): Predefined objective function(s)
during calibration; (vii) Weight(s) of Objective Function(s): Users can define the corresponding weight
for each objective function to highlight the importance of individual variable; (viii) Warmup Years:
Additional model simulation years before designated calibration time period; and, (ix) Total Simulation
Period: Total simulation time for model simulations. The given example in Figure 2 demonstrated that
two variables are defined for automatic calibration with no soft data constraint involved. The first
variable is defined at outlet 53, in daily time step for streamflow rate (m3/sec) and the corresponding
objective function is 1-NS (Nash-Sutcliffe Efficiency Coefficient) [32] with the given weight of 1.5.
The second variable represents at outlet 54, in daily time step for sediment load (ton/day) and the
corresponding objective function is 1-NS (Nash-Sutcliffe Efficiency Coefficient) with the given weight
of 1.0.

One can find that calibration details of different variables are defined by order in each row from
(iii) through (vii). Users can take the same concept for higher dimensional scenarios. Please note that
it’s not recommended to mix different objective functions (e.g., mixing 1-NS with PBIAS in the same
calibration scenario) since that may show no statistical sense in the derived results.
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2.3.2. Parameter Setting File

In SWAT, calibration of model parameters can be tedious even by taking the automatic approaches
because users have to adjust parameter values in thousands (or more) of SWAT input files for the whole
watershed project. Fortunately in SWAT+, users can conduct manual calibration by changing parameter
values in the calibration.cal file with a lot less effort. In IPEAT+, IPEAT_Para.set is used to define
required information of the most important calibration parameters. The format of IPEAT_Para.set
is following the same pattern of cal_parms.cal which contains the full list candidate parameters
available for calibration in SWAT+. As shown in Figure 3a, three columns are added for users to select
candidate parameters and to define initial values if desired. Specifically, InitialValue is designated
initial parameter value if users have preference. CHG_TYPE (1 = abs; 2 = %) is the index that users
can calibrate parameters by in scales of absolute values or percentage. Selection (1 = Selected; 0 =

NotSelected) is the index that users should use this index to decide which parameters are included
in calibration).

2.3.3. Observation Data File(s)

The naming format of observation file is IPEAT_ObsXY.set, whereas X represents time steps and Y
is the corresponding outlet number. For example, IPEAT_ObsDay53.set denotes daily observation at
outlet 53. The general format of observation file is shown in Figure 3b. The first three columns are
time identifiers for year, month, and day. The following columns are streamflow (sf(m3/s)), sediment
(sed(t/ha)) load, and nutrient loads (organic nitrogen: orgn(kg/ha), organic phosphorus: orgp(kg/ha),
nitrate: NO3

−-N (kg/ha), ammonia: NH4
+-N (kg/ha), nitrite: NO2-N (kg/ha), mineral phosphorus:

minp(kg/ha), soluble pesticide: solpst(mg/ha), pesticide in sorption: sorpst(mg/ha), total phosphorus:
tp(kg/ha), total nitrogen: tn(kg/ha), and total pesticide: tpst(ppb)). For calibration purpose, users can
assign the value of “−99” for missing data and the optimization routines will skip those time steps
while calculating statistics.

2.4. IPEAT+ Output Files

There are two primary output files in IPEAT+ associated with automatic calibration:
(i) IPEAT_ParaOBJ.out: To store calibration outputs for parameter sets and the corresponding objective
function values; and, (ii) IPEAT_Stats.out: Statistics (NSE: Nash-Sutcliffe Efficiency Coefficient; PBIAS:
Percent Bias; RMSE: Root Mean Square Error; R2: Coefficient of Determination; and, MSE: Mean
Squared Error) of individual outlet station in each run are stored in this file. Detailed description of
output files is as follows.

2.4.1. Calibration Parameter Sets and Objective Function Values

As shown in Figure 4a, parameter sets used during calibration and the corresponding objective
function values are printed in the order of simulations. Parameters will only be shown for the ones
that are being checked in the IPEAT_Para.set (specifically, the “Selection” option). The given objective
function values in this file are the integrated sum after multiplying the original objective function by
the weights assigned in the IPEAT_Control.set. In addition, some statistics will be transformed (such
as NSE and R2 are transformed to 1-NSE and 1-R2) to serve the purpose of optimization routines. For
example, the potential values of NSE range from 1 (best) to −∞ (worst). One cannot minimize NSE in
the original format, and similar issue also applies to R2.
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2.4.2. Statistical Outputs and Output Processes

In modern day watershed modeling projects, statistical outputs are widely used as quantitative
standards to provide scientifically credible guidance in assessing performance of simulation outputs.
For example, General Performance Ratings (GPR) is one of the most commonly adopted statistical
measurements in the field of water and environmental science [13]. In IPEAT+, five frequently
implemented statistics are calculated for each run. On the other hand, users can add more statistics in
the code with minor effort. As shown in Figure 4b, statistical results of individual output variable
(in this case, 1 = streamflow rate and 2 = sediment load) in each runs are printed in IPEAT_Stats.out.
Please note that statistics here are not necessary objective function values for the reasons explained in
the previous subsection. In addition to statistical results, modeling output processes in each time step
(e.g., daily streamflow) are also saved into a single file (IPEAT_Processes.out in Figure 4c). One can take
advantage of information from this file and explore advanced investigation such as uncertainty analysis.
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2.5. Study Area and Model Setup of Example Application

The features and capabilities of IPEAT+ are demonstrated through an application to the 471 km2

Middle Bosque River Watershed (MBRW) in the Texas-Gulf Region of Central Texas (Figure 5). The
MBRW includes portions of McLennan, Bosque, and Coryell counties and its altitude varies from 367 m
at the highest point on the northwestern edge to 161 m on the eastern edge. The study region mainly
consists of 65.4% pasture and 20.3% farm lands, with minor land covers of 8.5 % forests, and 3.2%
residential areas (USGS, 2007) (Figure 6). The climate in the MBRW is characterized as semi-arid, with
long hot summers and short mild winters. The warmest month, August, has an average maximum
temperature of 36.5 ◦C while the coldest month, January, has an average minimum temperature of
2.8 ◦C (U.S. Depth. of Commerce, Weather Bureau, 1980–2012). The average annual precipitation is
1081 mm/year.
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For the SWAT+ model setup, the QSWAT+ plugin (Version 0.9) was used with QGIS 2.18.23
(https://qgis.org/en/site/). The required input data to construct the MBRW SWAT+ model are a digital
elevation model (DEM), a raster soil map and raster land use map. A total of 69 subbasins were

https://qgis.org/en/site/
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delineated based on the DEM. Using the soil and land-use maps with no threshold setting for the HRU
definition, a total of 1721 HRUs was created. As shown in Table 2, a total of nine SWAT+ parameters
were selected for model calibration. In this study, the SWAT+ MBRW project was simulated for daily
streamflow process from 1991 to 1994, whereas the first two years were used for warm-up period.

Table 2. Descriptions of SWAT+ parameters selected for calibration in case study.

Parameters Input File Units Range Description

awc sol mm_H20/mm ±100 Available water capacity of the soil layer
cn2 hru % ±30 Initial SCS CN II value

delay gw Day 0–500 Groundwater delay
epco hru - 0–1 Plant uptake compensation factor
esco hru - 0–1 Soil evaporation compensation factor

flo_min gw mm ±100 Minimum aquifer storage to allow return flow
k sol mm/hr ±100 Saturated hydraulic conductivity

revap_co gw - 0.02–0.2 Groundwater “revap” coefficient

revap_min gw mm ±100 Threshold depth of water in the shallow
aquifer required for return flow to occur

2.6. Performance Evaluation

As mentioned earlier, there are five statistical measures available in IPEAT and IPEAT+ for
evaluation of modelling performance. All five statistics will be calculated and stored in the output file
(IPEAT_Stats.out). On the other hand, there will be only one objective function used for optimization.
Specifically, the aggregate objective function (since the targeted output variable cold be more than
one such as flow rate, sediment, and nutrient loads) will be minimized to seek for better fit between
observation data and simulation outputs. In this case, one will find that NSE (Equation (1)) cannot be
minimized for the nature of potential values range from −∞ (worst fit) to one (perfect match between
simulation and observation).

NSE = 1−

∑N
i=1

(
yObs

i − ySim
i

)2

∑N
i=1

(
yObs

i − yMean
i

)2 (1)

where, yObs
i is the observation record at time step i; ySim

i is the simulated modeling responses at time
step i; yMean

i is the averaged observation record at time step i; and N is the number of total simulation
time steps. Therefore, NSE has to be slightly transformed to serve the purpose shown in Equation (2)
(details can also be found in Seo et al., 2014):

OF =
∑

M
m=1(1−NSEm) (2)

where, OF is the transformed objective function; NSEm is the NSE value of aggregated modeling
responses m; and M is the total number of modeling responses (in case study, M = 1 for streamflow).
Note that the best potential value of OF is zero if all NSEm are equal to one. One will find that
it is mathematically doable (but not recommended) in IPEAT and IPEAT+ to have an aggregated
objective function among different statistical functions (e.g., merge NSE with PBIAS). However, it
may not represent statistical robustness since it is hard to identify the true scientific meanings of the
aggregated values.

3. Results and Discussion

3.1. General Comparisons of Model Performance

As shown in Figure 7a, four years of model simulation using IPEAT+ for 1000 runs can be
completed within 4.5 h when a computing system with 64-bit operating system, x64-based processer,
Intel®Core™ i7-6700K CPU@4.00GHz, and RAM 32.0 GB was used. For demonstration purpose, a lot
more model simulations were conducted to achieve full convergence. In general, it can be identified
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that calibration converged fairly quickly within 100 runs. It is not surprised to see fast convergence
since hydrologic processes are generally easier to simulate in SWAT modeling projects. In addition, the
total number of parameters is only nine, which lower than other SWAT projects whereas calibration of
more than 50 parameters is not unusual [30].
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Figure 7. General model performance and the convergence of objective function values: (a) full
calibration process of 1000 iterations; and, (b) closer look of the first 50 runs.

Beyond the overall objective function values, parameter values and the corresponding converging
behavior could be useful to users as well. As shown in Figure 8, users can take this piece of information
to further examine the convergence process of each parameter during calibration. For example, in the
given outputs, one can find that curve number (cn2) may be under the situation of over-calibration.
Curve number values converged very close to the lower bound (−30% in reduction), which is a general
indication of over-calibration. One should also note that the given work is an illustrative operation of
the IPEAT+ program. Detailed calibration results could vary by changing scenarios.

Comparison of model converging processes may not be very informative in terms of modeling
results since objective function can be aggregated in various ways. However, it was stated in the
literature that results of model convergence may be useful while users are trying to have a general sense
on how the automatic calibration process is executed over time [30]. Users can take advantage of the
convergence chart to identify some easy errors taken place in watershed modeling work. For example,
fluctuating converging curves or extremely large values of objective function may indicate (but not
limited to): (a) Improper selection and settings of model parameters; (b) false default settings in the
watershed input files (climate, land use, or soil data); or, (c) mismatching gauge station(s) between
observation data versus simulation outlet(s). In IPEAT+, current and the best objective function values
will be printed on the MS-DOS command window (see Figure 9) so that users may have early signs
before waiting for the full completion (could be thousands of runs after days or weeks).
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3.2. Evaluation of Calibrated SWAT+ in Hydrologic Outputs

The best calibration results for the simulation years are reasonably good (NSE: 0.57, PBIAS:−7.70%;
and, R2: 0.58). According to GPR statistical reference, the derived results ranged from “Satisfactory”
to “Good”. GPR is also termed as behavior definition whereas users and decision makers can take
preliminary and timely judgment calls by initial solutions [22]. On the other hand, one cannot fully rely
on GPR exclusively since the finalized GPR categories were organized from very limited case studies.

To better understand the performance of the calibrated SWAT+ with IPEAT+, daily outputs of
streamflow were plotted on a monthly basis (it’s a lot easier to have better graphical visualization).
As shown in Figure 10a, daily streamflow simulations outputs were converted to monthly and the
corresponding uncertainty bands were built by using outputs from IPEAT_Processes.out. The primary
statistics for monthly flow are slightly better than daily streamflow simulations (NSE: 0.61, PBIAS:
8.39%; and, R2: 0.79). In general, the optimized (calibrated) streamflow simulations and observation
data are fairly close. Only the beginning months can be found to have noticeable differences. Longer
warm-up period should be applied to resolve this issue. Uncertainty band constructed by using
streamflow outputs in each iteration has not shown strong trend in terms of average uncertainty
band width (varied substantially in different months) nor clear temporal routines (cannot identify
identifiable trend or average width in certain month). As mentioned in earlier work of IPEAT, DDS
tends to derive candidate results within relatively narrow ranges [19]. For uncertainty analysis, one
should consider to replace DDS with other optimization or mathematical schemes such as Generalized
Likelihood Uncertainty Estimation (GLUE) [33] or other Bayesian inferences.
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ensemble parameter set for the Middle Bosque River watershed.

In addition to streamflow processes and uncertainty band, flow duration curves (FDCs) were also
generated to examine the model performance. As shown in Figure 10b, the resulting uncertainties in
the simulation of short-term average discharge as well as FDCs of daily discharge were analyzed to
provide an additional comparison between observed and simulated daily streamflow at the gauge site.
The shape and magnitude of the flow duration curve from the IPEAT+ best simulation is similar to the
FDCs from the observation data, with flow rates ranging from 10 to 40 m3/s. However, the IPEAT+

best simulation overestimates the mid to low-range flows (<10 m3/s) resulting in simulated flow rates
are always greater than or equal to 0.2 m3/s whereas the observation data show that flow rates are less
than 10 m3/s exceeded 40% of the time, approximately. There are some possible contributions to the
overestimation of the mid to low-range daily flow, i.e., short-term calibration period and small number
of parameters used. In addition, selection of objective function could also cause similar issue since
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NSE has been shown to better capture high flows than low flows. The primary goal of this case study
is for demonstration purpose, whereas detailed model calibration and adjustments are out of the scope.
On the other hand, the fitting FDCs between observed and simulated streamflow may be improved
while IPEAT+ settings fully reconsider calibration period (longer) and number of parameters (more).

4. Conclusions and Future Development

In this study, development of IPEAT+ as an efficient automatic calibration tool coupled with
SWAT+ has been presented. Operation of IPEAT+ is fairly easy, where only three primary input files
(control file, parameter setting file, and observation data file) are mandatory to conduct automatic
calibration routines. For general users (focus on SWAT+ applications), IPEAT+ is a convenient
program in which automatic calibration functions are provided along with SWAT+ executable in
one piece. It’s not requisite for users to purchase or install any other software for operation. In
addition, IPEAT+ is the first automatic calibration tool supported by the SWAT developers group where
potential modifications and suggestions can be made via the general SWAT forum and also in regular
International SWAT Conferences. For advanced users (focus on SWAT+ development, improvement,
and other investigations such as model coupling and uncertainty analysis), the open-source code
provides sufficient flexibility for making essential changes in the source code.

Coupling IPEAT+ with SWAT+ is fairly simple, which can be conducted by users with minor
efforts. IPEAT+ will be regularly updated with the latest SWAT+ revision. On the other hand, only
few lines in the source code (IPEAT+ related codes only needed to be inserted without making any
changes) are required to be updated if potential users would like to integrate IPEAT+ with various
versions of SWAT+.

The current version of IPEAT+ does not cover uncertainty analysis yet. On the other hand, more
development of IPEAT+ will be conducted in the near future so that uncertainty sources such as
inputs, parameters, structure, and measurement data can be considered explicitly during the watershed
modeling processes. In addition to SWAT+ applications in a singular model, one can take advantage
of the simple IPEAT+ framework for model coupling explorations by integrating multiple models.
SWAT used to be coupled with other models successfully such as SWAT-MODFLOW [34], SWAT
with CE-QUAL-W2 [35], and SWAT-WetQual [36]. More cutting-edge and forward-thinking scientific
questions can be answered by far more complex modeling systems.
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