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Abstract: Exploring the trade-off between cost and system reliability of water distribution systems
(WDSs) has been focused for two decades. Due to the intensive computation associated with the
reliability analysis, it is popular in the research community to replace this procedure by using
surrogate indicators. However, the discussion on the correlation among different types of such
indicators is generally lacking, which implies that a deeper understanding of this aspect is needed.
This paper proposes a novel methodology of investigating the relationships among many commonly
used surrogate indicators for measuring the mechanical reliability of WDSs. In particular, the
optimal design of WDSs is formulated as a many-objective optimization problem, using cost and
each surrogate indicator as an individual goal. Two benchmark design problems of different scales
and complexities are considered for verifying the proposed method. The well-known multi-objective
evolutionary algorithm (MOEA), namely Borg that is suitable for coping with problems involving
many objectives, is used to obtain the best approximation to the Pareto-optimal fronts for both cases.
Afterward, the one-pipe burst testing is conducted to quantify the correlation between mechanical
reliability and surrogate indicators. Results suggest that investigating the correlation of surrogate
indicators from the perspective of many-objective optimization provides a direct and efficient way
of distinguishing better indicators from worse ones. Resilience-based surrogate indicators and the
Redundancy indicator that only depends on nodal pressures are highly related to the mechanical
reliability of WDSs. In contrast, entropy-based indicators exhibit poor performance in reflecting
the mechanical reliability. These insights contribute to the selection of more appropriate surrogate
indicators for the optimal design of WDSs for researchers and practitioners.

Keywords: water distribution system; mechanical reliability; resilience; surrogate indicators;
many-objective optimization

1. Introduction

Water Distribution Systems (WDSs), which are regarded as “lifeline engineering” along with
other utilities (e.g., gas, electricity), may be the most critical infrastructures of modern cities. Proper
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operation of WDSs means supplying adequate water to various types of users at the adequate quantity
and good quality. However, water utilities are vulnerable to a wide range of human-caused and natural
disasters, such as pipe breakage due to improper operation, firefighting, and earthquake [1]. As such,
it is imperative for water utility managers and decision-makers to take the reliability of the network
into consideration during the design stage.

Reliability has been the most prevailing indicator for measuring the performance of WDSs. It is
generally defined as the probability of a given system to continuously meet the demand of its customers
at the predefined service level (mostly by nodal pressure) under varying conditions [2]. However,
the incorporation of this indicator directly into the optimal design model, either as a constraint or an
individual objective, would inevitably be computationally intensive [3]. Therefore, a series of surrogate
indicators, which are simple yet effective to represent system reliability, have been proposed in the
literature during the past two decades. Table 1 provides an incomplete list of surrogate indicators
which have been frequently used in WDSs. These surrogate indicators can be generally categorized
into three groups: (1) resilience-based; (2) entropy-based; and (3) hybrid.

Table 1. Surrogate indicators for measuring WDS reliability in the literature.

Year Authors Surrogate Indicators Type Ref.

2000 Tanyimboh & Templeman flow entropy (FE) (2) [4]
2000 Todini resilience index (RI) (1) [5]
2004 Prasad & Park network resilience (NRI) (1) [6]
2008 Jayaram & Srinivasan modified resilience index (MRI) (1) [7]
2010 Raad, et al. mixed reliability surrogate (FE + RI) (3) [8]
2011 Wu, et al. surplus power factor (1) [9]
2011 Tanyimboh, et al. statistical entropy (2) [10]
2014 Jung, et al. robustness index - [11]
2014 Liu, et al. diameter sensitive flow entropy (DSFE) (2) [12]
2014 Liu, et al. Redundancy - [13]
2016 Creaco, et al. RI + loop diameter uniformity (3) [14]
2016 Liu, et al. available power index (API)pipe hydraulic RI (PHRI) (1) [15]
2018 Bin Mahmoud & Piratla probabilistic resilience index (PRI) (1) [16]

There also exist limited comparative studies on the correlation between various surrogate indicators
and system reliability of WDSs [3,8,10,16–18]. However, the conclusions of these works are somehow
contradictory to each other, which may confuse the research community. For instance, Raad, et al.,
made a regression analysis on the Pareto-optimal sets obtained from the multi-objective design of WDS
benchmarks. They concluded that the resilience-based surrogate measures (specifically the RI and
NRI) are more practical reliability surrogate indicators than FE, because they have better performance
on reflecting the system reliability under demand uncertainty and pipe failure conditions [8]. Later,
Tanyimboh, et al., compared four surrogate indicators, including statistical entropy, NRI, RI, and MRI.
By using the prototype software that could produce more realistic results for pressure-deficient WDSs,
they claimed that statistical entropy outperformed RI by demonstrating a stronger correlation with
failure tolerance [10].

Recently, some improved surrogate indicators have been continuously proposed in the literature.
Liu, et al., proposed a new surrogate indicator, called diameter-sensitive flow entropy (DSFE), to
overcome the disadvantages of typical FE [12]. DSFE was found to have a stronger correlation with
reliability measures.

Later, Liu, et al., developed two new energy-related indices, termed available power index (API)
and pipe hydraulic resilience index (PHRI) and found that energy-based indices generally outperform
DSFE under demand and pipe failure uncertainties [15]. Bin Mahmoud and Piratla developed a new
resilience-based index, termed probabilistic resilience index (PRI), and found that PRI has the best
performance in the low to moderate cost range for all the benchmarks considered in their study [16].
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With the gradually improved insights into system performance, it is envisaged that more suitable
surrogate indicators may be proposed to account for the reliability and resilience of the network system
under various types of conditions. Therefore, it is crucial to correctly understand the correlation
between different indicators and adequately use them to guide the design and operation of WDSs.
However, existing methods mainly rely on the reliability assessment conducted after optimization to
compare the suitability of those surrogate indicators. This would require intensive post-optimization
runs, thus impractical to be extended to larger networks in the real world. In other words, a more
efficient methodology for evaluating these indicators may be appealing.

This paper aims to provide an innovative way of understanding the correlation of various
surrogate indicators existing in the literature. In particular, how the many-objective optimization
technique can be used to reveal the complex relationships among cost, surrogate indicators, and system
reliability is demonstrated. On top of that, recommendations are made on how to facilitate the optimal
design of WDSs in future works by selecting appropriate surrogate indicators.

2. Methodology

The proposed methodology includes six steps, as shown in Figure 1. In the first step, the
many-objective optimization model is established, in which the cost objective is minimized, and all
the surrogate indicators for measuring WDS reliability are maximized. This formulation enables
to identify the correlation of various surrogate indicators in a single optimization run. Next, the
well-known Borg algorithm [19] is applied to the above many-objective optimization model, and carry
out multiple independent runs for each case study to eliminate the impact of randomness involved in
the initialization of population. In the third step, the best approximation to the Pareto-optimal front
is generated by comparing all the non-dominated solutions from multiple runs. In particular, these
solutions are first aggregated as a whole dataset, and the fast non-dominated sorting procedure [20] is
then used to screen the most approximated Pareto front. Afterward, the single-pipe burst testing is
implemented on each solution in the Pareto set at the fourth step. This is aimed at evaluating the impact
of pipe burst on a specific WDS configuration. Then, the mechanical reliability of each candidate WDS
design solution is assessed by quantifying to what extent the system can maintain the normal water
supply (i.e., meeting the minimum pressure head requirements at demanding nodes). The mechanical
reliability is expressed as a weighted score, as shown in the following subsection. At the last step, the
correlation among cost, mechanical reliability of WDSs, and various surrogate indicators is illustrated.
To this end, a novel, intuitive metric for evaluating the consistency of a dataset with multiple attributes
is developed.

2.1. Selected Surrogate Indicators

A total of seven surrogate indicators from Table 1 are chosen for assessing their correlation with
capital costs and mechanical reliability of WDSs. The reasons for selecting these indicators are as follows.
First, existing surrogate indicators can be generally categorized into two groups: resilience-based
and entropy-based. Therefore, four resilience-based indicators and two entropy-based indicators are
picked as they are frequently used in previous studies [3,8,15,17]. Second, the Redundancy indicator is
also chosen [13], which is quite simple in terms of calculation compared to other ones. Each of these
indicators is briefly explained below, including its definition and associated equation(s). Readers are
referred to relevant papers for greater detail.

The resilience index (RI), first introduced by Todini, is arguably the first resilience-based surrogate
indicator in the domain of WDSs to account for the reliability of a looped network [5].

Herein, the concept of “resilience” refers to the capability of a network system to maintain its
functionality under stress or failure conditions. RI can adequately reflect (i.e., strongly related to) the
inherent attribute of the system to overcome failures. Furthermore, it avoids the statistical analysis of
various types of uncertainty, which is generally considered for calculating reliability.
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Figure 1. Flowchart of the proposed methodology.

The RI indicator is derived from the law of energy conservation, where the total available power
injected into a given WDS is dissipated in pipes (due to pipe wall friction resistance) and delivered to
demand nodes (users). Equation (1) shows the mathematical expression of RI, which is defined as the
ratio of surplus power at demand nodes to the maximum power that would be dissipated internally
to overcome pipe resistance. For a given topology of WDS, the increase of RI improves its energetic
redundancy, which means a decrease of the internal energy dissipation.

RI =

nn∑
i=1

qi(Hi − hi)

nr∑
j=1

Q jH j +
npu∑
k=1

(Pk/γ) −
nn∑

i=1
qihi

(1)

where qi, Hi, and hi are the nodal demand, the actual head, and the required head at node i, respectively,
Qj and Hj are the discharge and the head at reservoir j, Pk is the energy provided by pump k, γ is the
specific weight of water, and nn, nr, and npu are the number of demand nodes, reservoirs, and pumps
in the given network, respectively.

Later, Prasad and Park proposed the network resilience index (NRI) (see Equation (2)) by adding a
term named nodal uniformity (see Equation (3)) into the original expression of RI [6]. It can be viewed
as a weighted RI by taking the combined effect of both surplus power and pipe size uniformity into
account. Using NRI may ensure reliable loops in the design stage as the diameters of pipes connected
to each node would not vary widely.

NRI =

nn∑
i=1

Ciqi(Hi − hi)

nr∑
j=1

Q jH j +
npu∑
k=1

Pk
γ −

nn∑
i=1

qihi

(2)

Ci =

npi∑
j=1

d j

npi ×max
{
d j
} (3)
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where Ci represents the uniformity of node i, npi is the number of pipes connected to node i, and dj is
the diameter of pipe j connected to node i.

Based on the energy conservation law, Liu, et al., proposed a new energy-related index, called
available power index (API), for reliability evaluation (see Equation (4)) [15]. They divide the
instantaneous input power, which is derived from reservoirs, tanks, or pumps, into available and
unavailable power. The available power refers to the energy delivered at demand nodes. A WDS with
higher reliability can be obtained by increasing the available power, implying the additional capacity to
resist disturbances imposed by unexpected events (e.g., pipe failure or demand fluctuations). Therefore,
API is conceptually analogous to RI.

API =

nn∑
i=1

QiHi

nr∑
j=1

Q jH j +
npu∑
k=1

Pk
γ +

nt∑
t=1

QtHt

(4)

where Qi and Hi are the actual flow and head at node i, Qt is equal to the flow into (negative) or out
of (positive) tank t, Ht is the elevation of the free surface at tank t, and nt is the number of tanks in
the network.

The pipe hydraulic resilience index (PHRI) is another energy-related index introduced by
Liu, et al. [15]. It is based on the calculation of areas of triangles along the hydraulic grade line (HGL)
within the network system. A series of triangles are formed by the characteristic points along the
HGL and the line of the minimum required hydraulic head. No matter how the input power is
injected (either from sources with higher elevations or pumps), the HGL always declines along the
pipes from sources to users due to friction losses. Therefore, if upstream pipes dissipate less energy,
the downstream pipes will have more available heads. As such, PHRI is defined to be the ratio of
the accumulated triangular areas associated with the available downstream heads (denoted as Aj in
Equation (5)) to that associated with the total upstream head (denoted as Aj + Bj in Equation (5)). It is
worth noting that this new indicator also takes the impact of pipe length into account, as each triangular
area is derived from the product of hydraulic head and projected pipe length. By maximizing PHRI, a
network system can increase its capability of coping with the perturbation caused by uncertainty. For
the space limit, readers are referred to [15] for the diagrams of computing PHRI.

PHRI =

np∑
j=1

A j

np∑
j=1

(A j + B j)

(5)

A j =
1
2
(Hds, j −Hreq)Lpro, j (6)

A j + B j =
1
2
(Hus, j −Hreq)Lpro, j (7)

Lpro, j =
√

L2
j − (Zus, j −Zds, j)

2 (8)

where np is the number of pipes in the network, Hds, j and Hus, j are heads at downstream and upstream
nodes of pipe j, respectively, L j and Lpro, j are the length and projected length of pipe j, and Zds, j and
Zus, j are the elevations at downstream and upstream nodes of pipe j, respectively.

Tanyimboh and Templeman held the viewpoint that a WDS which is designed to carry maximum
entropy flows is generally reliable to cope with the considerable amount of uncertainty (e.g., demand
growth and variations, random bursts and component failures). They proposed the equations [4] to
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quantify the flow entropy (FE) of WDSs based on Shannon’s entropy form in the context of information
theory [21].

S = S0 +
n∑

i=1

Ti
T

Si (9)

S0= −
∑
j∈IN

Q j

T
ln(

Q j

T
) (10)

Si= −
Qj

T
ln(

Q j

T
) −
∑

i j∈NDi

qi j

Ti
(

qi j

Ti
) (11)

S
K
= −
∑
j∈IN

Q j

T
ln(

Q j

T
) −

1
T

n∑
i=1

Ti(
Qi

Ti
ln(

Qi

Ti
) +

∑
i j∈NDi

qi j

Ti
ln(

qi j

Ti
)) (12)

where S0 is the entropy of sources, Si is the entropy of node i, Ti is the total flow reaching node i, T is
the total flow provided by all sources, Ti/T is the ratio of the accumulative flow reaching at node i to
the total flow provided by all sources, K is an arbitrary positive constant, usually set to 1, IN is the
number of source or input nodes, Qj is the inflow at source node j, Qi is the demand at node i, qij is the
pipe flow from node i to node j, and NDi is the set of pipes in which water leaves from node i.

Liu, et al., proposed the diameter sensitive flow entropy (DSFE) indicator to extend the original
definition of FE by considering the impact of pipe diameter on reliability [12]. As shown in Equation
(13), the main structure of DSFE is identical to FE except by introducing an additional coefficient
(i.e., C

Vi j
) before the last term.

S
K
= −
∑
j∈IN

Q j

T
ln(

Q j

T
) −

1
T

n∑
i=1

Ti(
Qi

Ti
ln(

Qi

Ti
) +

∑
i j∈NDi

C
Vi j
×

qi j

Ti
ln(

qi j

Ti
)) (13)

where C is an arbitrary velocity constant, e.g., 1 m/s; Vij is the velocity in pipe ij.
Besides the resilience-based and entropy-based surrogate indicators, some researchers also

introduced other simple indicators to reflect the reliability of WDSs, of which the Redundancy indicator
is such a metric [13]. Redundancy only depends on the actual and required pressure heads (both
minimum and maximum) associated with each node, as shown in Equation (14). The range of
Redundancy is between 0 and 1, with a number closer to 1 indicating more surplus head (more reliable)
across the whole network.

Redundancy =
nn∑

i=1

Pi − Pmin
i

Pmax
i − Pmin

i

/nn (14)

where Pi is the pressure at node i, and Pmin
i and Pmax

i are the minimum and maximum pressure heads
that node i is allowed for.

2.2. Many-Objective Optimization Model

As previously mentioned, this paper proposes an innovative way of identifying the correlation
among various surrogate indicators of system reliability. This is achieved by formulating the design of
WDSs as a many-objective optimization problem, as shown in Equation (15). In particular, the proposed
many-objective optimization model is aimed at minimizing the total capital cost and maximizing each
surrogate indicator as defined in Equations (1)–(14). There are two types of constraints associated with
the optimization model, which are the conservation of mass and energy across the network and the
minimum pressure head requirements at demanding nodes, respectively.

The former type of constraints is automatically satisfied by using the EPANET2 software [22],
while the accumulated pressure head deficits across the network are calculated and used to judge
the feasibility of solutions. The optimization algorithm eventually maintains only feasible solutions
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that all demand nodes have sufficient pressure heads. Additionally, the decision variables considered
in this paper only involve pipe diameters, which are restricted to available discrete sizes from the
relevant markets. 

min imize : Objective1 = Cost =
np∑

i=1
U(D j) × L j

max imize : Objective2 = RI
max imize : Objective3 = NRI
max imize : Objective4 = API
max imize : Objective5 = PHRI
max imize : Objective6 = Redundancy
max imize : Objective7 = FE
max imize : Objective8 = DSFE

s.t.Hi > hi∀i ∈ [1, n]andD j ∈ [D1, D2, . . . , Dm]

(15)

where U (Dj) is the unit cost of pipe j depending on its selected size Dj, the relationship between U (Dj)
and Dj is usually non-linear and case by case. Dm denotes the maximum discrete pipe size available in
the market. It is worth noting that the implicit constraints related to mass balance at nodes and energy
conservation in loops are considered by using the hydraulic solver and thus omitted here.

Compared with the traditional multi-objective optimization model, which usually involves two
or three goals, the many-objective optimization model (i.e., more than three goals) can identify more
complex trade-offs among different objectives in the hyper Pareto space. The direct benefit of using the
many-objective optimization model is to obtain the relationships among all eight objectives in a single
run. More importantly, this formulation can intuitively reflect the intrinsic consistency of selected
surrogate indicators, which is the primary concern of this study.

2.3. Borg MOEA

The number of non-dominated solutions in a many-objective optimization problem tends to
increase exponentially as the number of objectives expands. This so-called “dominance resistance” [19]
usually challenges the capabilities of MOEAs to cope with problems involving many objectives.
Traditional MOEAs, such as the well-known NSGA-II [20], cannot deal with such problems efficiently
due to the weakness of the Pareto dominance concept. In particular, as the existence of “dominance
resistance”, the selection pressure of traditional MOEAs declines rapidly throughout optimization,
which results in the premature of population. Thus, advanced algorithms that can effectively overcome
“dominance resistance” are required to solve many-objective optimization problems.

Borg MOEA is one of such tools which are suitable to solve many-objective optimization
problems [19]. As a powerful and popular optimization tool in the domain of evolutionary computation,
Borg MOEA has many advanced features and functionalities. However, elaborating how it works is
out of the scope of this paper. Therefore, readers are referred to [19] for greater detail. Only its three
key features that are superior to traditional MOEAs are briefly described below.

First, it is based on the static MOEAs framework and uses the ε-dominance concept [23] to
maintain the convergence and diversity concurrently throughout the search. This implies that the
best solutions are stored and updated in an external archive with higher computational efficiency.
Second, the population size changes adaptively according to the volume of the external archive. When
potential stagnation is identified, Borg will restart the search according to two types of criteria (i.e.,
ε-progress triggered restart and population-to-archive ratio triggered restart). Third, it simultaneously
employs a variety of recombination operators for the offspring generation, which enhances Borg’s
performance on a wide range of problem domains. Additionally, Borg is found to have large regions
of high-performing parameterizations in terms of so-called sweet spots [24], which is an appealing
feature for solving many-objective optimization problems.

Borg has been successfully applied to dealing with challenging, many-objective, real-world
problems in the domain of water resources, of which a detailed review can be found in [25].
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2.4. Post Analysis of System Reliability due to Mechanical Failures

There are generally two types of failure, namely, mechanical and hydraulic failure [3]. In this
paper, only the impact of mechanical failure was taken into account. Specifically, the single-pipe
burst testing was carried out to evaluate the consequences of pipe breakage throughout the network.
Coincident pipe bursts were not considered as their possibilities would be much lower than that of
the single-pipe burst event. For a single source network, each pipe was enumerated but with the
one(s) directly connected to the reservoir excluded during the pipe burst testing, since the breakage
of those pipe(s) would inevitably result in the out-of-service of the entire system. For a multi-source
network, all pipes were enumerated in the pipe burst testing. Each pipe was first closed, followed by
the hydraulic simulation and the retrieval of pressure heads at demand nodes during each burst event.
This iterative process continued until all candidate pipes were processed. Then, the corresponding
mechanical reliability score (MRS) was calculated by Equations (16)–(19) for each non-dominated
solution in the Pareto set.

MRS =

cp∑
j=1

TotalScore j

cp
(16)

TotalScore j =
nn∑

i=1

ωi × Scorei (17)

Scorei


1 pi ≥ Pmin

pi
pmin

0 < pi < pmin

0 pi ≤ 0
(18)

ωi =
qi

nn∑
i

qi

(19)

where cp is the number of candidate pipes in the single-pipe burst testing. TotalScorej is the total score
achieved at a pipe burst event j, which is calculated as the weighted sum of Score at each demand node.
Scorei is the score evaluated at demand node i, which depends on the relationship between the actual
nodal pressure Pi and the minimum pressure head requirement Pmin (as shown in Equation (19)). ωi is
the weighting coefficient of demand node i that is equal to the ratio of water demand at node i to the
total demand of the network.

Illustrating the Pareto front of a many-objective optimization problem is not as easy as that
when dealing with the problem with two or three objectives. As such, it is fashionable to use the
parallel coordinate plot (PCP) to demonstrate the complex variations among many objectives (usually
conflicting with each other) [26]. Recall that the critical question of this study is to investigate to what
extent various surrogate indicators can reflect the reliability of WDSs to account for failure scenarios.
Therefore, it is essential to quantify the consistency among reliability, cost, and surrogate indicators. To
this end, an intuitive way of computing the level of intrinsic consistency of any two or more metrics
is proposed.

Figure 2a shows the procedure for calculating the consistency value in pseudo-code format; while
Figure 2b illustrates how the variable “accordance” is accumulated depending on the two types of
sorting used in that procedure. Briefly speaking, every two solutions in the Pareto set are selected to
form a temporary matrix M. The number of columns in M is equal to the number of metrics considered
in the calculation of their consistency value. M is sorted based on two criteria, one is the ascending
order of the first column (denoted as m1), and the other is the ascending order of each column.
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Figure 2. Schematic of calculating the consistency value. (a) Pseudo-code for computing consistency;
(b) Judging of relationship between data columns.

As such, two new matrices M1 and M2 are yielded, respectively. If M1 is equal to M2, the variable
’accordance’ is added by 1, which means that the metrics considered vary accordingly between two
solutions (i.e., consistent with each other).

On the contrary, if M1 is different from M2, the variable “accordance” remains invariant because at
least two metrics vary in different trends (as interlaced in Figure 2b). In short, the consistency value
denotes the ratio of the number of non-crossed lines to the total number of twin-lines. Hence, a larger
percentage of non-crossed lines implies a higher level of consistency among different metrics (i.e.,
better correlation).

3. Experimental Setup

3.1. Case Studies

Two benchmark WDSs from the literature were selected for the demonstration purposes, of which
each network layout is illustrated in Figure 3. The first WDS (Figure 3a) is the well-known Hanoi
network (HAN) [27], which resembles a water distribution system in Hanoi, the capital of Vietnam.
The HAN consists of thirty-four pipes organized in three loops, thirty-one demand nodes and one
reservoir with a fixed head of 100.0 m. The Hazen-Williams roughness coefficient for all pipes is 130.
The minimum head above the ground elevation of each node is 30.0 m. There are six commercially
available pipe sizes, ranging from 304.8 mm (12.0 in.) to 1016.0 mm (40.0 in.). Therefore, the search
space is equal to 634

≈ 2.87 × 1026 discrete combinations. Due to a very limited range of pipe sizes, the
HAN has a vast region of infeasible solutions in the landscape of decision variables, thus increasing
the level of difficulty to identify the non-dominated solutions.

Unlike the HAN, the second WDS (Figure 3b) is known as the Balerma irrigation network
(BIN) [28]. It represents an adaptation of the existing irrigation system in the Sol-Poniente irrigation
district located in Balerma, province of Almería, Spain. The irrigation system is fed by four reservoirs
with fixed heads between 112.0 m and 127.0 m and includes 454 relatively short pipes and 443 demand
nodes (hydrants). A feature of BIN is that all nodes have the same demand of 5.55 l/s across the
network. The material of pipes is polyvinyl chloride (PVC), and a universal Darcy-Weisbach roughness
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coefficient of 0.0025 mm is applied to all pipes. The minimum pressure head above the ground
elevation is 20.0 m for all demand nodes.

Figure 3. Layout of each benchmark network. (a) HAN; (b) BIN.

There are a total of ten commercially available sizes, ranging from 113.0 mm to 581.8 mm.
Therefore, the search space is equal to 10454 discrete combinations, which serves as a more complex,
real-world design problems.

3.2. Parameter Settings of Many-Objective Optimization

As previously described, Borg has several advanced features that ensure its performance without
the burden associated with the parameterization issue. Therefore, no special attention was paid to
fine-tuning many parameters involved in Borg and the default ones for most parameters (see Table 2)
were used. For both cases, the epsilon precision settings for all the objectives were equal to 0.01, except
for Cost and entropy-based indicators which were set to 0.1 instead (the epsilon value of DSFE for BIN
was set to 1 due to a broader range). To ensure sufficient convergence of Borg on each design problem,
preliminary optimization runs were conducted to determine the appropriate computational budget
in terms of the number of function evaluations (NFEs). A total of 100,000 and 250,000 NFEs were
used to solve the HAN and BIN problems, respectively. These were approximately equivalent to 1000
and 2500 generations as the initial population size was set to 100 in Borg. Also, for each benchmark
design problem, Borg was implemented ten times (i.e., ten independent runs) to overcome the impact
of randomness introduced by population initialization.

Table 2. Parameter settings of Borg MOEA.

Parameters Values Parameters Values

Initial population size 100 Crossover rate of DE 0.6
Population to archive ratio (γ) 4 Differential weight of DE 0.6

Selection ratio (τ) 0.02 Eta of PCX 0.1
Tournament size Max [2, bτ(γA)c] Zeta of PCX 0.1
Probability of PM 1/L Zeta of UNDX 0.5

Distribution index of PM 1.0 Eta of UNDX 0.35
Probability of SBX 0.9 Expansion rate of SPX 3.3

Distribution index of SBX 1.0 Probability of UM 1/L

Note: A = the archive size in Borg; L = the number of decision variables; bac returns the nearest integer of a in the
direction of negative infinity; Max[a,b] returns the larger value between two numbers a and b. PM, SBX, DE, PCX,
UNDX, SPX, and UM are the search operators used in Borg, which stand for Polynomial Mutation, Simulated Binary
Crossover, Differential Evolution, Parent-Centric Crossover, Unimodal Normal Distribution Crossover, Simplex
Crossover, and Uniform Mutation, respectively.
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A post-processing procedure was implemented to generate the best approximation to the Pareto-
optimal set over multiple runs. A temporary archive of non-dominated solutions was established by
aggregating all the final population returned by Borg via ten independent runs. The volume of this
archive was checked and reduced by eliminating duplicated solutions. Then, the fast non-dominated
sorting procedure [20] was applied to this archive to identify the overall best solutions and remove
the dominated ones. The best approximation to the Pareto-optimal set of each design problem was
subsequently used to reveal the relationships among reliability, cost, and various surrogate indicators.

4. Results and Discussion

The relationships among eight objectives and system reliability were interpreted at two different
levels. At the top level, the PCP was used to illustrate the hyper Pareto front obtained from the
many-objective optimization model. Each PCP was produced as follows: (1) the whole dataset was
rearranged and drawn according to the ascending order of capital cost, and (2) the polylines were
painted with rainbow colors with red representing higher costs. Therefore, the solutions with lower
costs (drawn earlier) were partly covered by those with higher costs. The MRS values, which were
obtained from the single-pipe burst testing, were demonstrated on the PCP as well (the leftmost axis).
This is aimed at identifying the intrinsic consistency among reliability, cost, and surrogate indicators. At
the bottom level, the main concern is to quantify the correlation between surrogate indicators and also
their relationship with cost and reliability, based on the consistency indicator described in the Section
of Methodology. Therefore, the selected indicators can be categorized into two groups: highly related
and poorly related, which probably benefit the research community by providing useful guidelines.

The overall consistency among reliability, cost, and seven surrogate indicators is not satisfactory
from an engineering perspective; and it is evident that a larger amount of investment does not
necessarily lead to a more reliable design under mechanical failure scenarios (see the lower PCPs
in Figure 4c,d with selected solutions). One will expect that the network system is more reliable
under possible failure conditions with more investment (i.e., larger pipe diameters leading to more
surplus power at demand nodes). For the HAN problem, the range of capital costs within the best
approximation to the Pareto-optimal set is between $6.4M and $11.0M.

A higher investment of $10.3M leads to an MRS of 0.93, which is 5% less than the MRS of 0.98
achieved by an investment of $9.78M. In other words, a more reliable solution can be achieved with 5%
less budget. Surprisingly, a nearly identical investment of $9.78M can also lead to a quite low level of
MRS (i.e., 0.81). In contrast, the lowest investment of $6.49M can achieve an MRS of 0.79, saving more
than 30% expenditure with a very similar level of MRS. A comparable pattern can also be found for the
BIN design problem.

Furthermore, surrogate indicators are expected to correspond to system reliability consistently.
However, this is not the case, as many interlaced polylines can be observed in Figure 4 for both cases.
The underlying reason for these counterintuitive phenomena is due to the inclusion of improper
surrogate indicators, such as FE and DSFE. As demonstrated in Figure 4, the polylines are generally
parallel with each other except for many legible interlaced ones spotted at the coordinates of FE and
DSFE, which indicates that FE and DSFE do not coincide with the other five indicators. A further
experiment, which conducted the optimization procedure in the same way but excluded FE and DSFE
from the objectives, confirms that the correlation of surrogate indicators with cost and mechanical
reliability significantly improves, as shown in Figure 5. This finding suggests that maximization of FE
and DSFE may not yield more reliable system configurations.
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Figure 4. Parallel coordinate plots for the HAN and BIN design problems. (a) PCPs with all objectives
and MRS for HAN; (b) PCPs with all objectives and MRS for HAN; (c) Representative solutions for
HAN; (d) Representative solutions for BIN.

Figure 5. New PCPs for the HAN and BIN design problems. (a) HAN; (b) BIN.

Four resilience-based surrogate indicators (i.e., RI, NRI, API, and PHRI) and Redundancy are well
consistent with mechanical reliability under single-pipe burst event. In contrast, two entropy-based
indicators (i.e., FE and DSFE) are poorly related to reliability for both cases. This observation suggests
that the resilience-based surrogate indicators and Redundancy can adequately reflect the mechanical
reliability of WDSs for both cases; on the contrary, the entropy-based indicators are not suitable to
represent mechanical reliability considered in this study. For the HAN problem, it is evident from
Table 3 that RI, NRI, API, PHRI, and Redundancy are highly related to MRS, with the consistency
values all above 0.9. While the consistency values between FE/DSFE and MRS are less than 0.5/0.7,
respectively. For the BIN problem, the level of consistency between the non-entropy-based surrogate
indicators and MRS is lower than that of the HAN problem but still higher than 0.75. This might be
attributed to the differences between the layouts of two networks (i.e., single-source vs. multi-source).
Similar to the pattern identified in HAN, the consistency values between FE/DSFE and MRS are both
lower than 0.5.
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Table 3. Consistency values between cost/reliability and surrogate indicators.

Problem Consistency RI NRI API PHRI Redundancy FE DSFE

HAN
MRS 0.930 0.936 0.930 0.907 0.932 0.481 0.684
Cost 0.894 0.890 0.894 0.888 0.889 0.485 0.756

BIN
MRS 0.775 0.799 0.777 0.757 0.760 0.404 0.489
Cost 0.722 0.645 0.721 0.721 0.726 0.505 0.840

Additionally, for both cases, the consistency values between non-entropy-based surrogate
indicators and capital costs are lower than those between surrogate indicators and MRS. This implies
that a higher level of surrogate indicators (generally more reliable) does not always require a larger
amount of investment. This phenomenon is probably attributed to the combinatorial nature of WDS
design problems.

Figure 6, which demonstrates the consistency value of each pair of axes in the PCPs, agrees well
with the observations from Figure 4, and further confirms the relationships among surrogate indicators,
costs, and mechanical reliability. That is, the four resilience-based surrogate indicators correspond well
(with minor variations) with themselves and Redundancy (shown as the light gray cells in the middle).
These five surrogate indicators are highly related to MRS, with the consistency values greater than
0.90 and 0.75 for the HAN and BIN problems, respectively. Their relationships with Cost are in good
consistency, despite somewhat lower than those with MRS. FE and DSFE are poorly related to MRS,
Cost, and the other surrogate indicators, with the consistency values less than 0.5 and 0.7 for the HAN
and BIN problems, respectively. Surprisingly, FE and DSFE are inconsistent with each other even if
they are quite similar in theory, especially for the HAN problem.

Figure 6. Consistency value of each pair of surrogate indicators. (a) HAN; (b) BIN.

To further explain why a more reliable design does not always require a larger amount of
investment, the layouts of two representative solutions (denoted as Solutions H and L, respectively)
from the Pareto set of the HAN problem were compared. Table 4 shows the corresponding values of
these two solutions. Solution H costs $9.65M with a reliability value of 0.78; while Solution L has a
reliability value of 0.89 (14.1% higher) with 16.7% savings of capital costs, which is equal to $8.03M.
Figure 7 clearly shows the differences between Solutions H and L in terms of system layout. Specifically,
Solution H lays the largest pipe size mainly in the north of the network as well as some carrying
water to the most distant user (i.e., Node 12). However, improper connections (from the engineering
perspective) within three loops can also be easily identified (larger pipes are connected to smaller pipes
at upstream side).
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Table 4. Comparison of two representative solutions for the HAN problem.

Solutions
MRS Cost RI NRI API PHRI Redundancy FE DSFE

(-) (M$) (-) (-) (-) (-) (-) (-) (-)

Solution H 0.78 9.65 0.24 0.23 0.47 0.67 0.36 3.44 4.55
Solution L 0.89 8.03 0.33 0.31 0.53 0.86 0.56 3.32 3.22

Figure 7. Comparison of two representative solutions found for the HAN problem. (a) Solution H with
lower reliability; (b) Solution L with higher reliability.

In contrast, Solution L generally conveys water by the middle and right loops, with the low
demand region (Nodes 28 to 31) connected by much smaller pipes. Also, Node 13 with a high level
of demand and some nodes with a middle level of demands (i.e., Nodes 11 and 12) are supplied
by smaller branched pipes. As a result, nodes with higher demands (shown as red dots) are more
effectively connected to the source with reasonable combinations of pipe sizes from north to south.

Solution L can effectively alleviate the impact of single-pipe burst event as revealed in Figure 8.
The y-axis shows the probability of pressure deficit calculated from a collection of 32 single-pipe burst
events (except for the two pipes directly connected to the source). The dashed line shows a threshold
of 50% of suffering pressure deficiency during those events. Solution H results in nearly one-third
of demand nodes (nine in total) bearing the risk of insufficient water supply (or even water cut-off)
over 50%. The most vulnerable locations include Nodes 9 to 16, which are concentrated in the north of
the Hanoi network. By contrast, Solution L manages to reduce such risks below 35% throughout the
system, which indicates a very high level of performance under mechanical failure conditions.

Figure 8. Cont.
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Figure 8. Probabilities of nodal pressure deficit associated with Solutions H and L. (a) Solution H;
(b) Solution L.

5. Conclusions

This paper proposed an innovative way of identifying the relationships among various surrogate
indicators for assessing the mechanical reliability of WDSs. The many-objective formulation, which was
aimed at minimizing capital cost and maximizing each surrogate indicator, was used to investigate the
trade-offs between cost and surrogate indicators in a single run. To further reveal the consistency among
reliability, cost, and surrogate indicators, a systematical, post-analysis procedure was implemented
based on the single-pipe burst testing. The above methodology was applied to two benchmark design
problems from the literature, covering both single-source and multi-source water supply systems fed
by gravity.

The main findings of this work are threefold. First, the trade-off between capital costs and
surrogate indicators suggest that a larger amount of investment at the design stage does not necessarily
lead to a more resilient or reliable design solution for both case studies, which sounds somewhat
counterintuitive. This is exactly the case when the two entropy-based indicators are involved in
the optimization model. The intrinsic inconsistency between flow entropy and system resilience or
reliability hinders the identification of the expected trade-offs between capital costs and surrogate
indicators. Another drawback of entropy-based indicators lies in the fact that their values vary
substantially from case to case, and are not bound to a fixed range as other surrogate indicators
(i.e., between 0 and 1). Therefore, users may have difficulties in interpreting the outcomes from an
intuitive way.

Second, the four resilience-based surrogate indicators and Redundancy are more consistent with
the mechanical reliability and capital costs compared to the two entropy-based indicators, implying that
the former are more suitable for measuring the performance of WDSs. The consistency values between
the mechanical reliability and resilience-based indicators and Redundancy are higher than 0.9 and 0.75
for the HAN and the BIN design problems, respectively. In contrast, the consistency values between
the mechanical reliability and entropy-based indicators are less than 0.7 and 0.5 for the above two
cases, respectively. These observations correspond well to other researchers’ investigations [8,15,29].

Third, due to the combinatorial nature of the design of WDSs, a proper formulation can effectively
steer the search towards the near-optimal region. As shown in the current study, using resilience-based
surrogate indicators to substitute system reliability analysis is recommended in the optimization
model. In particular, Redundancy is highly recommended due to its simplicity in both concept
and computation.

Although a practical approach to simultaneously comparing many surrogate indicators was
developed, there are still some limitations in the present study. First, the selected design problems
do not include pumps and are limited to snapshot simulations only. Therefore, it is still unknown
whether the findings derived from this paper would change significantly when pumps and extended
period simulations are taken into account. Second, the correlation between surrogate indicators and
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the hydraulic reliability, which is related to the impact imposed by demand fluctuations, is not covered
in this study. Third, how would the consistency among reliability (both hydraulic and mechanical),
costs, and surrogate indicators vary on more complex, real-world networks is still in question. All
these limitations mentioned above will be considered in future work.
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