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Abstract: Optimal hydrograph separation (OHS) uses a two-parameter recursive digital filter that
applies specific conductance mass-balance constraints to estimate the base flow contribution to total
streamflow at stream gages where discharge and specific conductance are measured. OHS was
applied to U.S. Geological Survey (USGS) stream gages across the conterminous United States to
examine the range/distribution of base flow inputs and the utility of this method to build a hydrologic
model calibration dataset. OHS models with acceptable goodness-of-fit criteria were insensitive to
drainage area, stream density, watershed slope, elevation, agricultural or perennial snow/ice land
cover, average annual precipitation, runoff, or evapotranspiration, implying that OHS results are a
viable calibration dataset applicable in diverse watersheds. OHS-estimated base flow contribution
was compared to base flow-like model components from the USGS National Hydrologic Model
Infrastructure run with the Precipitation-Runoff Modeling System (NHM-PRMS). The NHM-PRMS
variable gwres_flow is most conceptually like a base flow component of streamflow but the gwres_flow
contribution to total streamflow is generally smaller than the OHS-estimated base flow contribution.
The NHM-PRMS variable slow_flow, added to gwres_flow, produced similar or greater estimates of
base flow contributions to total streamflow than the OHS-estimated base flow contribution but was
dependent on the total flow magnitude.

Keywords: computational methods; hydrologic modeling; hydrograph separation; groundwater
hydrology; surface water–groundwater interactions; base flow; water supply

1. Introduction

Base flow is water that sustains a stream or river when no immediate precipitation has occurred
and can be thought of as a mixture of different groundwater contributions that may include water from
unsaturated soil reservoirs [1,2]. This critical component of streamflow is important for sustaining
surface water quantity and quality during low flows, drier months of the year, or during periods
of drought [3–9]. Quantification of the base flow across the nation is important for assessing the
long-term effects of climatic, landscape, and anthropogenic influences on water quantity and stream
ecosystem health [10–12], in addition to providing critical validation and calibration information for
national-extent models [13,14]. The hydrograph separation techniques described in this study were
applied to estimate base flow across the conterminous United States (CONUS) and are valuable in
providing validation or calibration data for national-extent hydrologic models, further improving our
capacity for understanding and predicting hydrologic conditions for the nation.

Base flow is generally not measured directly but is estimated using a variety of methods, including
hydrograph separation. Hydrograph separation techniques comprise dividing a hydrograph into
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two or more components that represent multiple sources of flow using a priori determined criteria
to justify the division [2,15]. Hydrograph separation is a common way to estimate base flow, as the
various methods are inexpensive and easily implemented using stream discharge and chemistry data.
Many base flow estimation methods employ graphical hydrograph separation techniques or recession
analysis to infer base flow contributions, but these methods are subjective when performed manually,
have no physical basis, and have no means of determining the accuracy of the estimates [16–18].
Automated approaches to graphical hydrograph separation are more objective and reproducible than
previous manual methods, but still maintain similar caveats with regards to physical ground-truthing
and accuracy [19]. This inaccuracy is because the recession curve, or the falling limb of a hydrograph,
is theoretically related to groundwater storage depletion and flow to a stream. Limitations with
regards to physical basin characteristics, such as drainage area and basin relief, have also restricted
where purely graphical hydrograph methods were applicable [20–22]. This is because relatively
large basins (>1300 km2) can have nonuniform rainfall and storm events, and there can be more
heterogeneity in riparian storage that may affect how quickly flow and base flow are separated [20–22].
Despite these limitations, graphical hydrograph separation is still heavily used because of the modest
data requirements.

Alternatively, hydrograph separation based on tracer-chemical mass balance methods is considered
to have more of a physical basis than purely graphical separation methods because they incorporate
hydrogeochemical information of the stream and hydrogeochemical discharge relationships can be
inferred to define representations of base flow and quick flow [23–27]. In addition, accuracy can be
examined from comparisons of observed and simulated stream chemistry resulting from chemical
mass balance methods. Tracer-chemical mass balance hydrograph separation techniques are also
not as restricted as graphical methods in terms of basin size due to assumptions of mass balance, as
these techniques have been used on basins larger than 60,000 km2 [25]. Most chemical mass balance
methods assume that a base flow signal consists of a more concentrated chemical or solute signature
than quick flow because base flow has a longer residence time, allowing for greater weathering of
bedrock and soil in the subsurface. This subsurface flow, laden with weathering products of cations
and anions, is eventually delivered to the stream and can be separated from quick flow based on this
solute-laden signature. In streams where chemical constituents may not change as expected with
changing discharge, such as in environments with the presence of volcanics or carbonates, chemical
mass balance methods may be challenging to use [28,29].

In this study, we estimated base flow contributions to streamflow throughout the CONUS
by employing an alternative hydrograph separation method to traditional graphical and purely
tracer-chemical based methods called optimal hydrograph separation (OHS) [30,31]. OHS is unique
in that in addition to being automated and reproducible, the method produces estimates of model
accuracy and is objective in choosing acceptable models because of its reliance on optimization methods.
OHS has similar assumptions of discharge–chemistry relationships as tracer-chemical mass balance
methods and has a basis in the linear reservoir theory for groundwater as provided by the inclusion of
a recursive digital filter [32]. The goals of this study were to (1) apply OHS methodology at stream
gages distributed across the CONUS and evaluate patterns in OHS-derived base flow, and (2) evaluate
the similarities of observation-based OHS base flow estimates to simulated National Hydrologic
Model-Precipitation Runoff Modeling System (NHM-PRMS) base-flow-analogous components [13,14].
The PRMS [33] is a deterministic distributed-parameter physical-process-based modeling system
developed to evaluate the response of various combinations of climate and land uses on streamflow
and general watershed hydrology.
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2. Materials and Methods

2.1. Site Selection

The study sites were chosen based on data availability in the form of spatial and temporal coverage
of specific conductance and daily streamflow data within the CONUS (Figure 1). Water 2019, 11, x FINAL 3 of 26 

 

 
Figure 1. Select GAGES-II locations that have accepted OHS models (SCfit and sin-cos) or rejected 
OHS models (pink triangles). Accepted models span the CONUS and a variety of aquifer rock types. 

Stream gages were initially selected from the Geospatial Attributes of Gages for Evaluating 
Streamflow (GAGES-II) reference stream gage dataset [34]. Gages were selected if the gage had at 
least three measurements of daily mean stream discharge accompanied by either a simultaneous 
daily mean specific conductance or an individual water quality specific conductance measurement, 
and where a peak in specific conductance could be detected. This resulted in 1076 stream gages to 
initially investigate. The data used in this study are available from the U.S. Geological Survey (USGS) 
National Water Information System (NWIS) database [35]. The study locations strictly used in the 
OHS application consisted of any available time periods in NWIS. OHS and NHM-PRMS comparison 
sites were selected if study locations had data after water year (WY) 1983, where a water year starts 
on 1 October of the previous year and ends 30 September of the year that is designated as the water 
year. 

2.2. Optimal Hydrograph Separation 

Two-component hydrograph separation, separation of base flow from quick flow, for the chosen 
sites was performed via OHS using a recursive digital filter (RDF) constrained by specific 
conductance mass balance [30,31]. An RDF is a technique used in hydrograph separation in which a 
digital filter is used to differentiate between low-frequency and high-frequency discharge data 
[19,32]. One assumption is that high-frequency discharge data are associated with direct flow or quick 
flow from storms or snowmelt, whereas low-frequency discharge is associated with slow flow or base 
flow, as discharge is less likely to change erratically. The physical basis for the RDF is the assumption 
that the output from an aquifer is linearly proportional to its storage (linear reservoir), which may 
not be valid in all settings. However, digital filters are a vital component in hydrograph separation 
because the methods are objective and reproducible. In this study, we used a general two-parameter 
RDF proposed by Eckhardt [32], = ( )  ( )(  ) , (1)

where the first parameter, α (dimensionless), is the recession constant, the second parameter,  
(dimensionless), is defined as the maximum value of the base flow index (BFImax, as defined by 

Figure 1. Select GAGES-II locations that have accepted OHS models (SCfit and sin-cos) or rejected OHS
models (pink triangles). Accepted models span the CONUS and a variety of aquifer rock types.

Stream gages were initially selected from the Geospatial Attributes of Gages for Evaluating
Streamflow (GAGES-II) reference stream gage dataset [34]. Gages were selected if the gage had at
least three measurements of daily mean stream discharge accompanied by either a simultaneous
daily mean specific conductance or an individual water quality specific conductance measurement,
and where a peak in specific conductance could be detected. This resulted in 1076 stream gages to
initially investigate. The data used in this study are available from the U.S. Geological Survey (USGS)
National Water Information System (NWIS) database [35]. The study locations strictly used in the OHS
application consisted of any available time periods in NWIS. OHS and NHM-PRMS comparison sites
were selected if study locations had data after water year (WY) 1983, where a water year starts on 1
October of the previous year and ends 30 September of the year that is designated as the water year.

2.2. Optimal Hydrograph Separation

Two-component hydrograph separation, separation of base flow from quick flow, for the chosen
sites was performed via OHS using a recursive digital filter (RDF) constrained by specific conductance
mass balance [30,31]. An RDF is a technique used in hydrograph separation in which a digital
filter is used to differentiate between low-frequency and high-frequency discharge data [19,32]. One
assumption is that high-frequency discharge data are associated with direct flow or quick flow from
storms or snowmelt, whereas low-frequency discharge is associated with slow flow or base flow, as
discharge is less likely to change erratically. The physical basis for the RDF is the assumption that the
output from an aquifer is linearly proportional to its storage (linear reservoir), which may not be valid
in all settings. However, digital filters are a vital component in hydrograph separation because the
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methods are objective and reproducible. In this study, we used a general two-parameter RDF proposed
by Eckhardt [32],

QB j =

[
(1− β)αQB j−1 + (1− α)βQ j

]
(1− αβ)

, (1)

where the first parameter, α (dimensionless), is the recession constant, the second parameter, β
(dimensionless), is defined as the maximum value of the base flow index (BFImax, as defined by
Eckhardt [32]), QB is the base flow discharge (L3 t−1), Q is the total streamflow (L3 t−1), and j represents
the jth timestep in days.

Recession constant parameters, α, were derived for each study site from NHM-PRMS groundwater
flow coefficients (gwflow_coef ) (t−1). Initial groundwater flow coefficients for the NHM-PRMS were
generated using a multiple-linear regression equation relating BFI, drainage density, geology, vegetation
type, and aquifer type [13], where BFI information was based on USGS HYSEP base flow separation
applied to stream gages within the GAGES-II dataset [34,36]. Typically, α was calculated via recession
analysis on recession curves of a hydrograph; programs such as RECESS (USGS) automate this
process [18,20,21,37]. For each Hydrologic Response Unit (HRU), the initial gwflow_coef values could
vary +/− 10% to produce the final gwflow_coef values used in this study [37]. The parameters, gwflow_coef
and α, both describe watershed hydrologic response; however, gwflow_coef represents the outflow
rate from a HRU amid timesteps (fraction/day), whereas α describes a base flow decay rate that can
be thought of as the rate of volumetric storage depletion between timesteps. Groundwater flow
coefficients, originally developed for individual HRUs, are an area-weighted average of all HRUs
within each study watershed and related to α via

α = e(−gw f low_coe f×d(t)). (2)

The recession constant parameter was temporally fixed for each watershed over the duration of
the data record, and ranged from 0.936 to 0.998 for the initial 1076 chosen site locations.

The second adjustable parameter in the two-parameter RDF, β, is a fitted, unmeasurable parameter
that ranges from 0 to 1 [30,32]. β is optimized using specific conductance data and mass-balance
techniques [31]. Streamflow is initially separated into two components, base flow (QB) and quick
flow (QS), while values of specific conductance are proposed for the base flow (CB) and quick flow
(CS) components. These variables, as well as streamflow (Q), are used to estimate stream specific
conductance (Csep) via,

Csep j =
CBQB j(β) + CSQS j(β)

Q j
. (3)

The root-mean-squared-error, E between the estimated stream specific conductance and observed
stream specific conductance (Cobs) is calculated as

E(β) =


j=n∑
j=1

[
Cobs j −Csep j(β)

]2


1/2

. (4)

This process is repeated until there is minimized error, E, implying that the parameter value for β
is also optimized [31]. Optimization was performed in R version 3.4.3 (A Language and Environment
for Statistical Computing) [38] using the algorithm “Bound Optimization by Quadratic Approximation”
(BOBYQA) in the R package nloptr: The NLopt nonlinear-optimization package version 1.0.4 [39,40].
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Two OHS models were used to estimate base flow specific conductance (CB) [30]. The first OHS
model estimated specific conductance via a sine-cosine function over time (sin-cos model) to emulate
seasonal variation and is defined as

CB j = CB + CB
∗s

sin

2π
(
t j − t0

)
365.25


+ CB

∗c

cos

2π
(
t j − t0

)
365.25


, (5)

where t j represents the time/day of interest, t0 is the beginning time/day, CB is the mean base flow
specific conductance value, and CB

∗s and CB
∗c are amplitudes. With this model, six variables are

optimized through Equations (3)–(5): β, CS, CB, CB
∗s, CB

∗c, and t0.
The second OHS model estimates CB by using a peak-identification algorithm and linear

interpolation (SCfit model). One main assumption is that greater stream specific conductance is
associated with a greater base flow fraction, not necessarily the volume of total flow delivery to a
stream. This assumption therefore ignores (or incorporates as base flow) high conductivity runoff

from intense rain events and influences from road salt [30]. Therefore, peaks in the observed specific
conductance data were identified using the function findpeaks in the R package pracma: Practical
Numerical Math Functions [41], while CB values were estimated with linear interpolation between
the identified peaks. The SCfit model has only two variables to optimize (β, CB). SCfit and sin-cos
models were accepted if the Nash-Sutcliffe efficiency coefficient (NSE) was greater than 0.3 and β did
not converge to a user-defined optimization bound (lower bound = 0.00001; upper bound = 1.0) [30,42].
The NSE cutoff value of 0.3 is the same as that used in Raffensperger et al. (2017) [30].

The two parameters (α, β) and output data from OHS (long-term base flow index (BFI), the fraction
of days with streamflow equal to base flow (BF Days), were examined for model type and acceptance
behavior among various watershed characteristics compiled in the GAGESII dataset: drainage area,
mean watershed slope, stream density, mean-annual potential evapotranspiration, mean-annual
precipitation, annual runoff, percent of snow to total precipitation, and percent land cover designated
as agriculture [34]. The chosen watershed characteristics were hypothesized and previously noted to
be relevant in base flow delivery to rivers and streams [43].

2.3. NHM-PRMS

The National Hydrologic Model infrastructure used with the Precipitation-Runoff Modeling
System (NHM-PRMS) is a physically based daily timestep hydrologic model that simulates components
of the hydrologic cycle for 109,951 HRUs across the CONUS [13,14,33,44,45]. The NHM infrastructure
consists of three components: (1) a physical model code, (2) climate input datasets, and (3) the spatially
distributed modeling units and parameters (Geospatial Fabric).

The structure of HRUs and stream segments in NHM-PRMS is the Geospatial Fabric (GF) for
National Hydrologic Modeling [46], which was aggregated from the National Hydrography Dataset,
NHDPlusV1 [47]. The GF provides a consistent structure for indexing distributed parameter sets, as
used by NHM-PRMS. A default set of parameters for NHM-PRMS CONUS-extent simulations was
derived from consistent methodologies for every HRU and stream segment in the GF [13,48,49]. The
GF also indexes stream segments and HRUs to an associated USGS stream gage of interest, allowing
model parameters and simulation output variables to be easily extracted using the Bandit software [13].
The NHM-PRMS has several limitations and, like many hydrologic models and OHS, has a linearity
assumption for the groundwater reservoir. Another key limitation is the static input parameters (such
as the soil permeability and gwflow_coef ) that control the flow into and out of subsurface reservoirs.
However, recent developments to PRMS have incorporated dynamic parameters for several parts of
the water cycle [50,51]. These static or dynamic parameters are spatially distributed throughout the
CONUS, but their application is dependent on the GF discretization and size of HRUs, and thus, may
not represent smaller-scale values.
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The default parameters for NHM-PRMS [48] were calibrated for each HRU using CONUS-extent
data sets of water cycle components, referred to as the “byHRU” calibration [51,52]. In this
calibration procedure, the underlying calibration scheme of the Shuffled Complex Evolution method
was used [53–55], which determined optimal parameter sets by minimizing the error between
NHM-PRMS-simulated water budget components and each CONUS-extent water cycle component.
This paper uses model output from an application of the NHM-PRMS with the byHRU calibration [37]
using the Daymet version 3 air temperature and precipitation forcings [56].

The NHM-PRMS output variables thought to best represent conceptual base flow and streamflow
from the byHRU model simulation were summarized by watershed where model HRUs and stream
segments corresponded to GAGES-II reference gages. Ninety-eight sites were removed from this
study because their drainage area from the NHM-PRMS GF differed by more than 10% of the reported
NWIS/GAGES-II drainage area, an artifact of the original GF delineation process. In the NHM-PRMS,
two variables are most analogous to base flow. The first variable, gwres_flow (GWF), conceptually
represents groundwater discharge from the NHM-PRMS groundwater reservoir. The second variable,
slow_flow (SF), conceptually represents the slow interflow from the NHM-PRMS gravity reservoir (soil
reservoir). We hypothesized that base flow would be conceptually equivalent to GWF and/or to the
combination of GWF + SF (GWFSF) for comparison with the OHS estimated base flow in this study. Total
flow is conceptually represented by the output variable seg_outflow for the watershed segment indexed
to the GAGES-II stream gage. The base flow fraction of total streamflow is calculated as the percent
contribution of GWF or GWFSF to seg_outflow in each watershed. This approach combines HRU-based
depth estimates (GWF, SF), components that lack route-timing, with routed-based daily flow estimates
(seg_outflow), which incorporates watershed in-stream storage. This may lead to instances where
GWFSF is greater than the outflow from an NHM-PRMS basin, especially in regions where there
is more depression storage and greater in-stream storage. It is also important to acknowledge that
NHM-PRMS components of GWF and SF only account for HRUs within the watershed boundary
and do not account for groundwater divide shifts or trans-lateral subsurface flow from watershed to
watershed, which are more commonly acknowledged in lower-sloped watersheds.

Model output from the byHRU-calibrated NHM-PRMS simulation is available from WY 1980
to WY 2016; nevertheless, output data from WY 1983 to WY 2016 were summarized to account for
model spin-up time to reach equilibrium beyond initial conditions [37]. The variables GWF and
SF were output by the NHM-PRMS as daily depth units by HRU. These depths were converted to
daily flow volumes based on HRU drainage area and summed for all HRUs in each study watershed.
The variable seg_outflow was exported as daily flow in a volume per time unit. Daily data were
aggregated to monthly and water year flow volumes to account for the transit time between upstream
HRUs/segments, and the watershed outlet stream segment, which are not always comparable at
the daily time scale because of in-stream storage. We assumed that averaging on a monthly and
annual timestep relieved most issues with routing and in-stream storage that would occur by mixing
HRU-based depth estimates with routed-based daily flow estimates. Memory of flow components
contributing to total streamflow from upstream to downstream segments (routing) is not accounted for
in the byHRU-calibrated application of the NHM-PRMS.

2.4. Comparison of OHS and NHM-PRMS Base Flow

The results from OHS and byHRU-calibrated application of the NHM-PRMS were compared at
monthly and annual time scales for WY 1983 to WY 2016. Some streamgage sites contain data gaps in
the OHS output where NWIS daily discharge was missing, often attributed to equipment malfunction
or sites that only operated seasonally. These data gaps were removed from the NHM-PRMS output
record for purposes of comparison. Periods of zero flow were also removed as they are not well
represented in the currently available configuration of the NHM-PRMS and are a known limitation of
the byHRU calibration simulated streamflow output. OHS daily values were aggregated to monthly
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values for months that had a complete daily value record. Similarly, OHS monthly values were
aggregated to annual values for water years that had complete monthly values.

Comparisons between the OHS base flow and byHRU-calibrated application of the NHM-PRMS
components representing base flow were carried out by examination of long-term averages and
averaging the difference between OHS and NHM-PRMS component percent contribution to total
flow at monthly and annual time scales. We assume that GWF and GWFSF components within the
NHM-PRMS best represent base flow conceptually, as there are no other subsurface components in
the hydrologic model that would be analogous. Therefore, we acknowledge that we are comparing
two conceptualizations of base flow (GWF, GWFSF) provided by the NHM-PRMS to an estimation of
base flow provided by the OHS. The average difference between GWF and OHS base flow percent
contribution to total flow (case 1) and GWFSF and OHS base flow percent contribution to total flow
(case 2) is calculated as

case 1 =

(
GWF

seg_outflow
−

OHS base flow
observed streamflow

)
× 100, (6)

case 2 =

(
GWFSF

seg_outflow
−

OHS base flow
observed streamflow

)
× 100. (7)

These comparisons evaluate how well the byHRU-calibrated application of NHM-PRMS represents
base flow and highlight potential improvements for OHS and NHM-PRMS. The standard difference
between NHM-PRMS and OHS estimated base flow contributions were separated by normalized
monthly flow quartiles and examined across watersheds within the same aquifer rock type [57] and
aggregated ecoregions [34,58]. This temporal and spatial comparison provides insight into where
across the CONUS and at what flow quartiles a future model calibration can use OHS results to better
represent base flow in the NHM-PRMS.

3. Results

3.1. OHS Output: General Overview

Of the 1076 study stream gages that met the initial site selection criteria, most of the sites (825)
have at least one OHS model type that yields an “acceptable” model. Of the 825 sites, 33 sites have only
an accepted sin-cos model, 349 sites have only an accepted SCfit model, and 443 sites have acceptable
sin-cos and SCfit model types. Of the 443 sites with two acceptable models, 350 sites have a greater NSE
among the SCfit models and 93 have a greater NSE among the sin-cos models. In total, 699 sites have
better fitting SCfit models and 126 sites have better fitting sin-cos models. Of the final 825 accepted
models, the average NSE between the observed and simulated stream specific conductance is 0.62
and the overall long-term average BFI for all the study sites is 0.61 (Table 1). The largest differences
between the SCfit models and sin-cos models are in the mean values of β, BFI, and BF Days (Table 2).

Table 1. Minimum, maximum, and mean values for accepted model parameters and output.

Parameter/Output Minimum Maximum Mean

α 0.94 1.00 0.98
β 0.01 1.00 0.72

BFI (fraction) 0.01 0.99 0.61
BF Days (fraction) 0.00 0.67 0.26
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Table 2. Minimum, maximum, and mean values for accepted model parameters, output, and metrics
separated by model type (SCfit or sin-cos).

Parameter/Metric/Output SCfit (699 Models) sin-cos (126 Models)

Minimum Maximum Mean Minimum Maximum Mean

α 0.94 1.00 0.98 0.94 1.00 0.98
β 0.01 1.00 0.75 0.01 1.00 0.58

NSE 0.30 1.00 0.62 0.30 1.00 0.65
Mean Daily Streamflow (m3 s−1) 0.02 246 7.81 0.01 76.0 6.39

BFI (fraction) 0.01 0.99 0.64 0.01 0.98 0.47
BF Days (fraction) 0.00 0.67 0.28 0.00 0.66 0.18

Values of α are not optimized but are similar between the two models and consistent with the
NHM-PRMS model [13]. β values are generally larger for SCfit models. As a result, both BFI and BF
Days are generally greater for SCfit model sites. The range of β values for the CONUS is larger than
was reported for Chesapeake Bay Watershed (0.26–0.92) [30], although the mean values are similar
(0.61 for Chesapeake Bay Watershed and 0.72 for the CONUS).

Ranges of α, β, BFI, and BF Days for selected watershed physical and hydro-climatological
characteristics were similar between SCfit and sin-cos model types (Table 3, Figures S1–S5), but do not
display patterns with respect to watershed area (Figure 2) or stream density (Figure S1).

Table 3. Minimum, maximum, and mean values for landscape and hydro-climatological features for
accepted models.

Hydroclimatological Features SCfit (699 Models) sin-cos (126 Models)

Min Max Mean Min Max Mean

Watershed area, km2 1.6 14,300 779 12.3 6020 511
Mean watershed slope *, % 0.0 54.2 13.0 0.0 51.9 13.8

Percent of watershed in irrigated agriculture **, % 0.0 20.2 0.7 0.0 16.2 0.6
Watershed percent perennial ice/snow (class 12) **+, % 0.0 53.6 4.0 0.0 4.3 0.6
Mean annual precipitation for the watershed ***, cm 32.6 452 112 43.3 362 113

Snow percent of total precipitation ++, % 0.0 73.1 20.7 0.0 71.2 21.8
Mean-annual potential evapotranspiration +++, mm/year 306 1190 682 355 1150 661

Estimated watershed annual runoff +*+, mm/year 2.1 3730 435 0.0 3330 471
Stream density, km/km2 +** 0.0 1.5 0.8 0.2 1.4 0.7

* Derived from 100m resolution National Elevation Dataset; ** From USGS 2002 250-m MODIS data; **+ Only
presented for watersheds with >0% perennial ice/snow cover (n = 55 for SCfit models, n = 126 for sin-cos); *** From
800 m PRISM data, 30 year period from 1971–2000; ++ Mean period from 1901–2000; +++ Estimated from Hamon
(1961); +*+ Mean period from 1971–2000, estimation method integrated effects of climate, land use, water use, and
regulation; +** From NHD 1:100,000 streams; All watershed characteristics originally compiled within the GAGES-II
dataset [34].
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the fraction of total streamflow attributed to base flow. BF Days is the fraction of days for which 100 
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Values of α generally increase with increasing mean watershed slope and the percent of total 
precipitation composed of snow and decrease with increasing mean-annual potential 
evapotranspiration (PET) (Figure S2). These patterns are likely related to the method used to estimate 
α values based on a regression against watershed characteristics [13].  does not display a pattern or 
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Figure 2. OHS model input parameters ((a) α and (b) β) and output variables ((c) BFI and (d) BF Days)
displayed by drainage area and accepted model type. BFI is the base flow index which is defined as
the fraction of total streamflow attributed to base flow. BF Days is the fraction of days for which 100
percent of streamflow is attributed to base flow.

Values of α generally increase with increasing mean watershed slope and the percent of total
precipitation composed of snow and decrease with increasing mean-annual potential evapotranspiration
(PET) (Figure S2). These patterns are likely related to the method used to estimate α values based
on a regression against watershed characteristics [13]. β does not display a pattern or bias with
any of these watershed characteristics (Figure S3), or with estimated annual runoff, mean-annual
precipitation, mean-annual PET, or percent of irrigated agriculture or perennial ice/snow land cover in
a watershed for either model type (Figures S4 and S5). In general, the model output (BFI and BF Days)
appears more dependent on β than α, which is potentially due to the more similar range in values.
Thus, BFI and BF Days show a similar absence of pattern with the same watershed characteristics
(Figures S3–S5). However, when comparing BFI and BF Days versus watershed characteristics
and hydroclimatic variables, we find that the number of days at base flow is generally larger in
lower-elevation and lower-sloped watersheds with less snow input as opposed to higher-elevation,
higher-sloped, watersheds with snow-dominated precipitation (Figure 3). We did not see this pattern
with any other watershed characteristics or hydroclimatic variables.
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Figure 3. The long-term average base flow index (x-axis) compared to BF Days (y-axis). Sites are
colored by the (a) average percent of snow that contributes to total annual precipitation and (b) the
mean elevation within the watershed. Watershed slope is not displayed here, but mimics patterns like
mean elevation in the watershed.

The distributions of model parameters (α and β) and model output (BFI and BF Days) vary with
both ecoregion (Figure 4) and aquifer rock type (Figure 5).

This is expected for α values because recession constants are naturally related to aquifer type,
topography, and precipitation or climate [37]. This is also expected because of the way gwflow_coef is
estimated in the NHM-PRMS and how it varies regionally, thus we would not expect much difference
in α between SCfit or sin-cos model types—only by region (Figures 4 and 5). The interquartile range
and median values for β, BFI, and BF Days among SCfit models are generally greater than among
sin-cos models regardless of ecoregion or aquifer types (Figures 4 and 5), however, this may be due to
more SCfit models that give a better representation of the true distribution. The West Mountains and
the Southeast Plains ecoregions have the most similar range in values of β, BFI, and BF Days among
SCfit and sin-cos models, with the Northeast and Central Plains having the next closest ranges. Large
differences between SCfit and sin-cos model distributions of β, BFI, and BF Days occur in the Southeast
Coastal Plains, the Mixed Wood Shield, and West Xeric ecoregions, however, this is likely influenced
by the greater number of SCfit models in these regions. In most cases, the range in values of BF Days,
regardless of model type, is lower in the western US (West Mountains, West Xeric, West Plains) than in
the Central Plains, East Highlands, Southeast Plains, and Northeast (Figure 4). The overall lack of
regional pattern in BFI and lower average values of BF Days in the western US are also seen spatially
(Figures 6 and 7).
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Figure 4. Distributions of (a) α, (b) β, (c) BFI, and (d) BF Days for each aggregated ecoregion [34,58]. 
“Southeast” is abbreviated as “SE”. The orange box plots represent SCfit model types and the blue 
box plots represent sin-cos model types. The number of samples are listed by model type in the x-axis. 

Figure 4. Distributions of (a) α, (b) β, (c) BFI, and (d) BF Days for each aggregated ecoregion [34,58].
“Southeast” is abbreviated as “SE”. The orange box plots represent SCfit model types and the blue box
plots represent sin-cos model types. The number of samples are listed by model type in the x-axis.
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Figure 5. Distributions of (a) α, (b) β, (c) BFI, and (d) BF days for each aquifer type [57]. The orange 
box plots represent SCfit model types and the blue box plots represent sin-cos model types. The 
number of samples are listed by model type in the x-axis. 
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Figure 5. Distributions of (a) α, (b) β, (c) BFI, and (d) BF days for each aquifer type [57]. The orange
box plots represent SCfit model types and the blue box plots represent sin-cos model types. The number
of samples are listed by model type in the x-axis.

Distributions of β, BFI, and BF Days among SCfit and sin-cos models are similar for the “other”,
sandstone, and unconsolidated sand and gravel aquifer types. Similarly, large differences are observed
in sandstone and carbonate rock aquifer types, which have the lowest number of sin-cos models among
the aquifer rock types.

3.2. OHS and NHM-PRMS Outputs: Comparison

Of the original 825 study sites, 662 study sites have acceptable OHS models and base flow
estimates, NHM-PRMS watershed drainage area within 10% of reported drainage area in NWIS, and
observed discharge and specific conductance data between WY1983 and WY2016 to be compared with
simulated flow from NHM-PRMS. Most study sites derived base flow using the SCfit OHS model (554),
while less than one sixth of the sites use the sin-cos OHS model (98). The comparison watersheds range
from 3.13 km2 to 14,300 km2 and are evenly distributed across the country (Figure S7).
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Figure 7. Spatial distribution of BF Days (fraction) of sites with accepted OHS models (n = 825),
presented among aquifer type within the CONUS. The western US has a generally smaller fraction of
days at base flow on average than the Midwest and eastern US.
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The averaging timestep (annual and monthly) used in the overall comparisons showed little to no
difference among the distribution shape of long-term average volumetric or percent contributions to
total flow and had little influence on the overall average percent contribution difference between GWF,
GWFSF, and OHS base flow to total flow (Figures S8–S10).

This was expected as the timesteps were all generated from the daily output and any difference
observed would be due to averaging.

Long-term average percent contribution comparisons between OHS-estimated base flow to total
streamflow and NHM-PRMS subsurface outputs (GWF, GWFSF) to seg_outflow revealed that the
NHM-PRMS partitioning of subsurface flow is slightly less than the partitioning of OHS-estimated
base flow to total flow (Figure 8a). This is supported by the long-term average percent contribution
to total flow, as well as the mean differences between the percent contribution of OHS base flow to
streamflow versus percent contribution of GWF to seg_outflow (case 1) and the percent contribution of
OHS base flow to streamflow versus percent contribution of GWFSF to seg_outflow (case 2; Figure 8b).
Of the two NHM-PRMS output variables, the percent contribution of GWFSF to seg_outflow is generally
more similar to OHS base flow estimates than the percent contribution of only GWF to seg_outflow
because the distribution of the mean difference for case 2 is centered near zero (Figure 8b). Water 2019, 11, x FINAL 15 of 26 
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Figure 8. (a) Long-term average distributions of percent contribution from GWF, GWFSF, and OHS
base flow to total outflow and (b) distributions of the mean difference between GWF and OHS base
flow (case 1) and mean difference between GWFSF and OHS base flow (case 2). Instances of >100%
average contribution to streams are due to the comparison of HRU-based volumes with routed-based
stream segment volumes (n = 6 out of 662 sites compared).

Examining NHM-PRMS components over normalized monthly flow quartiles suggests that both
GWF and GWFSF for the 0.25 and 0.5 normalized flow quartiles are most similar to the lower and
higher ranges of average monthly OHS base flow percent contribution (Figure 9).
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Figure 9. Average monthly percent contribution to total flow of OHS base flow, GWF, and GWFSF over
normalized monthly flow quartiles (0.25, 0.5, 0.75, 1). Values greater than 100 percent are due to the
comparison of HRU-based volumes with routed-based stream segment volumes (n = 6 out of 662 sites).

However, for the normalized flow quartiles of 0.75 and 1, both NHM-PRMS components become
more dissimilar to OHS base flow, with GWFSF contributions becoming greater and GWF contribution
slightly decreasing more so than OHS base flow contributions.

3.2.1. Comparisons by Aggregated Ecoregion

The percent contribution difference across ecoregions and by normalized monthly flow quartiles
shows how regionally comparable NHM-PRMS simulated base flow and OHS base flow are across
the CONUS and during what type of monthly flow quartile. For most monthly flow quartiles and
ecoregions, considering the GWF contribution to total flow as base flow underestimates the OHS base
flow contribution to total flow (Figure 10).

One exception to this is the West Mountains ecoregion, in which all flow quartiles match well to
OHS base flow with a median difference across flow quartiles ranging from 3–9% (Figure 11a).
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Figure 10. Average monthly difference in percent contribution from GWF and OHS base flow (case 1;
teal) and GWFSF and OHS base flow (case 2; grey) over aggregated ecoregions [34]. Values greater
than 100 percent are due to the comparison of HRU-based volumes with routed-based stream segment
volumes (n = 6 out of 662 sites). The dotted line emphasizes a zero difference.
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Figure 11. (a) the difference in average monthly percent contributions to total flow of GWF and OHS
base flow (case 1), and (b) GWFSF and OHS base flow (case 2) over normalized monthly flow quartiles
(0.25, 0.5, 0.75, 1) and aggregated ecoregions [34]. Values greater than 100 percent are due to the
comparison of HRU-based volumes with routed-based stream segment volumes. The dotted line
emphasizes a zero difference.
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Among the low-flow months in the Mixed Wood Shield and West Xeric ecoregions, the percent
contributions difference between the GWF and OHS base flow also have good agreement. Additionally,
the percent contribution differences in the West Xeric, Northeast, East Highlands, and Southeast
Plains have similar medians across flow quartiles, while the Mixed Wood Shield, Central Plains, and
Southeast Coastal Plains ecoregions have more variation in the distributions with flow, with lower
flows being a better match to OHS base flow contributions and higher flows further from the OHS
base flow determination.

When the combination of GWFSF is considered as NHM-PRMS base flow, NHM-PRMS base
flow percent contributions are greater than OHS base flow contributions in the western US (West
Mountains, West Xeric ecoregions) and in the Northeast, and consistently lower in the middle of the
CONUS (Figure 10). There is also more variation in distributions among flow quartile when GWFSF is
considered to represent NHM-PRMS base flow, with medians that progressively increase from low to
high monthly flow quartiles (Figure 11b). This pattern is exhibited in the East Highlands, Mixed Wood
Shield, Southeast Plains, and West Mountains. A similar pattern is exhibited in the Central Plains,
Northeast, and West Plains with the exception that the median difference for months in the 0.50–0.75
and 0.75–1.00 quartiles are almost equivalent or slightly decrease. An opposite pattern appears in the
Southeast Coastal Plains, with an incremental decrease in the medians from low to high monthly flow
quartiles. In general, the GWFSF components in the West Xeric appear to be most similar to OHS
base flow with smaller ranges for all monthly flow quartiles and median differences around 0% or
slightly higher.

3.2.2. Comparisons by Aquifer Rock Type

The NHM-PRMS base flow contribution of GWF is only slightly lower than the OHS-defined base
flow estimates for all defined aquifer rock types and for most flow quartiles (Figures 12 and 13).
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Figure 12. Average monthly difference in percent contribution from GWF and OHS base flow (case 1;
blue) and GWFSF and OHS base flow (case 2; grey) over aquifer rock type [57]. Values greater than 100
percent are due to the comparison of HRU-based volumes with routed-based stream segment volumes
(n = 6 out of 662 sites). The dotted line emphasizes a zero difference.
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Figure 13. (a) The difference in average monthly percent contributions to total flow of GWF and OHS
base flow (case 1), and (b) GWFSF and OHS base flow (case 2) over normalized monthly flow quartiles
(0.25, 0.5, 0.75, 1) and aquifer type [57]. Values greater than 100 percent are due to the comparison
of HRU-based volumes with routed-based stream segment volumes. The dotted line emphasizes a
zero difference.

The aquifer rock type category of ‘other’ is the closest match to OHS-defined base flow (Figure 12).
The normalized monthly flow quartiles of the mean difference of base flow percent contribution to total
streamflow between NHM-PRMS base flow and OHS base flow also revealed little difference across
varying aquifer rock types within the CONUS (Figure 13). Sandstone aquifers and unconsolidated sand
and gravel aquifers had more noticeable differences in the interquartile ranges of normalized monthly
flow quartiles, whereas carbonate rock, igneous and metamorphic rock, and semi-consolidated sand
aquifers had similar interquartile ranges of normalized monthly flow quartiles, especially during the
lowest flow quartiles. Medians of the mean monthly difference among monthly flow quartiles do not
substantially differ among any of the aquifer rock types, except for in unconsolidated sand and gravel
category where low flows are a closer match to OHS base flow.

A similar pattern is identified among ecoregions emerges among aquifer rock types when GWFSF
is considered NHM-PRMS base flow, in that there are progressive increases among the medians of
mean monthly difference from low to high monthly flow quartiles (Figure 13b). The NHM-PRMS
base flow in the low-flow monthly quartiles among sandstone, semi-consolidated sand, carbonate
rock, and sandstone and carbonate rock aquifers have interquartile ranges that are less than the OHS
base flow contribution. While the NHM-PRMS base flow percent contribution among aquifer types
consisting of “other” and unconsolidated sand and gravel are generally greater than the OHS base
flow percent contribution, similar to igneous and metamorphic rock aquifers for 0.5–1.0 quartile flow
quartiles. Overall, the mean monthly differences between GWFSF and OHS base flow are the most
minimal in the semi-consolidated sand aquifer rock type apart from the low-flow quartile.
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4. Discussion

4.1. OHS Performance across the CONUS

The results of this study demonstrate the applicability of the OHS method, and both model types
of SCfit and sin-cos across the CONUS, with no apparent pattern in β, BFI, and BF Days with respect to
geographic location (Figure 1), watershed drainage area (Figure 2), stream density (Figure S1), mean
watershed slope (Figure S3), percent of precipitation composed of snow (Figure S3), estimated annual
runoff (Figure S4), mean-annual precipitation and evapotranspiration (Figure S4), or percent land
cover composed of irrigated agriculture or perennial ice/snow (Figure S5). This suggests that OHS
is applicable across diverse watersheds and hydroclimates but renders the idea of regionalization
of β, BFI, and BF Days challenging. Values of α showed patterns with watershed slope, percent of
precipitation composed of snow, and the mean-annual precipitation (Figure S2), however, this is
related to how α was derived from the NHM-PRMS. Ultimately, the randomness between watershed
characteristics and OHS output supports the idea that multiple regression or dimension reduction
methods may be better suited for regionalization of base flow estimates.

In the CONUS, a greater number of SCfit model types were accepted than sin-cos model types
(with no spatial pattern to this finding), suggesting that some streams may have a stronger seasonal
specific conductance signal than others and/or that there are more streams with flashier stream specific
conductance that the SCfit model type is better equipped to represent because of the method’s treatment
of outliers. In the SCfit model type, peaks and outliers in stream specific conductance are found using
a peak-fitting algorithm and are fit instead of “smoothed” as in the sin-cos model type. The differences
in how each model handles the fitting of stream specific conductance could be the reason why we see
slightly higher estimates of BFI and BF Days among SCfit model types versus sin-cos model types,
as the greater number of peaks identified in the stream specific conductance from the SCfit model
type would suggest greater base flow. Overall, these differences in the output values were minor and
therefore ignored, since the best model type for each site was chosen by the greatest NSE value.

Grouped by ecoregion (Figure 4) or aquifer rock type (Figure 5), values of α and β display wide
ranges that generally overlap indicating greater variance within an ecoregion or aquifer type than
between them. Again, the SCfit model type produces overall greater values and occasionally more
consistent and narrower distributions of β, BFI, and BF Days among various ecoregions and aquifer
types than the sin-cos model type, suggesting that differences between the OHS models should be
evaluated further instead of focusing on spatial characteristic differences.

A map of the long-term average BFI (Figure 6) also demonstrates the variability across the
landscape and with underlying rock type. Potential differences can be seen on the leeward and
windward sides of mountain ranges, but this needs further investigation. BF Days does not necessarily
follow the same pattern as the long-term BFI (Figure 7). There is a tendency for the fraction of base flow
days to be relatively low in the western US (especially in the ecoregions, West Mountains and West
Xeric), independent of the long-term average BFI (Figures 4 and 6). This may be related to the frequency
of precipitation events or period of data examined within El Nino-Southern Oscillation phases [59],
and/or due to large contributions to streamflow from snowmelt. However, comparison of BFI versus BF
Days as functions of snow percent of precipitation and watershed mean elevation (Figure 3) indicates
that the BF Days for a given BFI are generally smaller as elevation and the snow percent contribution
to total precipitation increase. This implies that mountainous areas are characterized by fewer BF Days
and the prevalence of mountainous, snow-dominated watersheds are greater in the western US as
opposed to the central and eastern US. Thus, snow influences are likely a reason why we see fewer
days at 100% base flow in the western US.

4.2. OHS Comparison to the NHM-PRMS

Initial comparisons of the NHM-PRMS to OHS base flow suggested that GWFSF components are
most analogous to OHS base flow, however, analysis by ecoregion, aquifer type, and flow quartiles
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reveals the complicated nature of how flow is allocated within the NHM-PRMS, how OHS base flow
varies with flow, and that one simple combination of NHM-PRMS subsurface components is not akin
to OHS base flow in all regions across the CONUS.

Of the study analyses, GWF is most analogous to OHS base flow in the aggregated ecoregions
of the West Mountains and the Northeast for all flow quartiles, in the lowest flow quartiles of the
Mixed Wood Shield and West Xeric ecoregions, and in aquifer rock types categorized as “other”. In
addition, the aquifer rock type of “other” is assigned to the majority of sites within the West Mountains
(70% of sites), Northeast (79%), West Xeric (44%), and Mixed Wood Shield (76%) ecoregions (Table
S1); thus this spatial overlap may be compounding the analogous behavior between OHS base flow
and GWF amongst these ecoregions and aquifer types, and/or it is likely a coincidence since many of
the study sites were categorized as the aquifer rock type “other”. This coincidence is supported by
comparisons between OHS base flow and GWFSF. Of the study analyses, GWFSF is most analogous to
OHS base flow in the aggregated ecoregion of the West Xeric for all flow quartiles, in the Central Plains
for most flow quartiles, and in aquifer rock types categorized as “semi-consolidated sand”. However,
the West Xeric has only 3% of its study sites categorized as being in a semi-consolidated sand aquifer
and the Central Plains has 0% study sites (Table S1). Therefore, the spatial overlap of aquifer type
and ecoregion, and the comparison between OHS base flow and NHM-PRMS components are not
directly connected.

Comparisons among flow quartiles reveal how OHS base flow, GWF, and SF water vary in
certain regions and in the timing of their contributions to total flow. With greater total flows, the OHS
base flow distribution across the comparison sites becomes wider in range, with an overall smaller
percent contribution to total flow (Figure 9). This makes sense, as larger amounts of precipitation
associated with higher flows should lower the base flow fractional contribution to total flow. This
pattern exists with the GWF component as well, among ecoregions and aquifer types (Figures S11
and S12), implying OHS base flow and GWF have a similar definition of flow. However, the opposite
scenario is true with the SF component, as SF contributes more to total flow during greater flows,
suggesting this component is more representative of precipitation than subsurface inputs (Figure 9,
Figures S11 and S12). Therefore, SF cannot be added to GWF during all periods of the hydrograph,
otherwise the NHM-PRMS representation of base flow will be larger than OHS-estimated base flow
during higher flows (ex: in most aquifer rock types, in the West Mountains, Northeast, Southeast
Plains, East Highlands, and in the Mixed Wood Shield ecoregions). In the West Xeric and Central
Plains ecoregions, SF still increases in contribution to total flow during higher flows (Figure S11), but
the GWF contribution in these regions counterbalance or even suppress the precipitation input so
that the differences between OHS and GWFSF in these ecoregions are consistent across various flows
(Figure 11).

4.3. Use of OHS as a Calibration Tool

To use OHS as a calibration and/or validation method for the NHM-PRMS or any hydrologic
model, model components that are analogous to base flow need to be identified. In the NHM-PRMS
case, two subsurface components, SF and GWF could both theoretically represent base flow. However,
GWF generally contributes a smaller portion of total flow than the OHS base flow and GWFSF
occasionally contributes too much to the total flow compared to OHS-estimated base flow, especially
during greater streamflow and precipitation. Therefore, there are several possible solutions to calibrate
and validate these components to OHS base flow.

Since the addition of the SF NHM-PRMS component can contribute more flow to total flow than
OHS allocates to total flow, the SF component could potentially be split into two components, with
one component consisting of the SF base flow fraction and the remaining component consisting of
a SF quick flow fraction. Similarly, Miller and others (2017) [60] proposed splitting the hydrograph
into three sources rather than two to better represent varying chemical pathways to streams; with a
stream composed of a quick flow component, “quick” base flow component, and a “slow” base flow
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component. In the NHM-PRMS, the SF base flow component could be the sum of the GWF component
and the amount of flow needed to reproduce OHS base flow and may be representative of Miller and
others (2017) [60] definition of a “concentrated quick flow” component. In addition, results from OHS
can be used to calibrate parameters that control the flow between gravity and groundwater reservoirs
(ssr2gw_rate) that may allow for GWFSF to align more with OHS-derived base flow. Another option
would be to perform OHS on NHM-PRMS statically generated streamflow (seg_outflow) with observed
specific conductance data to explore aspects of incorporating water quality into the model to constrain
or calibrate/validate estimates of GWF and SF to the outflow segment.

As mentioned earlier, the memory of upstream HRUs and segments are not taken into consideration
in the NHM-PRMS byHRU calibration, however, future implementation of flow routing components
may greatly improve comparisons between OHS-derived base flow and base flow components from
NHM-PRMS such that new variables may not be needed. Inclusion of upstream memory in flow
routing components into the NHH-PRMS would allow daily values of NHM-PRMS components at a
model outlet to be directly compared to daily OHS results, thus better capturing storm events and
providing an opportunity for more detailed calibration.

4.4. Limitations of OHS & NHM-PRMS

Limitations of the OHS approach were described in Raffensperger et al. (2017) [30]. In summary,
limitations result from the assumptions implicit in the conceptual model, the RDF method, and the
approach taken to impose chemical mass balance (including tracer choice). The impact of the OHS
limitations may be evidenced by poor OHS model results; conversely, poor model fit may provide an
indication that two-component separation does not adequately describe the hydrologic system’s runoff

response. Two-component separation may be insufficient to characterize systems with more complex
or diverse hydrologic compartments or components (such as interflow or subsurface storm-flow,
movement of soil moisture, macropore flow) or with human modification (including diversions, dams,
point sources and sinks, artificial drainage, and others). In addition, non-conservative tracer mixing
could reduce the difference or confuse the signals between base flow and quick flow streamflow
components in OHS, and especially interfere with how the SCfit model pinpoints peaks in specific
conductance as entirely base flow.

As previously mentioned, the NHM-PRMS static parameters, gwflow_coef and soil permeability, do
not address antecedent conditions, human disturbance, and temporal change, and is likely one reason
we see differences in the GWFSF contribution to total flow over various flow quartiles. Therefore,
the results from OHS may provide an opportunity to expand dynamic parameter capabilities within
NHM-PRMS. Restrictions of resolution (spatial and temporal) are always to be considered and
improved upon with every iteration of the NHM-PRMS or any hydrologic model, and the absence
of flow routing in the current version of the NHM-PRMS is also a limiting factor in our comparison
between OHS and the NHM-PRMS.

4.5. Future Directions

The application of OHS to hundreds of gages throughout the CONUS is an example of how this
method could be implemented in real-time at all gages with continuous discharge data and some
recurring measurements of specific conductance. This would provide real-time datasets to be used
in the NHM-PRMS or other national-extent hydrologic models for calibration and validation, and
general hydrologic process improvement. In addition to data delivery, uncertainty estimates need
to be quantified to provide a better calibration dataset for hydrologic models. Trends in base flow
contribution would give insight into the response of surface-water and groundwater exchange to
climatic and anthropogenic drivers. Instead of examining spatial and temporal differences between
OHS base flow, GWF, GWFSF, and SF by ecoregion, aquifer type, and normalized monthly flow
quartiles, analysis of these components and their contribution changes over the period of record for
each site in relation to climate or drought influences could highlight geographic, watershed-related,
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and hydrologic discrepancies that need further investigation. Defining base flow more thoroughly in
hydrologic models would also aid in water-quality prediction assessments.

5. Conclusions

OHS is an objective, reproducible, automated method that is applicable in a variety of watersheds
throughout the CONUS (77% of the basins tested in this study) of varying drainage area, stream density,
slope, elevation, precipitation, evapotranspiration, runoff, and land cover. Data requirements for this
method are simple compared to end-member mixing analysis, yet OHS still incorporates watershed
hydrogeochemical data so that observed and simulated chemistry can be used to judge how well OHS
performed, unlike many graphical hydrograph separation techniques. Therefore, OHS is a suitable
calibration and/or validation tool for hydrologic models analyzing base flow contributions to streams
and rivers.

OHS estimates of long-term average BFI suggest that base flow comprises a large portion of
streamflow on average across the CONUS without distinct geographic patterns, whereas estimates
of BF Days is lower in the western US compared to the rest of the CONUS. Comparing base flow
analogous components of the NHM-PRMS to OHS estimates reveal that the GWF percent contributions
are frequently lower than base flow estimates provided by OHS, but both estimates decrease in
contribution with increasing total flow, suggesting these two components are most similar in terms of
the type of flow they represent. GWFSF percent contributions are occasionally greater than base flow
estimated by OHS, especially during higher total flows and the SF component generally increases in
contribution during higher total flows indicating its close connection to precipitation and representation
of a quick flow signal. Comparisons of OHS, GWF, and GWFSF across aquifer type and ecoregion
suggest little to no patterns spatially, with certain ecoregions or aquifer types having only slightly
better results than others.

Defining base flow is important for the prediction of water quantity and quality, especially in
terms of answering whether changes in water quality are driven by changes in source water chemistry
or changes in the quantity of source water contributing to the stream. However, this issue is circular
and needs hydrologic models to answer these sorts of questions. OHS is a valuable affirmation method
for hydrologic models as it produces valuable outputs that can be used to evaluate and validate
hydrologic model outputs.

Supplementary Materials: The OHS source code, summary of the OHS model output, associated principal
aquifer rock types, GAGES-II watershed characteristics and hydroclimatic variables, and comparison data between
OHS and NHM-PRMS output are available for download from the USGS Science Base repository [61]. The
following are available online at http://www.mdpi.com/2073-4441/11/8/1629/s1, Table S1: Accepted OHS sites
in each aquifer type and ecoregion, Table S2: OHS and NHM-PRMS comparison sites in each aquifer type and
ecoregion, Table S3: OHS and NHM-PRMS long-term average volumetric and percent base flow contribution,
Figure S1: OHS model variables by watershed stream density, Figure S2: α values by watershed slope, potential
evapotranspiration, and percent precipitation comprised of snow, Figure S3: OHS model variables by watershed
slope and percent precipitation comprised of snow, Figure S4: OHS model variables by runoff; precipitation, and
potential evapotranspiration, Figure S5: OHS model variables by land cover, Figure S6: Map of accepted OHS
models and ecoregions, Figure S7: Map of sites in OHS and NHM-PRMS comparison, Figure S8: Long-term
average percent contributions of OHS and NHM-PRMS components to total flow over monthly and annual
timesteps, Figure S9: Distributions of mean difference between OHS and NHM-PRMS component contribution
to total flow over annual and monthly timestep, Figure S10: Distributions of long-term average volumetric
streamflow and seg_outflow on annual and monthly timestep, Figure S11: OHS, GWF, and SF average monthly
percent contribution to total flow over normalized monthly flow quartiles corresponding to ecoregion, Figure S12:
OHS, GWF, and SF average monthly percent contribution to total flow over normalized monthly flow quartiles
corresponding to aquifer type, Figure S13: Map of α for accepted OHS models, Figure S14: Map of β for accepted
OHS models.
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