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Abstract: Spatiotemporal patterns of evapotranspiration (ET) and its controlling factors are important for
ecosystem services and water resources management in the Chinese Loess Plateau (CLP). In this study,
we assessed the spatial patterns of ET and then investigated the interannual variability of ET and its
relationships with climate variability and vegetation coverage changes at the timescales of annual, active
growing season, as well as different seasons across the entire CLP from 2000 to 2014. A MODIS-derived
ET dataset, ground-based datasets of precipitation and atmospheric evaporative demand (AED), and
a remote-sensing dataset of Normalized Difference Vegetation Index (NDVI) were comprehensively
analyzed. Results showed that mean annual ET varied distinctly among different vegetation zones,
generally higher in the more humid southeastern parts of the CLP. Summer ET and ET over active growing
season significantly increased for more than 40% of the entire CLP area, and winter ET significantly
decreased over ~70% of the entire CLP region, while annual ET, spring ET, and autumn ET remained
quite stable during 2000–2014. Per-pixel interannual variability of ET was mainly positively correlated
with that of precipitation and NDVI except for winter, but negatively correlated with AED trends.
Our study also demonstrated that ET variation trends were exactly consistent for the entire CLP
region, the areas mainly implemented with the Grain for Green (GFG) project, and other CLP areas not
implemented with the GFG project during 2000–2014. Our findings suggest that the spatiotemporal
patterns of CLP ET were mainly water-limited, and climate variability played an essential role in
shaping the interannual variability of ET in the CLP. This study will improve our understanding on
the ET variations over water-limited areas under climate and vegetation coverage changes.

Keywords: evapotranspiration; climate change; vegetation coverage change; interannual variability;
Chinese Loess Plateau

1. Introduction

Ecosystem evapotranspiration (ET) is a key process and component in the terrestrial water
cycle and energy balance [1,2], which is composed of vegetation transpiration, soil evaporation, and
evaporation of canopy interception [2,3]. It has been reported that more than 60% of precipitation is
returned to the atmosphere through the ET process at the global scale [4,5], and this ratio could be
much higher for water-limited ecosystems [1,6]. Therefore, analyzing the spatiotemporal variation in
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ET and its controlling factors is crucial for water resources management especially for the water-limited
regions around the world [1,7,8].

The Chinese Loess Plateau (CLP) has long been threatened by soil erosion and environmental
degradation [9,10]. Several revegetation or ecological restoration projects have been enforced in this
region ever since the 1950s aiming at relieving the environmental pressure in the CLP, which have
remarkably altered the land surface characteristics (e.g., increasing vegetation coverage) and ecosystem
water cycles (e.g., declining runoff and soil moisture), particularly because of the implementation
of the Grain for Green (GFG) project in 1999 [11–15]. The water resource limits for revegetation has
also been reported in the CLP region [11]. As a key process within the water cycle, it is essential
to comprehensively assess the spatiotemporal patterns of ecosystem ET for the water resources
management across the CLP region.

Regional-scale ET variation has been studied mainly based on data synthetization of site-level
observations [1,6], and ET models or algorithms combined with gridded inputs (e.g., satellite
remote-sensing datasets) [16–19]. Site-level ET could be obtained with diverse observational or
estimating methods [2], and the most commonly used method in the CLP region is the traditional
water balance method (e.g., [20,21]), which generally pours all the uncertainties and measurement
errors associated with water balance into the ET estimation [2,22]. The shortage in the data precision,
as well as lack of temporal continuity and inter-site comparability in these ET data, have limited
our understanding on the spatiotemporal variations in the CLP ET from an integrate perspective
through synthesizing site-level ET observations. The fragmentized landforms in the CLP makes the
site representativeness more complex [23]. Meanwhile, only very few sites have ever conducted ET
observation with the eddy covariance method [23], a widely acceptable standard method for directly
measuring ecosystem ET [24,25]. Therefore, current studies involving ET variations at the CLP-regional
scale mainly depend on related model outputs and satellite datasets [11,13,23,26].

The spatiotemporal patterns of ecosystem ET in the CLP have been preliminarily analyzed
mainly based on the MODerate Resolution Imaging Spectroradiometer (MODIS) ET product (MOD16),
which records large-scale and long-term changes in terrestrial ET with a high spatial-temporal
resolution [16,27]. The spatial pattern of annual ET has been indicated to be consistent with the
gradients of precipitation and vegetation coverage [26,28]. As to the temporal variations in ET, previous
studies have indicated that annual ET derived from the MODIS ET dataset has increased in the whole
CLP region and its revegetated areas during 2000–2010 [11,23,26], and Feng et al. [11] attribute this
increase to the land-use change rather than climate change in the CLP. However, it is still not clearly
known yet how the ET variation responds to the climate change and vegetation coverage change in the
CLP, whether the CLP ET is water-limited or energy-limited, and what the dominant factors are in
affecting the interannual variability of ET at different timescales. The temporal variations in ET and
influencing factors (e.g., net radiation, air temperature, and vapor pressure deficit) within short periods
(e.g., daily and seasonal) have been well studied, but our knowledge on the interannual variability of
ecosystem ET is still limited, which is of great importance for a deeper understanding of ecosystem
water consumption in the CLP for sustainable development, especially under the influence of large
regional-scale revegetation efforts and global climate change.

This research aimed at investigating the spatiotemporal patterns in the ecosystem ET and its
relationships with climate variability and vegetation coverage changes across the Chinese Loess
Plateau over the period since the first year after the large-scale implementation of the GFG project
in 2000 until recently in 2014. A MODIS ET dataset, ground-based datasets of precipitation and
atmospheric evaporative demand (AED), and a remote sensing-based dataset of Normalized Difference
Vegetation Index (NDVI) were mainly applied. To achieve this, three research contents were proposed:
(1) assessing the spatial distributions of ecosystem ET among different vegetation zones across the entire
CLP; (2) analyzing the interannual variability of ET at the timescales of annual, active growing season,
and different seasons (i.e., spring, summer, autumn, and winter) during 2000–2014; and (3) evaluating
the relationships of ET trends with the trends in precipitation, AED, and NDVI at different timescales.
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2. Data and Methods

2.1. Study Area

This study was conducted across the entire CLP area in the northwest of China. The CLP region
covers an area of approximately 640,000 km2 (34–40◦ N, 102–114◦ E, Figure 1a), generally showing
higher elevation in the west and lower elevation in the east (Figure 1a). The CLP area is located in
the temperate continental monsoon climatic zone, and experiences hot and wet summers, and cold
and dry winters due to the effect of the Siberian high weather system and Asian monsoon [9,29].
The mean annual precipitation in the CLP increases from 130 mm to 815 mm, and the mean annual air
temperature varied within the interval of about 3–15 ◦C during 2000–2014 (Figure 1b,c). The vegetation
distribution patterns are strongly controlled by the northwest–southeast precipitation gradient, with
forest and forest-steppe mainly in the southeast (Figure 1a) [9].
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Figure 1. (a) Location and elevation of the Chinese Loess Plateau (CLP). Grey lines represent boundaries
of administrative divisions in this region. Orange lines represent boundaries of five vegetation zones.
Blue polygon with black slashes represents the main areas implemented with the Grain for Green (GFG)
project in the CLP [10]. (b,c) Spatial distributions of (b) annual precipitation and (c) annual mean air
temperature in the CLP averaged over 2000–2014. The gray lines in panel (b) and (c) are the isolines of
precipitation and air temperature, respectively.

2.2. MODIS ET Dataset

We acquired monthly and annual ET data from the MODIS Collection 5 ET data product (MOD16
A2/A3), both with a spatial resolution of 1 km2 during the time period from 2000 to 2014. This global
terrestrial ET data product (MOD16) has been widely employed to ET and related researches at various
space–time scales in the CLP and other regions in the world (e.g., [11,17]). The MODIS ET algorithm
is based on the Penman–Monteith equation using gridded meteorological reanalysis dataset from
NASA’s Global Modeling and Assimilation Office (GMAO) and remote sensing data products from
other MODIS data products as inputs [16,27].

The MODIS ET algorithm has been proved to show good performance in generating monthly
and annual ET observations measured by open-path or close-path eddy covariance systems in the
CLP and China (R2 = 0.6, Figures S1 and S2). These ET observations were provided by a site-level ET
dataset in China, which was constructed by synthesizing eddy-covariance ET data from ChinaFLUX
and published literature in China [1,30]. Since there are very few eddy-covariance sites distributed
in the CLP region, we first validated the performance of MODIS ET in capturing ET variations in
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China with the yearly ET records in the site-level ET dataset, that is 149 site-year records of annual ET
from 45 ecosystems (green diamonds shown in Figure S1). Then, 99 monthly ET data from five sites
in the CLP (black flags shown in Figure S1) were used to validate the performance of MODIS ET in
generating monthly ET data in the CLP.

We then calculated ET values over the active growing season as the sum of monthly ET data
from April to September in each year at the pixel scale. The ET amounts in different seasons were
also calculated for each year during 2000–2014, i.e., spring (from March to May), summer (from June
to August), autumn (from September to November), and winter (from December to February in the
following year).

2.3. Datasets of Precipitaion and NDVI

The relationships between the interannual variabilities of ET and precipitation (P), atmospheric
evaporative demand (AED), and NDVI were analyzed. We first acquired the monthly datasets
of P, air temperature (Ta), and actual vapor pressure (ea) during 2000–2014 from approximately
756 meteorological stations in China. The AUSPLIN software was then utilized to produce the
corresponding monthly gridded datasets of P, Ta, and ea across the whole China region with a 1 km2

spatial resolution using the method of thin-plate smoothing splines, which takes a digital elevation
model as a third independent variable [1,31]. The performance of these gridded P and Ta datasets was
validated using ~150 site-year records of point-scale measurements of annual total P and annual mean
Ta from 62 sites in China (diamonds shown in Figure S1), which were obtained from the auxiliary
P and Ta data of the site-level ET dataset introduced above. None of the 62 sites repeat with the
756 meteorological stations used for producing gridded P and Ta dataset. Good performance has
been demonstrated, with R2 both of 0.91 and root mean square error (RMSE) of 146.5 mm yr−1 and
1.94 ◦C for P and Ta dataset, respectively (Figures S1 and S3). Then, the gridded datasets of P, Ta,
and ea over the CLP area were extracted from the corresponding gridded datasets during the study
period. Per-pixel annual P was computed as the sum of 12 monthly precipitation data for one year.
The p-values over an active growing season as well as different seasons were also computed in this
way. The monthly datasets of Ta and ea were used to calculated AED introduced below.

As a critical remote-sensing indicator for vegetation growth, NDVI was selected to represent
vegetation coverage in this study. We obtained the monthly NDVI data from a MODIS dataset with
a spatial resolution of 1 km2. The annual mean NDVI was computed as the mean of 12 NDVI data
during one year at the pixel scale. The mean NDVI values for active growing season and different
seasons were also calculated.

2.4. Calculation of Atmospheric Evaporative Demand

The AED variation can be quantized using pan evaporation, reference evapotranspiration, and
potential evapotranspiration (PET), in which PET is an important measure representing AED of actual
land surfaces under given metrological conditions [32]. It has been proved that the Linacre model [33],
one of the numerous PET models, could faithfully reproduce AED dynamics for both the energy- and
water-limited conditions [32]. Thus, the Linacre model was used in this study to calculate monthly
AED values (mm month−1, Equation (1)):

AED =

500(Ta+0.006z)
100−A + 15(Ta − Td)

80− Ta
× J (1)

where Ta is monthly mean air temperature (◦C), z is elevation above sea level (m), A is latitude (degrees),
Td is dewpoint temperature (◦C), J is the number of the day in a month. Td is calculated using actual
vapor pressure according to Reference [34]. The monthly gridded datasets of Ta, ea, and z were used to
generate gridded data of monthly AED. The AED values over active growing season and different
seasons were then computed.
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2.5. Data Analysis

In this study, we analyzed the spatial patterns of annual ET, P, AED, NDVI, as well as the ratio
of ET over active growing season to annual ET (denoted as AGS-ET/Annual ET ratio hereafter), and
ET amounts in different seasons by averaging the corresponding datasets during 2000–2014 at the
pixel scale. Their mean annual values were then calculated for diverse vegetation zones (i.e., forest,
forest-steppe, steppe, desert-steppe, and desert, Figure 1a). Only pixels with mean annual NDVI
values larger than 0.1 were involved in this study.

The interannual variation in the CLP ET was assessed by calculating the linear slope values of
ET values for the timescales of annual, active growing season, as well as different seasons during the
study period on a per pixel basis. The interannual trends were statistically significant if p-values < 0.05.
Time series with missing values were excluded from the temporal trend analysis in this study. We also
examined the spatial-average interannual variabilities of ET, P, AED, and NDVI at different timescales
by averaging all the pixels in the CLP. The temporal variations in ET were also analyzed for the main
areas implemented with the GFG project and other CLP areas not implemented with the GFG project.

The relationships of ET trends with the interannual trends of P, AED, and NDVI were evaluated
using the Pearson’s correlation analyses at the timescales of annual, active growing season, and
different seasons under a per-pixel basis. In addition, we performed detrended calculation to the time
series in this study in consideration of the possible spurious correlations between two variables with
same variation tendency [23].

3. Results

3.1. Spatial Pattern of ET in the CLP

Mean annual ET varied distinctly among different vegetation zones across the CLP region, with
the overall spatial average of 347.8 ± 131.5 mm yr−1, and generally showing higher values in the
forest and forest-steppe zones than other zones (Figure 2a and Table 1). Similar spatial patterns
were also observed in the spring ET, summer ET, and autumn ET in the CLP, while the differences
in winter ET were relatively small among different zones in the CLP (Figure 3). The spatial patterns
of AGS-ET/Annual ET ratio, precipitation, and NDVI were similar with that of ET, that is, generally
higher for the more humid southeastern areas than in the arid and semi-arid areas (Figures 1b and
2b,c, Table 1). The spatial distribution of AED varied differently from that of ET, showing consistently
higher AED values for the arid and semi-arid areas (Figure 2d).
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Figure 2. Spatial patterns of (a) mean annual evapotranspiration (ET), (b) the ratio of ET over active
growing season to annual ET (AGS-ET/Annual ET ratio), (c) mean annual Normalized Difference
Vegetation Index (NDVI), and (d) mean annual atmospheric evaporative demand (AED) averaged over
2000–2014 in the Chinese Loess Plateau.
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Table 1. Statistical characteristics of ET and AGS-ET/Annual ET ratio for different vegetation zones
averaged over 2000–2014 in the Chinese Loess Plateau. The P, AED, and NDVI values are also provided
for reference. Different superscript letters denote a statistically significant difference at a 5% confident
level based on Tukey’s multiple comparison tests.

Vegetation Zone ET (mm yr−1)
AGS-ET/Annual

ET Ratio
P

(mm yr−1)
AED

(mm yr−1)
NDVI

Forest 328.6 ± 86.9 a 0.7 ± 0.05 a 576.1 ± 56.9 a 1406.2 ± 81.5 e 0.43 ± 0.09 a

Forest-steppe 272.9 ± 99.5 b 0.63 ± 0.07 b 500.1 ± 35.9 b 1412.1 ± 78.8 d 0.37 ± 0.1 b

Steppe 142.6 ± 58.7 c 0.5 ± 0.07 c 395.3 ± 41.7 c 1455.5 ± 86.1 c 0.23 ± 0.06 c

Desert-steppe 134.7 ± 90 d 0.46 ± 0.12 d 299 ± 63.9 d 1603.9 ± 73.2 b 0.21 ± 0.09 d

Desert 99.8 ± 70.4 e 0.43 ± 0.13 e 205.1 ± 46.8 e 1680 ± 70.4 a 0.18 ± 0.08 e

Mean 347.8 ± 131.5 0.56 ± 0.13 424.6 ± 126.5 1482.7 ± 122.7 0.3 ± 0.13
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3.2. Interannual Variability of ET in the CLP

Annual ET significantly increased across 18% of the whole CLP region during 2000–2014 (p-value
< 0.05, Figure 4a1 and Table 2); of these, 71% were accompanied with positive P and negative AED
trends (i.e., pixels of “ET+ P+ AED–“ in Figure 4b1, Table 3), and 28% were accompanied with both
increasing trends in P and AED (i.e., pixels of “ET+ P+ AED+” in Figure 4b1, Table 3). There were
also 6.6% of the whole CLP area exhibiting significant declines in annual ET during the study period
(Table 2). The total ET amount over active growing season and summer both significantly increased
across 41% and 46.7% of the CLP area, respectively (p-value < 0.05, Table 2), and about 80% of these
areas were accompanied with positive P and negative AED trends for both active growing season and
summer (Figure 4b2,b4, Table 3). Figure 4 also shows significant declines in winter-ET for 69.4% of the
CLP region (p-value < 0.05, Table 2), and quite stable spring and autumn ET values for the majority of
the CLP area during 2000–2014 (Table 2).

The interannual variability of ET values averaged across the entire CLP area at different timeframes
are shown in Figures 5 and 6. Results showed significant increasing trends in the ET amounts over
active growing season and summer, and a decreasing trend in winter ET (p-value < 0.05, Figures 5a2
and 6a2,a4). The spatial-average ET of annual, spring, and autumn remained stable with no significant
change (Figures 5a and 6a). The same variation trends were also observed for the interannual variability
of ET values averaged across the main areas implemented with the GFG project (ETgfg) versus other
CLP areas not implemented with the GFG project (ETngfg) at different timeframes (Figures 5a and 6a).
Figures 5b and 6b also show significant increases in NDVI and non-significant variations in P and AED
during the study period in the CLP.
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Figure 4. Spatial distributions of (a) ET trends and (b) synthetic variation signs of ET, P, and AED
at the timescales of (1) annual, (2) active growing season, (3) spring, (4) summer, (5) autumn, and
(6) winter during the time period from 2000 to 2014. Symbols “+” and “–“ in the right legend indicate
increasing and decreasing trends, respectively. This figure only shows pixels with significant ET trends
(p-value < 0.05).
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Table 2. Proportions of areas with interannual trends significantly increased or decreased in ET, P,
AED, and NDVI (p-value < 0.05), and spatial-average ET trends (mm yr−1) for different timescales
across the CLP region during 2000–2014.

ET P AED NDVI Spatial-Average
ET Trend

Increase Decrease Increase Decrease Increase Decrease Increase Decrease Trend (p-value)

Annual 18.0% 6.6% 6.6% 0 5.2% 0 80.0% 1.0% 1.31 (0.37)
Active growing season 41.1% 2.1% 13.3% 0 2.8% 1.5% 78.0% 0.9% 3.00 (<0.05)

Spring 2.8% 1.4% 17.6% 0 2.2% 0 64.0% 1.9% 0.21 (0.78)
Summer 46.7% 2.1% 0 0.9% 3.6% 1.2% 74.5% 0.7% 2.34 (<0.05)
Autumn 2.3% 6.2% 0 0 0.02% 0 68.6% 0.7% −0.38 (0.43)
Winter 0.2% 69.4% 0 19.2% 1.4% 0 62.1% 1.5% −0.87 (<0.01)

Table 3. Proportions of areas showing different variation signs of ET, P, and AED at different timescales
in the CLP during 2000−2014. Symbols “+” and “−“ indicate increasing and decreasing trends in
Figure 4b, respectively.

Trend Sign Year Active Growing Season Spring Summer Autumn Winter

ET+ P+ AED+ 20.7% 15.9% 12.2% 17.0% 20.1% 0
ET+ P+ AED− 52.2% 77.4% 55.0% 74.4% 6.6% 0
ET+ P− AED− 0.01% 0.01% 0 2.1% 0 0.3%
ET+ P− AED+ 0.2% 1.6% 0.04% 2.1% 0.6% 0.01%

ET− P+ AED+ 14.2% 1.6% 12.0% 0.9% 40.8% 0.04%
ET− P+ AED− 5.3% 2.1% 19.2% 0.7% 4.9% 1.1%
ET− P− AED− 0 0 0 0.4% 0.1% 18.6%
ET− P− AED+ 7.4% 1.3% 1.6% 2.4% 26.9% 79.9%
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Figure 5. Interannual variability of (a1) annual ET and (a2) ET over active growing season across
the entire CLP, along with main areas implemented with the GFG project (ETgfg) versus other CLP
areas not implemented with the GFG project (ETngfg) during 2000–2014 at the spatial-average level.
The interannual variabilities of NDVI, P, and AED at the timescales of (b1) annual and (b2) active
growing season across the entire CLP are also shown for reference. The broken lines with colors of
red, green, and blue in the left panels show the interannual variability of ET across the entire CLP
(denoted as ET), ETgfg, and ETngfg, respectively, with annual trends (mm yr−1) indicated by the texts in
the same color. The broken lines and texts with colors of red, green, and blue in the right panels show
the interannual variability and annual trends of NDVI, P, and AED, respectively.
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Figure 6. Interannual variability of (a1) spring-ET, (a2) summer-ET, (a3) autumn-ET, and (a4) winter-ET
across the entire CLP, along with main areas implemented with the GFG project (ETgfg) versus other
CLP areas not implemented with the GFG project (ETngfg) during 2000–2014 at the spatial-average
level. The interannual variabilities of NDVI, P, and AED in (b1) spring, (b2) summer, (b3) autumn, and
(b4) winter across the entire CLP are also shown for reference. The broken lines with colors of red,
green, and blue in the left panels show the interannual variability of ET across the entire CLP (denoted
as ET), ETgfg, and ETngfg for different seasons, respectively, with annual trends (mm yr−1) indicated by
the texts in the same color. The broken lines and texts with colors of red, green, and blue in the right
panels show the interannual variability and annual trends of NDVI, P, and AED, respectively.

3.3. Relationships of ET Trends with Precipitation, AED, and NDVI Trends

Spatial distributions of correlation coefficients (R) between the detrended series of ET and P, AED,
and NDVI are shown in Figure 7. The interannual variability of ET positively correlated with that of P
for the majority of the CLP area (i.e., 97% on average) for annual, active growing season, and different
seasons except winter, with R values larger than 0.5 across about 65% (61–72%) of the whole CLP
area and higher R values for the arid and semi-arid areas (Figure 7a). For the winter, the interannual
variability of winter ET was negatively but weakly correlated with that of winter P in 63% of the CLP
area (R > −0.5, Figure 7a6). Figure 7 also showed negative correlations between ET and AED over
more than 96% of the CLP area for annual, active growing season, and different seasons, with strong
correlations (R < −0.5) across ~71% (43–88%) of the CLP region (Figure 7b). In contrast, the per-pixel
relationships between interannual trends of ET and NDVI were positive in 81–98% of the entire CLP
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area for annual, active growing season, and different seasons except winter, but weakly negative for
the winter season in ~60% of the CLP region (Figure 7c).
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4. Discussion

4.1. Spatial Variation in CLP Ecosystem ET

Ecosystem ET is an important ecological indicator characterizing water consumption of terrestrial
ecosystems [35,36]. The spatial distribution of ET was analyzed among different vegetation zones in
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the CLP in this study. Results indicated that mean annual ET was generally higher for the more humid
and warmer areas across the study area (Figure 2 and Table 1), which agreed with the spatial pattern of
ET among different ecosystem types [6] and at the global and China-regional scales [1,37].

Spatial variation in the CLP ET was regulated by the spatial distributions of climate and vegetation
conditions [1]. Previous studies demonstrated that the climatic controls on the spatial variation in ET
mainly reflected in the positive effects of water supply and atmospheric evaporative demand [1,38,39].
The per-pixel ratio of annual AED to annual precipitation was always larger than 1 in the CLP
(Figures 1b and 2d). It indicates that the water supply condition (i.e., precipitation) is the main climate
factor controlling the spatial patterns of ET in the CLP, rather than AED [40,41], which could be
also proved by the similar spatial patterns of ET and P in the CLP (Figures 1b and 2a). The spatial
distribution of P in the CLP was the most important factor shaping the vegetation patterns in the
CLP [42], which contributes to the higher ET values in the southeastern CLP areas. It is because that
the forest vegetation, mainly growing in the southeastern CLP region (Figure 1), could better use the
ground water and solar radiation because of deeper root, higher root surfaces, and denser canopies
as compared to steppe vegetations [23,43]. The topography could also affect the spatial patterns of
ET by transporting water from the areas with higher elevations to the southeastern areas with lower
elevations in the CLP (Figure 1a) [6].

We also found that the ratio of ET over active growing season to annual ET (AGS-ET/annual ET
ratio) decreased from the southeastern humid areas to the northwestern areas in the CLP (Figure 2b
and Table 1). Quite low AGS-ET/annual ET ratios in the arid and semi-arid areas were related to
the physiological regulation mechanisms of plants. That is, the plants in the arid areas will decrease
the plant stomatal conductance in order to reduce ecosystem water loss under the environmental
conditions of high AED and rare precipitation amount during active growing season [43,44].

4.2. Dominant Factors Driving Interannual Variability of ET in the CLP

The interannual variability of ET in the CLP derived from the MODIS ET dataset and its
relationships with that of P, AED, and NDVI were analyzed at the timescales of annual, active growing
season, and different seasons during the time period from 2000 to 2014. Our results manifested
that the interannual trends in ET were the same in direction with P trends but were opposite in
direction to AED trends for most areas in the CLP (with or without significant changes) at different
timeframes (Figure 4 and Table 3). It suggests that the interannual variations in the CLP ET during
2000–2014 were mainly water-limited, rather than energy-limited, from the perspective of water- and
energy-limited evaporation [32,45]. Our results also indicated strongly positive relationships between
the interannual trends of ET and NDVI for the majority of CLP areas at different timescales except
winter (Figure 7c). Previous studies showed that increasing vegetation coverage acts to promote the
proportions of vegetation transpiration and evaporation of canopy interception, but decrease soil
evaporation [3,37,46], which indicated that vegetation coverage change (measured by NDVI change in
this study) could affect the ET variation through altering the interannual variations in the different
components of ecosystem ET [1].

In this study, ecosystem ET varied with temporal variations in the climate and vegetation factors
in the CLP, but with different dominant factor(s) in different seasons for different areas during
2000–2014. Summer ET and ET over active growing season significantly increased for more than
40% of the whole CLP area (Table 2), primarily distributing in the forest-steppe and steppe zones
(Figure 4a2,a4). It should primarily be attributed to the pronounced increases in summer NDVI in
these areas (Figure S4c4), mainly due to the intensive revegetation (i.e., the GFG project) implemented
in these areas [23]. The positive correlations between interannual variabilities of ET and NDVI were
much stronger in summer as compared to other seasons (Figure 7c), suggesting that NDVI regulations
on the ET variations were dominant by increasing vegetation transpiration and evaporation of canopy
interception. The non-significantly increasing summer precipitation could also promote the summer-ET
in these areas because of relatively higher AED in summer (Figure 6b2). Therefore, the pronounced
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increases in the vegetation coverage (NDVI) together with non-significant increasing precipitation in
summer led to significantly increased ET in summer and active growing season for most areas and the
spatial-average level across the CLP area over the study period.

As to ET trends in spring and autumn, this study indicated that NDVI also significantly increased
in spring and autumn for most areas in the CLP (Figure S4c3,c5). But the corresponding relationships
between interannual variabilities of NDVI and ET were much weaker in spring and autumn, and
spring and autumn ET remained quite stable for the majority of the CLP area during 2000–2014
(Table 2). It might be explained by the decreased soil evaporation at higher NDVI [3,46], which could
offset the increases in the total ET amounts in spring and summer to some extent [23,43]. Spring and
autumn ET also significantly decreased in some areas of the southeastern CLP region during 2000–2014
(Figure 4a3,a5), which was mainly caused by the increasing precipitation in these areas (i.e., manifested
as “ET–P+AED+/–“ in Figure 4b3,b5, Table 3). This is because plant growth might be limited to some
extent due to the increased cloudy days (related with increasing precipitation events) and relatively
lower air temperature in spring and autumn, which was proved by the negative relationships between
the interannual trends of ET and precipitation in spring and autumn in the southeastern CLP areas
(Figure 7a3).

We also found that winter ET decreased significantly in most areas of the CLP region during
2000–2014 (Figure 4a6), and ET variations were weakly correlated with either the decreasing
precipitation or the increasing NDVI in winter (Figure 7a6,c6). In addition, the precipitation amounts
were consistently lower than the ET amounts in winter (Figure 6a4,b4). It might be explained by the
effects of soil freezing–thawing processes and snow sublimation on the winter ET. A previous study
demonstrated that there exist several soil freezing–thawing cycles from late November to early March
in arid regions of China, which could significantly affect land surface heat and water balance [47].
That is, ecosystem ET should be very small during the freezing periods due to the relatively less
liquid soil moisture, and higher during the thawing periods [47]. The ET over snow surface (i.e.,
snow sublimation) has been proved be positively correlated with air temperature [48]. Since the air
temperature of winter decreased in 94% of the entire CLP area during 2000–2014 [23], the soil freezing
status and snow sublimation would be lengthened or strengthened as a result, hence contributing to
decreases in winter-ET.

As discussed above, the ET variations over different seasons were regulated with different factors
for different areas, and their combined effects finally led to the interannual variability of annual total
ET amounts (Figure 4a1). Feng et al. [11] has concluded that the interannual variability of annual
ET was mainly controlled by revegetation programs in the CLP, rather than climate changes during
2000–2010 using MODIS ET dataset and ecosystem models. In our study here, we found that the
climate changes (i.e., precipitation and temperature changes) were also important factors controlling
ET variations in different seasons, especially in winter. For example, the areas without the GFG project
in the southwestern CLP region showed significant increases in the summer ET and, hence, annual
ET (Figure 4a1,a4). Also, the ET variation trends were exactly consistent for the entire CLP region,
the main areas implemented with the GFG project, and other CLP areas not implemented with GFG
project at different timeframes (Figures 5a and 6a). It means that climate change has played an essential
role in shaping the temporal variations in the CLP ET. It is necessary to quantify the effects of climate
changes and vegetation coverage changes on ET variations using modelling techniques in the future, if
a deeper understanding of the temporal variations in the CLP ET and its underlying mechanisms is to
be achieved.

4.3. Uncertainties

The spatiotemporal patterns of ET in response to climate and vegetation coverage changes across
the CLP region were examined mainly based on the MODIS ET dataset (MOD16), and gridded
meteorological data interpolated with ground-based meteorological observations using the AUSPLINE
software. Although the MODIS ET data were validated with acceptable performance in generating
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site-level ET measurements (Figure S2), some caution should be observed as there may be uncertainties
in the algorithm and input variables applied in producing MODIS ET data, especially the biome
information derived from remote-sensing products (e.g., leaf area index and land cover type). The spatial
resolution of 1 km2 for land cover information seems also to be quite coarse as compared to the
fragmentized landforms in the CLP. Future improvements in the accuracy of land cover products could
largely enhance the accuracy in the ET-related analyses in the CLP.

Uncertainties in the gridded meteorological datasets used in the MOD16 algorithm (i.e., GMAO
reanalysis data) and spatial relationship analyses in this study (i.e., AUSPLINE-interpolated data)
could also cause some uncertainties. Good performance has been observed for both the GMAO and
AUSPLINE-interpolated P and Ta datasets when compared with point-scale measurements in China
(Figure S3). Although the data source for Ta data was not consistent for the MOD16 algorithm and AED
calculation in this study, it was confirmed that the gridded Ta dataset from the AUSPLINE software
was closely correlated with the GMAO reanalysis data (0.5◦ × 0.625◦, v. 5.12.4), with R2 and RMSE of
0.92 and 1.8 ◦C, respectively (Figure S3), which demonstrates small uncertainties brought by different
Ta data in this study.

5. Conclusions

Spatiotemporal variations in ecosystem ET and its relationships with regional climate variability
and vegetation coverage changes were investigated at the timescales of annual, active growing season,
and different seasons across the entire CLP from 2000 to 2014, mainly based on a MODIS ET dataset.
Our results showed that mean annual ET varied distinctly among different vegetation zones, with
an overall mean of 347.8 ± 131.5 mm yr−1, and generally higher for the humid areas. Our findings
also showed that ET variation trends were exactly consistent for the entire CLP region, the areas
mainly implemented with the GFG project, and other CLP areas not implemented with GFG project at
different timescales during 2000–2014. Climatic controls on the ET variation in the CLP were mainly
water-limited, while vegetation controls on the ET variation were mainly accomplished through
altering the variation trends of different components of ecosystem ET (i.e., increasing NDVI acts to
promote the proportions of vegetation transpiration and evaporation of canopy interception, but
decrease soil evaporation). Our results demonstrated that climate change played an essential role in
shaping the temporal variations in the CLP ET, and it is necessary to quantify the effects of climate
changes and vegetation coverage changes on ET variations using modelling techniques in the future.
As a typical water-limited region undergoing climate change and large-scale revegetation, our analyses
on the ET variations will enhance our understanding on the water consumption and water allocation
of terrestrial ecosystems in other regions with similar characteristics.
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and MODIS ET at annual scale in China and monthly scale in the Chinese Loess Plateau. Figure S3: Comparison
between point-scale Ta and P observations and interpolated data from AUSPLINE software and GMAO reanalysis
data. Figure S4: Spatial patterns of precipitation trends, atmospheric evaporative demand trends, and NDVI
trends during 2000–2014 at different timescales in the Chinese Loess Plateau.
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