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Abstract: A hydrological model is a useful tool to study the effects of human activities and climate
change on hydrology. Accordingly, the performance of hydrological modeling is vitally significant
for hydrologic predictions. In watersheds with intense human activities, there are difficulties and
uncertainties in model calibration and simulation. Alternative approaches, such as machine learning
techniques and coupled models, can be used for streamflow predictions. However, these models
also suffer from their respective limitations, especially when data are unavailable. Satellite-based
remote sensing may provide a valuable contribution for hydrological predictions due to its wide
coverage and increasing tempo-spatial resolutions. In this review, we provide an overview of the
role of satellite-based remote sensing in streamflow simulation. First, difficulties in hydrological
modeling over highly regulated basins are further discussed. Next, the performance of satellite-based
remote sensing (e.g., remotely sensed data for precipitation, evapotranspiration, soil moisture,
snow properties, terrestrial water storage change, land surface temperature, river width, etc.) in
improving simulated streamflow is summarized. Then, the application of data assimilation for
merging satellite-based remote sensing with a hydrological model is explored. Finally, a framework,
using remotely sensed observations to improve streamflow predictions in highly regulated basins,
is proposed for future studies. This review can be helpful to understand the effect of applying
satellite-based remote sensing on hydrological modeling.
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1. Introduction

Rivers, as the primary links between the land and ocean, play an important role in global water
and energy cycles [1]. In past decades, hydrological processes and their related biogeochemical cycles
in rivers have been dramatically modified as a consequence of climate and anthropogenic changes [1–9].
Especially in coastal regions with high population density and severe water shortages, intense human
activities (such as land use change, urban expansion, cascade dam construction, farmland fertilization,
large-scale livestock and poultry breeding, and industrial sewage discharge) pose increasing stresses
to coastal ecosystems. Consequently, problems associated with the ecology and environment are very
serious in these areas, particularly in the continuum of watershed, estuary, and offshore areas, such as
hydrological rhythm anomalies, river channel runoff-cutting, the decrease of freshwater flux into the
sea, wetland shrinkages in estuaries, seawater intrusion, offshore seawater pollution, and the decline
or disappearance of land–sea ecological connectivity [7,10–14]. In such regions, hydrological processes
present high nonlinearity and complexity, which cause huge challenges for accurately describing
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hydrological behavior. However, understanding and simulating hydrological processes is crucial for
reasonable water resource utilization and management in these regions.

A hydrological model is a useful tool for hydrological predictions [15–17]. Particularly distributed
hydrological models, which are able to reproduce the spatial and temporal evolution of a variety of
hydrological processes, have been widely used for detecting changes in the hydrological regime due
to human activity or/and climate change, real-time flood forecasting, drought monitoring, and water
resource management [5,18–22]. Accordingly, the performance of hydrological modeling is critically
important for the accurate representation of hydrological cycles [23]. However, a number of factors,
such as limited ground observations and their poor temporal and spatial representativeness, inaccurate
model input forcing, imperfect model structures, and empirical model parameters, may result in
a degree of uncertainty in model simulations [16,24–30]. Especially in watersheds mainly governed by
human decisions, there are considerable difficulties and great uncertainties in model calibration and
prediction, possibly leading to incorrect model parameterization and model estimates [25,31,32].

For this reason, data-driven models, such as machine learning (ML) techniques for empirical
rainfall-runoff modeling, have been proposed as a useful complement to hydrological models in the
past decade [33]. For example, Artificial neural networks (ANNs), regression trees, and support
vector machines (SVM) have been shown to powerful tools for discharge predictions, particularly in
catchments with complex and non-linear hydrological behaviors or limited data [33–36]. The integration
of a hydrological model with recurrent neural networks can also improve the accuracy of streamflow
forecasting [36]. However, these data-driven models exhibit respective limitations. For instance,
although the popular ANNs models do not require information on the complex nature of hydrological
processes, they suffer from overfitting or overtraining, which may result in large errors in out-of-sample
predictions [33,37,38]. It is essential to compare different approaches and choose appropriate ML
approaches for hydrological predictions.

Another issue of hydrological modeling is that traditional streamflow calibration may produce
low simulation accuracy for other hydrological variables, such as soil moisture, groundwater, and
evapotranspiration [25,28,39–41]. Consequently, additional variables (e.g., soil moisture, evapotranspiration,
and snow water equivalents), along with streamflow observations, have been applied for better model
performance. Model calibration [40,42–44] and data assimilation [32,45–49], as well as their integration [50],
can be used to incorporate multivariable into hydrological models to improve hydrological modeling.
Especially, data assimilation shows great potential because it can update hydrological states and model
parameters concurrently [45,46,49].

Moreover, some coupled models, which do not always require calibration, have been developed
during the past decade (e.g., the Hydrological Modeling and Analysis Platform (HyMap) [51] and the
Weather Research and Forecasting Model Hydrological modeling extension package (WRF-Hydro) [52].
These models couple atmospheric models, land surface models, and hydrologic models to produce
good discharge simulations [51,52]. However, they are more appropriate for large-scale catchments.
More importantly, the lack of sufficient datasets would restrict the utility of these models.

Overall, the aforementioned approaches can help greatly to enhance hydrological predictions,
but their applications suffer from different limitations, especially when data are unavailable. Fortunately,
satellite-based remote sensing can provide an alternative to observations of different hydrological variables
(e.g., remotely sensed precipitation, evapotranspiration, soil moisture, snow water equivalents, etc.) for
hydrological modeling, which have been reported by a large number of studies (e.g., [20,31,39,40,49,53]).
Winsemius (2009) [54] gave a brief overview of the remote sensing estimates of hydrologic variables
and their further applications in hydrological modeling. However, the satellite information was out of
date and was limited only to the terrestrial water storage (TWS) from the Gravity Recovery and Climate
Experiment (GRACE), satellite-based evaporation, and rainfall estimates. Sheffield et al. (2018) [55]
provided an overview about the current and potential future role of satellite remote sensing in improving
water resource management. However, their review has focused on examples for Latin America
Caribbean (LAC), and has emphasized water resource management rather than hydrological modeling.
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In view of this, we comprehensively summarize the role of satellite-based remote sensing in
streamflow simulations. In Section 2, difficulties in hydrological modeling over highly regulated basins
are further discussed. Section 3 provides an overview of the performance of satellite-based remote
sensing in enhancing simulated streamflow. Section 4 introduces the application of data assimilation
for merging satellite-based remote sensing with a hydrological model. Section 5 offers summaries and
discussions, as well as outlooks. Particularly, future studies are recommended to determine how to
apply remotely sensed observations for improving simulated streamflow in highly regulated basins.

2. Difficulties in Hydrological Modeling over Highly Regulated Basins

A distributed hydrological model, as a physically-based model, requires numerous ground
observations as well as model parameter optimization. The scarcity or spatial mismatch of observed
data will restrict the model application [28]. Moreover, human activity, particularly water consumption
and cascade dam construction, further increases the difficulty in hydrological forecasting. To perform
hydrological modeling in human-impacted watersheds, Wang and Jia (2016) [7] established a nature–society
dualistic water cycle theory to support effective solutions for water-related issues. This theory has greatly
promoted the research progress of water cycle evolution mechanisms. Based on this theory, Sang et al.
(2008) [56] developed an agriculture management module and a consumptive water use module, which
updated the Soil and Water Assessment Tool (SWAT) model. Their results showed that the updated model
could be applied successfully to the highly regulated region (Tianjin City of China). Zhang et al. (2011) [57]
developed a water quantity and quality joint mode of dam and floodgate operations based on the SWAT
model, which more realistically simulated the process of water quantity and quality controlled by dams
and floodgates in the Wenyu River basin of Beijing city.

The aforementioned improvement in hydrological models can help to simulate water quantity
and quality in watersheds under strong human influence. Nevertheless, this work is still hampered by
data scarcity or mismatches. On the one hand, the survey data for water consumption or its estimation
commonly have coarser spatial and temporal resolutions, which cannot elaborate inter-annual and
intra-annual variations in water consumption. Furthermore, there is difficulty in extending these
data to the spatial dimension of distributed hydrological models, because the primary spatial unit
of these models is the grid or sub-basin (and further hydrologic response unit). On the other hand,
it is difficult to gain observed inflow and outflow data for reservoirs and dams. Moreover, there is
significant randomness for the artificial regulation of reservoirs and dams. Additionally, there may be
no monitoring stations for many small and medium-sized reservoirs and dams. These disadvantages
can significantly affect the performance of hydrological modeling.

In addition, hydrological model calibration using streamflow observations alone would be questionable.
Commonly, hydrological models have been calibrated by adjusting model parameters to make the
simulated streamflow agreeing with observations (particularly at the outlet of a watershed) [58,59], but
a calibrated parameter set with the satisfactory results of a simulated streamflow at a limited number of
discharge locations does not warrant the performance at most locations within a watershed [25,28,60].
Moreover, streamflow-only calibration, except for the inaccurately observed meteorological forcing inputs
(e.g., precipitation and temperature) and the imperfect model structure, may also reproduce unreliable
simulation results of a second model output variable, as mentioned above [39,40,61].

In general, the aforementioned deficiencies can lead to large uncertainties in hydrological modeling,
which would hinder the application of hydrological models.

3. The Role of Satellite-Based Remote Sensing in Improving Simulated Streamflow

3.1. Remotely Sensed Precipitation

Precipitation is a major component of the hydrologic cycle and is the critical input for hydrological
models [62–74]. Accurate and continuous precipitation estimates are essential for reliable hydrological
simulations of fluxes and states [17,73,75]. However, poor precipitation observations (e.g., poor continuity
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in time and space) may lead to non-linear propagated errors in streamflow simulations [66,76–79]. This,
possibly, results in unsatisfactory model performance. In addition, the precision of precipitation data may
significantly affect the capability of other remotely sensed data (regarding evapotranspiration, soil moisture,
snow properties, terrestrial water storages changes (TWSC), etc.) for improving streamflow estimates.
Hence, appropriate precipitation data are the prerequisite for guaranteeing hydrological modeling.

Traditional rain gauge measurements can provide accurate precipitation data, but uneven spatial
coverage or scarce rain gauges may cause great uncertainty [64,66,78,80–82]. In contrast, a variety of
satellite precipitation products, such as Tropical Rainfall Measuring Mission (TRMM) Multisatellite
Precipitation Analysis (TMPA) [83], Integrated Multi-satellite Retrievals for Global Precipitation
Measurement (GPM-IMERG), which is a global successor to TRMM [84], Climate Prediction Center
Morphing technique (CMORPH) [85], Precipitation Estimation from Remotely Sensed Information
Using Artificial Neural Networks (PERSIANN) [86], Global Satellite Mapping of Precipitation
(GSMaP) [87], and Naval Research Laboratory Global Blended-Statistical Precipitation Analysis Data
(NRL-Blend) [88], can offer a promising alternative source on a global scale, with increasing temporal and
spatial resolutions. These products have been applied in a wide range of hydrological applications from
water resource modeling to drought and flood monitoring (e.g., [68–70,73,74,76,79,89–96]) (Table 1).

In general, the capability and feasibility of satellite rainfall estimate (SRE) in driving hydrological
models vary largely due to differences in topography, season, climate, basin size, selected hydrological
model, and satellite product type [17,63,69,73,79,91,97–100]. SREs demonstrate a potential hydrologic
ability in data-sparse, ungauged, or large-scale catchments, compared to in situ rainfall measurements
(e.g., [65,72,76,91–93,97,100]). For instance, Yuan et al. (2018) [72] assessed the hydrologic utility of
IMERG and TMPA 3B42 Version 7 in the Yellow Source Region with a sparse rain-gauge network. Their
results indicated that, generally, both the IMERG- and 3B42V7-forced daily streamflow simulations were
slightly less accurate than those driven by the gauge-based precipitation input in the calibration period,
but the performance of the IMERG-based simulation in the validation period surpassed even the model
run using the gauge-based precipitation data set. However, in most other areas, SREs have the difficulty
to outperform or be equal to rain gauges for rainfall estimates and further hydrological applications
due to their seasonal and regional systematic biases and random errors [63,74,89,91,94,100–102].

Therefore, prior to their implementation to the hydrological model, SREs require thorough
validation and commonly need bias correction based on rain gauge data [17,71,74,78,89,91,102,103].
Falck et al. (2018) [75] concluded that the corrected radar rainfall estimates reduced the systematic
error of the streamflow ensemble for most sub-basins compared with the rain gauge, and significantly
improved the simulated streamflow during nine flood events. Zhang et al. (2019) [17] discovered
that the adjusted TMPA 3b42V7 improved the performance of the simulated streamflow better than
the original TMPA 3b42V7 data, and performed even better than rain-gauge observation in the
validation period.

In addition, some studies showed that the model recalibration employing SREs could increase
the performance of the streamflow simulation, comparable to the model calibrated with rain gauge
data [63,72,89,91,96,104], because the new parameter settings can compensate for errors in the satellite
rainfall forcing [79]. For example, Yuan et al. (2018) [72] found that the input-specific model recalibration
effectively improved the performance of the daily streamflow simulations using IMERG (Nash Sutcliffe
Efficiency (NSE) was 0.856) and 3B42V7 (NSE = 0.840), exceeding that of the gauge-forced model run
(NSE = 0.807). However, it should be noted that the parameter values through recalibrating models
with SREs may be unrealistic, thereby limiting the model’s predictive capability at the sub-basin
scale [79].

Overall, a number of studies evaluated the hydrologic utility of different SREs, but most studies
have demonstrated the limited capability of SREs as the input forcing, compared to ground observations.
Thus, in the future, remote sensing rainfall products have still a long way from replacing ground
observations, which produce the most accurate hydrological simulations [102].
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Table 1. Relevant studies using satellite-based precipitation products to drive hydrological simulations.

Study Data (Resolution) Hydrological
Model Catchment (Area) Major Findings

Yilmaz et al.
(2005) [63]

PERSIANN (0.5 h,
0.25◦) SAC-SMA model

Seven basins of varying sizes
and geographic locations within
the southeastern United States
(from 1346 km2 to 4774 km2)

The bias in precipitation estimates and
basin size affected the overall performance
of the simulated flows when using SRE as
the input forcing, with poorer performance
in smaller basins and better performance in
larger basins. The recalibration of model
parameters when SRE was used as the
model input obviously improved the model
performance.

Su et al.
(2008) [97]

TMPA 3B42V6 (3 h,
0.25◦) VIC model La Plata basin (320,000 km2)

The TMPA-driven simulations could
capture the daily flooding events and
represent low flows, but peak flows tended
to be biased upward.

Yong et al.
(2010) [90]

TMPA 3B42V6 and
3B42 Real Time (RT)
(3 h, 0.25◦)

VIC-3L model Laohahe basin (18,112 km2)

The VIC-3L model was unable to tolerate
the nonphysical overestimation behavior of
3B42RT through hydrologic integration
processes, while 3B42V6 provided much
better hydrologic predictions with a
reduced error propagation from input to
streamflow at daily and monthly scales.

Stisen and
Sandholt
(2010) [89]

CMORPH (daily, 8 km),
TAMSAT CCD and
CPC-FEWS V2 (daily,
11 km), TRMM 3B42V6
and PERSIANN (daily,
27 km)

MIKE SHE model Senegal River basin in west
Africa (350,000 km2)

The model performance (WBL and RMSE)
of simulated discharge was generally
poorer using SREs compared with rain
gauge data, but some SREs, such as
CPC-FEWS and CCD data, performed
equally well or better for the parameter
NSE than rain gauge data for the
subcatchments Qualia and Gourbassa.

Bitew et al.
(2011) [91]

CMORPH, TMPA
3B42V6, 3B42RT, and
PERSIANN (3 h, 0.25◦)

MIKE SHE model Gilgel Abay watershed with
high elevation (1656 km2)

CMORPH and TMPA 3B42RT exhibited
more consistent performance in streamflow
simulations, but PERSIANN displayed
lower performance, and TMPA 3B42V6
showed the lowest performance in the
streamflow simulation.

Xue et al.
(2013) [92]

TMPA 3B42V6 and
3B42V7 (3 h, 0.25◦) CREST model Wangchu Basin (3350 km2)

The 3B42V6-based simulation exhibited a
limited hydrologic prediction skill at daily
and monthly scales, while 3B42V7
performed fairly well at both time scales,
with a comparable skill score with the
gauge rainfall simulations.

Meng et al.
(2014) [93]

TMPA 3B42V6 (3 h,
0.25◦) CREST model Source region of the Yellow

River (122,000 km2)
TMPA cannot be used to drive hydrological
models for daily streamflow simulation.

Skinner et al.
(2015) [76] TAMSAT (15 min, 0.5◦) Pitman model Bakoye catchment (86,000 km2)

with very sparse rain-gauges

The TAMSAT ensemble SRE reduced a
mean RMSE to 61.7% of the mean wet
season discharge, but poor representations
of trace and zero rainfall by SREs were
propagated through a hydrological model.

Ashouri et al.
(2016) [94]

PERSIANN-CDR
(daily, 0.25◦), TMPA
3B42V7 (3 h, 0.25◦)

HLRDHM model
SAVOY, ELMSP, and SLOA4
basins (337 km2, 433 km2, 1489
km2, respectively)

PERSIANN-CDR and TMPA-derived
streamflow simulations were comparable to
USGS observations. The capability of
PERSIANN-CDR was proven for long-term
hydrological rainfall-runoff modeling and
streamflow simulation.

Tuo et al.
(2016) [105]

CHIRPS (daily, 0.05◦),
TRMM 3B42V7 (3 h,
0.25◦)

SWAT model Adige River basin (12,100 km2)

SWAT models with the CHIRPS dataset
provided satisfactory streamflow
estimation, which makes them a favorable
choice for the Alpine region facing data
scarcity. However, the TRMM dataset for
streamflow modeling generally resulted in
unsatisfactory results.

Tang et al.
(2016) [67]

TMPA 3B42V7 and
3B42RT (3 h, 0.25◦),
IMERG V03 (0.5 h,
0.1◦)

CREST model Ganjiang River basin (81,258
km2)

The IMERG product performed
comparably to gauge reference data in daily
hydrological simulation. In contrast, TMPA
3B42V7 showed acceptable hydrological
performance but less reliable skill for TMPA
3B42RT.

Sun et al.
(2016) [77]

TRMM 3B42V7 and
CMORPH CRT (3 h,
0.25◦), CMORPH BLD
and CMORPH CMA
(daily, 0.25◦)

VIC model
The upper region of Bengbu
station over Huaihe River basin
(121,300 km2)

The general streamflow pattern was well
captured at daily and monthly scales by the
simulations using four satellite–gauge
precipitation estimates as the input forcing.
CMORPH CRT demonstrated the worst
simulations in both long-term streamflow
and extreme flood events, while CMORPH
CMA forced streamflow simulations even
outperformed gauge observations and also
displayed superiority in flood monitoring.
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Table 1. Cont.

Study Data (Resolution) Hydrological
Model Catchment (Area) Major Findings

Gao et al.
(2017) [100]

TMPA 3B42V7 and
3B42RT (3 h, 0.25◦) CREST model

Jialing River basin (156,736 km2)
and Tuojiang River basin
(196,613 km2)

When SRE was used to drive the CREST
model, the larger basin was more likely to
produce satisfactory results for streamflow
simulation and flood frequency analysis
than the smaller basin under similar
circumstances. The 3B42V7 showed higher
hydrologic utility than 3B42RT, but their
model performance was worse than
gauge-based precipitation.

Zubieta et al.
(2017) [95]

IMERG V03 (0.5 h,
0.1◦), TMPA 3B42V7
and 3B42RT (3 h, 0.25◦)

MGB-IPH model Amazon Basin of Peru and
Ecuador (878,300 km2)

Similar to TMPA 3B42V7 or 3B42V7RT
datasets, IMERG was useful for estimating
observed streamflows in southern regions,
but three SREs did not properly simulate
streamflows in northern regions.

Wang et al.
(2017) [96]

IMERG-E, IMERG-L,
and IMERG-F (V03, 0.5
h, 0.1◦), TRMM 3B42V7
(3 h, 0.25◦)

VIC model Beijiang River Basin (38,672
km2)

The IMERG-F had better hydrological
utility than TMPA 3B42V7. The IMERG-E
and IMERG-L had satisfactory hydrological
utility during the flood season but
performed poorly in the whole simulation
period. The hydrological performances
were significantly improved through model
recalibration using each SRE product, but
were still worse than those using ground
observations.

Zhu et al.
(2018) [69]

Fengyun (daily, 0.1◦),
TMPA 3B42V7, and
3B42RT (daily, 0.25◦),
CMORPH BLD and
CMORPH RAW (daily,
0.25◦)

SWAT model Huifa River basin in the
northeast of China (12,385 km2)

Satisfactory model performances (NSE >
0.5) were achieved at daily scales for
Fengyun, TRMM 3B42, and gauge-driven
models, and very good performances (NSE
> 0.75) at a monthly scale for Fengyun and
the gauge driven model. However,
CMORPH_BLD, CMORPH_RAW, and
TRMM 3B42RT exhibited bad NSE and R2

at a daily scale.

Li et al. (2018)
[68]

TMPA 3B42V7, 3B42RT
(3 h, 0.25◦) SWAT model Tiaoxi watershed (5900 km2)

TRMM 3B42V7 could properly describe the
runoff volume and its composition, but this
product was not suitable for daily
streamflow simulation purposes.

Falck et al.
(2018) [75]

SIMEPAR S-band
Doppler radar (5 min, 1
km)

MHD-INPE model
A cascade of sub-basins of
Iguaçu catchment (from 1808
km2 to 21,536 km2)

The radar rainfall estimates corrected by
the SREM2D error model reduced the
systematic error of the streamflow
ensemble for most sub-basins, compared
with the rain gauge. The use of SREM2D
significantly improved the simulated
streamflow and reduced the overestimation
in the cumulative streamflow volumes
during nine flood events.

Qi et al.
(2018) [70]

TMPA 3B42V7 and
3B42RT, GLDAS-1 (3 h,
0.25◦), GSMaP-MVK+
V6 (1 h, 0.1◦),
PERSIANN (3 h, 0.25◦),
APHRODITE V1101R1
(daily, 0.25◦)

WEBDHM and
TOPMODEL
model

Biliu basin (2814 km2)

Increased NSE up to 0.97 and 0.85 in
training and validation periods respectively
by developing an ensemble-based dynamic
Bayesian averaging approach (e-Bay),
which used six global fine-resolution
precipitation products and two
hydrological models of different
complexities.

Worqlul et al.
(2018) [71] MPEG (15 min, 3 km) HBV model

Gilgel Abay and Gumara
watersheds (1650 km2 and 1284
km2 respectively)

The original SRE resulted in poorer
performance for simulated flow than the
gauge rainfall, but the model derived by
the bias-corrected SRE performed well in
capturing the observed flow.

Camici et al.
(2018) [106]

TMPA 3B42RT (V7),
CMORPH, and
PERSIANN (3 h, 0.25◦),
SM2RAINCCI (daily,
0.25◦)

MISDc model 15 basins in the Mediterranean
area (109–4820 km2)

Compared with ground observations, SRE
performed poorly to the drive MISDc
model, with the worst results in smaller
basins (<500 km2). However, the integrated
SREs provided relatively better
performance and even outperformed
ground observed data for some basins.

Yuan et al.
(2018) [72]

TMPA 3B42V7 (3 h,
0.25◦), IMERG V05 (0.5
h, 0.1◦)

The grid-based
Xinanjiang (GXAJ)
model

Yellow River source region
(122,000 km2)

The 3B42V7 and IMERG-driven model run
presented acceptable hydrological
simulation skill at daily time scales, but
showed poorer hydrological abilities for
capturing flood peaks, comparable with the
gauge-based simulation. Model
recalibration by using SREs effectively
enhanced the hydrological performance.
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Table 1. Cont.

Study Data (Resolution) Hydrological
Model Catchment (Area) Major Findings

Jiang et al.
(2018) [104]

IMERG-E, IMERG-L,
and IMERG-F (V05, 0.5
h, 0.1◦), TRMM 3B42V7
and 3B42RT (3 h, 0.25◦)

Xinanjiang model Mishui basin, a tributary of the
Xiangjiang River (9972 km2)

IMERG-F performed visibly better than
3B42V7 and both IMERG-E and IMERG-L
demonstrated a better performance than
3B42RT for hydrological simulations.
However, the simulated streamflow using
SRE was less accurate than simulations
using rain gauge observations. Model
recalibration using SREs obviously
improved hydrological performance for the
whole simulation period and flood season.

Jiang et al.
(2019) [73]

IMERG-F and
IMERG-E (V05, 0.5 h,
0.1◦), TMPA 3B42V7 (3
h, 0.25◦)

HBV model
300 small to medium-sized
catchments across Mainland
China (<5000 km2)

Models forced with IMERG-E and
IMERG-F performed well as those forced
with gauge-based precipitation in most
cases, and much better than those forced
with TMPA 3B42V7. However, there were
region-specific discrepancies (e.g., much
better model performance in humid
regions).

Deng et al.
(2019) [74]

The latest
GSMaP_Gauge (GG)
data (1 h, 0.1◦)

SWAT model Hanjiang River basin (159,000
km2)

The corrected GG produced a better
performance of runoff simulation with a
maximum increase of 11.94% and 6.1% in
NSE and R2, respectively, compared to GG.

Lai et al.
(2019) [82]

CHIRPS and
PERSIANN-CDR
(daily, 0.25◦)

GXAJ model Beijiang River basin (38,672
km2)

Both SREs presented acceptable
performance for hydrological modeling,
and CHIRPS outperformed
PERSIANN-CDR. After recalibration, the
hydrological performances were obviously
improved for both SREs.

Zhang et al.
(2019) [17]

TMPA 3B42V7 (3 h,
0.25◦)

Xinanjiang model
and Tank model

Yangtze River basin (1,800,000
km2)

The adjusted TMPA 3B42V7 data improved
the accuracy of hydrological simulation
more than the original 3B42V7 data, which
was comparable to rain-gauge observations,
but both of them performed poorly for the
peak runoff prediction.

Su et al.
(2019) [102]

IMERG-E, IMERG-L,
and IMERG-F (V05, 0.5
h, 0.1◦)

VIC model Huaihe River basin (16,000 km2)

IMERG-F displayed an acceptable
performance in long-term streamflow
simulations, while IMERG-E and IMERG-L
exhibited little potential hydrologic utility.
All three IMERG products were obviously
overestimated in short-term flooding and
were clearly underestimated in long-term
flooding. None of them performed better
than dense gauge observations in
hydrologic utility.

Abbreviations: SAC-SMA, Sacramento Soil Moisture Accounting model; VIC, Variable Infiltration Capacity; VIC-3L,
the three-layer VIC; TAMSAT, Tropical Applications of Meteorology using SATellite data; TAMSAT CCD, the
cold cloud duration using TAMSAT data; CPC-FEWS, Climate Prediction Center/Famine Early Warning System;
WBL, water balance error; RMSE, root-mean-square error; CREST, Coupled Routing and Excess Storage; TAMSIM,
TAMSAT Simulation; PERSIANN-CDR, PERSIANN–Climate Data Record; HLRDHM, Hydrology Laboratory
Research Distributed Hydrologic Model; CHIRPS, Climate Hazards Group InfraRed Precipitation with Station
data; CMORPH CRT, CMORPH bias-corrected product; CMORPH_BLD, CMORPH satellite-gauge blended
product; CMORPH CMA, CMORPH satellite–gauge merged product developed at the National Meteorological
Information Center (NMIC) of the China Meteorological Administration (CMA); MGB-IPH, Large Scale Basins
Model of Brazilian Institute of Hydraulic Research; IMERG-E, the near-real-time “Early” run of IMERG; IMERG-L,
the near-real-time “Late” run of IMERG; IMERG-F, the post-real-time “Final” run of IMERG; CMORPH_RAW,
CMORPH raw satellite-only precipitation product; R2, coefficient of determination; SIMEPAR, Paraná Meteorologic
System; MHD-INPE, Modelo Hidrológico Distribuído of Brazilian Institute for Space Research; SREM2D, the
2-Dimensional Satellite Rainfall Error Model; GLDAS, Global Land Data Assimilation System; GSMaP-MVK+,
GSMAP moving vector with Kalman filter; APHRODITE, Asian Precipitation-Highly-Resolved Observational
Data Integration Towards Evaluation of Water Resources; WEBDHM, Water and Energy Budget-based Distributed
Hydrological Model; TOPMODEL, TOPography based hydrological MODEL; MPEG, Multi-sensor precipitation
estimate-geostationary; HBV, Hydrologiska Byråns Vattenbalansavdelning; SM2RAINCCI, the derived rainfall
obtained by applying SM2RAIN to the European Space Agency Climate Change Initiative Soil Moisture (ESA
CCI SM) products; MISDc, Modello Idrologico Semi-Distribuito in continuo; GSMaP_Gauge, a product that
adjusts the GSMaP_MVK estimate with global gauge analysis supplied by the National Oceanic and Atmospheric
Administration (NOAA).

3.2. Remotely Sensed Evapotranspiration

Evapotranspiration (ET) is a major component of the water and energy exchanges among the
atmosphere, hydrosphere, and biosphere [107,108]. Integrating actual ET (ETa) data into hydrological
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models makes it possible to improve hydrological modeling, especially for highly regulated basins
(Table 2). For example, Immerzeel et al. (2008) [25] successfully calibrated the SWAT model using
the remotely sensed derived ET in the upper Bhima catchment (45,678 km2), where streamflow was
mainly human controlled. The correlation coefficient between the monthly sub-basin simulated and
measured ETa increased from 0.40 to 0.81. Hartanto et al. (2017) [31] assimilated the satellite-based
ETa into a distributed hydrological model at a controlled water system. Their results showed that the
modelled cumulative discharge was improved, with the bias decreasing from 14% to 4%.

In general, there are few studies on the application of satellite-based ETa data to enhance
streamflow simulations, and most of them are limited to larger catchments (Table 2). On the one hand,
ETa is a non-state variable in hydrological models, which cannot achieve assimilation feedback for
the model and update model state variables when data assimilation methods are used to combine
ETa with hydrological models [109]. Hence, the hydrological models cannot be optimized as a whole.
This restricts the application of ETa observations in most hydrological models, in which, inversely, state
variables (e.g., soil moisture) are used for the ETa estimate. Certainly, if the time response relationship
between ETa and state variables were well established, the model optimization and more accurate
hydrological estimates could be obtained [109,110]. For example, Zou et al. (2017) [108] established the
time response relationship between ETa and soil moisture using a nonlinear soil water availability
function based on logistic distribution, which achieved more accurate results for ETa, as well as
streamflow and soil moisture. However, it is noteworthy that most hydrological models show no
explicit time response relationship between ETa and the state variable (e.g., soil moisture). Thus, it is
hard to effectively convert ETa into a state variable for realizing the direct assimilation and achieving
assimilation feedback on state variables [108,110]. Moreover, soil moisture conversion functions may
vary in their soil wetness and leaf-area index [108,111,112]. In this respect, further studies are expected
to be conducted to improve both ETa estimation and other model predictions, especially in the small
and middle watersheds.

On the other hand, ETa is inherently difficult to be measured and predicted, but an accurate
ETa is critical for its application in hydrological modeling. Many researchers have been making
great efforts in ETa estimation, particularly using remote sensing methods, because of the relatively
contiguous measurements for surface biophysical variables affecting ET at regional to global scales.
Zhang et al. (2016) [113] summarized existing major remote sensing ETa estimation methods, as well as
their uncertainties and limitations, and provided a perspective on the future development of these
methods. Improvement in satellite-based remote sensing in the future will enhance our capability
to monitor global water and energy cycles [113]. Accordingly, satellite-based ETa data would make
greater contributions to the improvement of hydrological predictions.

Table 2. Relevant studies on improving hydrological simulations using satellite-based ETa.

Study ETa Estimation
Method Data (Resolution) Hydrological

Model Catchment (Area) Major Findings

Immerzeel et al.
(2008) [25] SEBAL MODIS (250 m,

monthly) SWAT model
Upper Bhima
catchment
(45,678 km2)

Significantly improved ETa
estimates. Modelled discharges
were well within one standard
deviation of the observed data.

Pan et al. (2008)
[114] SEBS MODIS (5 km,

daily) VIC model
Red-Arkansas
River Basin
(645,000 km2)

Obtained the probabilistically
optimal ET estimates, but was
unable to improve other model
predictions (e.g., soil moisture and
streamflow).

Qin et al. (2008)
[115] SEBS MODIS (1 km,

monthly) WEP-L model Huai River Basin
(317,800 km2)

Obtained more accurate ET
estimates, but contributed little to
the estimated water budget terms
(e.g., soil moisture and
streamflow)
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Table 2. Cont.

Study ETa Estimation
Method Data (Resolution) Hydrological

Model Catchment (Area) Major Findings

Rientjes et al.
(2013) [42] SEBS MODIS (1 km,

daily) HBV model Karkheh River
Basin (51,000 km2)

Produced satisfying estimates for
both streamflow and ETa and
reproduced the catchment water
balance through the
multi-variable calibration of
streamflow and satellite-based
ETa, compared to the
single-variable calibration, which
provided poor simulation
performance for the second
variable (streamflow or ETa) and
poor reproduction of the water
balance.

Zou et al.
(2017) [108]

Improved ET
algorithm by
Mu et al. 2011
[116]

MOD16A2 ETa
data (1 km, 8-day) DTVGM model Upper Huai River

Basin (30,630 km2)

Improved the accuracy of
spatiotemporal variations of ETa
and the simulation performance
of both soil moisture and
streamflow.

Hartanto et al.
(2017) [31]

The
ITA-MyWater
algorithm

MODIS
(250–500 m, 8-day)

SIMGRO
model

Rijnland area
(1200 km2)

Improved the discharge modeling
and reduced the bias of simulated
cumulative discharge to the
observed data from 14% to 4%.

Herman et al.
(2018) [117]

SSEBop model
and ALEXI
model

MODIS (1 km,
8-day), remotely
sensed land surface
temperatures
(4 km, daily)

SWAT model

Honeyoey
Creek-Pine Creek
Watershed
(approximately
1100 km2)

Improved ETa estimations when
maintaining the performance of
streamflow estimates through
multi-variable calibration using
ETa and streamflow, compared
with the GA calibration using ETa
alone, which produced better ETa
simulations but lowered
streamflow calibrations.
Produced better ETa estimations
via the calibration based on the
SSEBop’s ETa dataset compared
to the ALEXI dataset.

Abbreviations: SEBAL, Surface Energy Balance Algorithm for Land; MODIS, Moderate Resolution Imaging
Spectrometer; SEBS, Surface Energy Balance System; WEP-L, Water and Energy transfer Process in Large river
basins; MOD16, MODIS global evapotranspiration product; DTVGM, Distributed Time-Variant Gain Model;
ITA-MyWater algorithm, Integrated Thermodynamic Algorithms for MyWater project, which is an adaptation
of SEBAL; SIMGRO, SIMulation of GROundwater and surface water levels; SSEBop, Simplified Surface Energy
Balance; ALEXI, Atmosphere-Land Exchange Inverse; GA, Genic Algorithm.

3.3. Remotely Sensed Soil Moisture

Soil moisture, interacting with surface water and groundwater, affects a variety of hydrological
processes [118–122]. It controls the partitioning of rainfall into infiltration and runoff, subsequently
controlling water movement and baseflow generation from the soil profile and determining streamflow
and flooding [15,29,118,123,124]. The integration of soil moisture information into hydrological
models has the potential to enhance hydrological modeling predictability [21,39,40,118,121,125–127]
(Table 3). Although limited improvement in streamflow simulations has been produced in a small
watershed, which has better in-situ observations, by coupling soil moisture data, the performance
of the runoff prediction in the presence of larger errors in precipitation observations [123] and
flood predictions [45,126,128] showed a significant improvement. In watersheds which have no
available data, data scarcity, transient rivers, man-controlled runoff, large scales, semi-arid or arid
climates, soil moisture data demonstrate the importance in achieving more accurate streamflow
estimates [21,39,45,118,123,129–131].

Commonly, soil moisture monitoring can be obtained from in situ and satellite observations. In situ
measurements can provide accurate soil moisture information over the entire root zone for hydrological
modeling, but they represent soil moisture conditions only over a small spatial scale and are unable to
characterize the spatial heterogeneity and variability of soil moisture over a large scale [118,122,132,133].
Satellite-based remote sensing can provide an alternative to develop observations for soil moisture
with a large range and high accuracy, which can fill in gaps with sparse ground measurements or poor
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spatial representativeness [121,122,126,132,134]. Among these techniques, microwave remote sensing
(passive and active) has been widely applied for the retrieval of global soil moisture [135], because
microwave sensors are not limited by cloud cover and nighttime conditions [122]. In contrast to active
sensors, passive microwave sensors, like the Soil Moisture and Ocean Salinity (SMOS), Advanced
Microwave Scanning Radiometer for EOS (AMSR-E), and the Soil Moisture Active Passive (SMAP),
have a more mature algorithm for surface soil moisture inversion and a larger soil penetration depth.
However, they are less sensitive to the influence of vegetation structure, surface roughness, snow cover,
frozen soil, and precipitation events due to their poor spatial resolution [15,122]. Active microwave
sensors, such as the Advanced Scatterometer (ASCAT), have higher spatial and temporal resolutions
and a better accuracy because of less radiofrequency interference, but they have a lower soil penetration
depth (0.5–2 cm) [15]. Early studies concluded that passive microwave products were more reliable
over bare to sparsely vegetated regions, but their performance decreased with increasing vegetation
density [136]. In contrast, active microwave products performed better over moderately vegetated
regions [137]. However, neither satellite products can provide accurate soil moisture estimates over
dense vegetation cover [136,138].

Some researchers investigated the influence of different satellite soil moisture products on
hydrological predictions. For example, Laiolo et al. (2016) [20] concluded that assimilating the H07
(surface soil moisture product over Europe and North Africa with a spatial resolution of 25 km)
and H14 products (soil moisture profile index in the root region by scatterometer data assimilation
with a 25 km resolution) derived from ASCAT observations in the Satellite Application Facility on
Support to Operational Hydrology and Water Management (H-SAF) project provided the greatest
benefits to the discharge model predictions. However, the assimilation of SMOS only produced a weak
improvement of the model’s performance due to the few data available and the data quality (43 km
average resolution). The H08 product, which was disaggregated and re-sampled from H07 at fine
scale (1 km) for hydrological applications, did not obtain better results than H07. This suggested
that the disaggregation process did not bring benefits. Patil and Ramsankaran (2018) [124] found
that in the Wyara catchment of India (1650 km2), the SMOS observations obtained better assimilation
efficiency than ASCAT observations, but the opposite result was found in for the Varada catchment
of India (5092 km2). Generally, the impact of different satellite soil moisture products on streamflow
simulations is rarely compared. More attention has been paid to assessing the accuracy of remote
sensing estimates of soil moisture at regional or global scales.

In addition, it should be noted that remotely sensed soil moisture products can only provide
an estimate of soil moisture in the top few centimeters (~5 cm) of the profile [123]. Therefore,
the application of these products has focused on surface runoff and storm-related flooding type
events. However, the subsurface and root-zone soil moisture have a more significant effect on runoff

simulation [123,127,139]. Several studies explored the potential of surface soil moisture estimates to
update subsurface soil moisture in hydrological modeling using data assimilation techniques [21,124].
For instance, Patil and Ramsankaran (2017) [21] assimilated satellite-based soil moisture into the
SWAT model in the Munneru catchment and found that perturbing the field capacity of soil can
significantly improve the coupling between the surface and subsurface layers, despite producing
moderate improvement in streamflow estimates. Subsequently, Patil and Ramsankaran (2018) [124]
coupled the Soil Moisture Analytical Relationship (SMAR) into the SWAT model to update the
sub-surface soil moisture at the Wyra river catchment and Varada catchment in India. They found that
this scheme could produce a better improvement in surface flow, groundwater flow, and streamflow
estimates. However, the improvement in streamflow simulations was still moderate, because updating
the soil moisture alone could insufficiently remedy the errors in streamflow simulations, that originated
from erroneous model forcing in subsequent days. In order to get the root zone soil moisture
information, Wanders et al. (1999) [140] proposed the Exponential Filter method based on the surface
observations of satellite products. Some researchers, such as Brocca et al. (2012) [139] and Massari et al.
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(2015) [29], applied this approach to estimate the soil water index of the root zone and then assimilated
it into the hydrological model to improve discharge predictions.

In general, coupling remote sensed soil moisture data into hydrological models can be beneficial for
hydrological predictions. However, simulation performance is affected by a variety of factors, including
the selected hydrological model [15,49], catchment characteristics [15,29,141], data availability [47,141],
assimilation or calibration procedure [40,46,50,120,125,142,143], as well as the rescaling technique of
satellite products [15,20,29,126]. As mentioned above, data assimilation and model calibration are
expected to improve hydrological modeling in different ways [50]. Koster et al. (2018) [50] compared
the data assimilation and model calibration in contributions to hydrological estimation by integrating
SMAP soil moisture data into a land surface model. Their results showed that 1) two approaches
were distinct and largely complementary in contributions to simulations of both streamflow and soil
moisture; 2) data assimilation improved streamflow timing and reduced the unbiased RMSE (ubRMSE)
of soil moisture estimates, while model calibration reduced the model biases in both streamflow and
soil moisture; and 3) the joint use of two approaches provided the highest soil moisture simulation
accuracy. Consequently, data assimilation and model calibration demonstrate their own advantages
in streamflow predictions. However, overall, data assimilation has gained more applications in
incorporating remotely sensed soil moisture products into hydrological models for better model
performance (Table 3).

Table 3. Relevant studies of the applied satellite-based soil moisture data for improving
hydrological simulations.

Study Satellite Data Used
(Resolution) Method

Assimilated/
Calibrated

Observations

Hydrological
Model

Catchment
(Area) Major Findings

Pauwels et
al. (2001)
[144]

The first and second
ERS (about 50 km,
35-day)

Statistical
correction
assimilation
method

Surface soil
moisture

Lump and
distributed
versions of
TOPLATS

Zwalm
watershed of
Belgium (114.3
km2)

Improved discharge
predictions.

Crow and
Ryu (2009)
[145]

AMSR-E (about 40
km, 1–2 day)

A smoothing
framework
(EnKF and
EnKS)

Surface soil
moisture

Sacramento
hydrologic
model

–

Improved both pre-storm soil
moisture conditions and
streamflow predictions,
especially for high flow events.

Matgen et al.
(2012) [126]

ASCAT (25 km,
bi-daily)

Particle
filtering
technique

ASCAT-derived
SWI and in
situ soil
moisture

BibModel

A well-gauged
Bibeschbach
experimental
catchment in
Luxembourg
(10.8 km2)

Significantly improved both
discharge and soil wetness
forecasts by the assimilation of
in situ soil moisture data but
produced a negative or small
positive impact when
assimilating ASCAT-based SWI
data.

Brocca et al.
(2012) [139]

ASCAT (25 km,
daily) EnKF

Surface and
root-zone
soil moisture

MISDs
model

Niccone
catchment in
Central Italy
(137 km2)

Achieved a great improvement
in discharge prediction,
particularly for the floods
occurring during dry to wet
transition periods through the
assimilation of the RZSM
product, compared to the
assimilation of surface soil
moisture, which produced a
small effect on runoff
simulations.

Brocca et al.
(2013) [141]

ASCAT (25 km,
daily), AMSR-E (25
km, daily), ECMWF
(80 km, daily)

Nudging
technique

Surface and
root-zone
soil moisture

MISDs
model

Six catchments
in different
four countries

Improved runoff prediction for
the assimilation of three soil
moisture products, but the
assimilation performance was
remarkably impacted by the
accuracy of the satellite soil
moisture retrievals, the length
of the observation period, and
the catchment’s climatic
conditions.
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Table 3. Cont.

Study Satellite Data Used
(Resolution) Method

Assimilated/
Calibrated

Observations

Hydrological
Model

Catchment
(Area) Major Findings

Wanders et
al. (2014)
[45]

ASCAT (25 km,
daily), AMSR-E
(about 40 km, daily),
SMOS (about 43 km,
daily)

EnKF
Surface soil
moisture,
streamflow

LISFLOOD
model

Upper Danube
Basin in
Bratislava
(135,000 km2)

Improved flood forecasting,
with the CRPS increasing by
5%–10% on average when
assimilating remotely sensed
soil moisture, especially in
combination with more
discharge observations.

Sutanudjaja
et al. (2014)
[39]

The SWI product
derived by Wanger
et al. 1999 [140]
based on RS
Scatterometer
(about 50 km,
10-day)

A
multiobjective
and stepwise
calibration
approach

Discharge
observations
and SWI in
the topsoil
layer (0–20
cm)

PCR-GLOBWB
model

Rhine–Meuse
basin (about
200,000 km2)

Yielded acceptable accuracy for
discharge and soil moisture
simulation, as well as
predicting groundwater head
dynamics through the
combined calibration to
discharge and remotely sensed
SWI data.

Massari et al.
(2015) [29]

ASCAT and H25
SM-OBS-4 product
from the H-SAF
project (25 km,
daily)

EnKF
Surface and
root-zone
soil moisture

MISDc
model

Five
sub-catchments
of the Upper
Tiber River
basin in
Central Italy
(137–2040
km2)

Improved discharge
predictions (with a mean
efficiency of about 30%);
examined the effect of
catchment area, soil type,
climatology, rescaling
technique, observation, and
model error selection of the
assimilation results.

López et al.
(2016) [46]

AMSR-E
(downscaled from
~0.5◦ to 0.08◦, daily)

EnKF
Surface soil
moisture,
streamflow

Local
OpenStreams
wflow_sbm
model and
global
PCR-GLOBWB
model

Murrumbidgee
River basin in
Australia
(84,000 km2)

Produced the largest
improvement of streamflow
estimates via assimilation of
soil moisture; further improved
simulated streamflow (20%
reduction in RMSE) with jointly
assimilated streamflow and
downscaled soil moisture
observations.

Yan and
Moradkhani
(2016) [120]

ASCAT (25 km,
daily)

PF-MCMC
method

Surface soil
moisture,
streamflow

SAC-SMA
model

A
sub-watershed
of Salt River
basin in
Arizona (7 379
km2)

Improved the surface soil
moisture prediction and
guaranteed the accuracy of
streamflow prediction when
jointly assimilating streamflow
and soil moisture inferred from
geostatistical modeling,
compared to the assimilation of
the outlet streamflow only.

Montero et
al. (2016)
[47]

SM product H14 (25
km, daily), SCA
product H10 (1–5
km, daily) and SWE
product H13 (0.25◦,
Daily/weekly) from
H-SAF project

Variational
assimilation
approach

Streamflow
data as well
as remotely
sensed SM,
SCA and
SWE

HBV model

Two head
catchments in
Germany
(1468 km2,
2419 km2) and
the
headwaters of
Euphrates
Basin in
Turkey (10,275
km2)

Produced a slight reduction in
the streamflow forecast skill
but a significant improvement
in the forecast skill of soil
moisture when assimilating
H-SAF observations, compared
to the assimilation of
streamflow solely.

Laiolo et al.
(2016) [20]

Three H-SAF
products (25 km or 1
km, daily), and
SMOS product (43
km average, daily)

Nudging
technique

Surface soil
moisture

Continuum
model

Orba
watershed in
Italy (800 km2)

Achieved a general
improvement of discharge
predictions even using a simple
assimilation technique;
increased NSE from 0.6 to 0.7;
reduced errors on discharge up
to the 10%.

Patil and
Ramsankaran
(2017) [21]

SMOS L3 product
(25 km, daily) EnKF Surface soil

moisture SWAT model

Munneru river
catchment of
India (10,156
km2)

Significantly improved the
vertical coupling of soil layers
in the SWAT model, but
produced the moderate
enhancement in simulated
streamflow due to the
limitations in SWAT model in
reflecting the profile soil
moisture updates in surface
runoff computations.
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Table 3. Cont.

Study Satellite Data Used
(Resolution) Method

Assimilated/
Calibrated

Observations

Hydrological
Model

Catchment
(Area) Major Findings

Zhang et al.
(2017) [48]

Not clear soil
moisture data,
possibly from SMOS
and SMAP

EnKF

Soil
moisture,
SWE, and
discharge

SWATGP
model

Babaohe River
Basin of China
(2455 km2)

Improved the estimates of
hydrological states by the
presented SWAT-HDAS system
using soil
moisture/snow/discharge
observation data, but the
application of soil moisture and
SWE observations may
degrade streamflow estimates
when discharge observations
have been assimilated.

Patil and
Ramsankaran
(2018) [124]

SMOS (0.25◦, daily)
and ASCAT (0.25◦,
daily)

EnKF
Surface and
root zone
soil moisture

SWAT model

Wyra
catchment
(1650 km2)
and Varada
catchment
(5092 km2) in
India

Moderately improved surface
runoff, lateral flows,
groundwater flows, and
streamflow using the proposed
SMAR-EnKF scheme for
updating profile soil moisture.

Loizu et al.
(2018) [15]

ASCAT product (25
km, daily) EnKF

Surface soil
moisture
(SSM)

MISDc and
TOPLATS
model

Nestore
catchment (725
km2) and Arga
catchment (810
km2) in Spain

Improved simulated
streamflow, which NSE
increased by 10%–45% from the
validation run and 6%–35%
from the open-loop simulation,
with the variation depending
largely on the catchment
characteristics, the assumed
SSM observation error, and the
selected re-scaling technique.

Li et al.
(2018) [40]

SMOS (~45 km, 1-3
day)

A joint
calibration
scheme

Gauged
streamflow
and
near-surface
soil moisture

GRKAL
model

Clarence River
catchment
upstream of
Lilydale and
Condamine
River
catchment
upstream of
Chinchilla in
Australia

Compared with streamflow
only calibration, it slightly
degraded the streamflow
simulation at gauged sites
during the calibration period
but obtained improvements at
the same gauged sites during
the independent validation
period and a more consistent
and statistically significant
improvement at the gauged
sites, which were not used in
the calibration.

Leach et al.
(2018) [49]

SMOS-SM data (43
km, daily) and
SNODAS-SWE data
(1 km, daily)

EnKF

Soil
moisture,
SWE and
streamflow
observations

GR4J,
HYMOD,
MAC-HBV,
and
SAC-SMA
models

Highly-urbanized
Don River
basin in
Canada (350
km2)

Produced some improvement
to different aspects of
hydrologic simulation and
forecasting when jointly
assimilating soil moisture and
SWE.

Abbreviations: ERS, European Remote Sensing Satellites; TOPLATS, TOPMODEL-based Land-Atmosphere Transfer
Scheme; EnKF, ensemble Kalman filter; EnKS, ensemble Kalman smoother; SWI, Soil Water Index; BibModel,
a numerical model which incorporates the dominant hydrological processes in the Bibeschbach catchment; MISDc,
Modello Idrologico Semi-Distribuito in continuo; RZSM, root-zone soil moisture; ECMWF, European Centre for
Medium-Range Weather Forecasts; Six catchments, included two catchments in central Italy (Niccone, 137 km2

and Assino,165 km2), one in South Italy (Fiumarella, 33 km2), one in Luxembourg (Bibeschbach, 12 km2), one in
France (Valescure, 3.7 km2), and one in US (Lucky Hills, 0.001 km2); LISFLOOD, a GIS-based distributed model for
river basin scale water balance and flood simulation; CRPS, continuous ranked probability score; PCR-GLOBWB,
PCRaster Global Water Balance; PF-MCMC, Particle Filter-Markov Chain Monte Carlo method; SM, soil moisture;
Three H-SAF products, included SM OBS 1-H07 (25 km), SM OBS 2–H08 (1 km) and SM DAS 2–H14 (25 km),
which were derived from ASCAT observations; SCA, snow covered area; SWE, snow water equivalent; SWATGP,
a gridded and parallelized SWAT model [146]; SWAT-HDAS, integration of the gridded and parallelized SWAT
model (SWATGP) and the Parallel Data Assimilation Framework (PDAF); SMAR-EnKF, SMAR was used for
estimating root zone soil moisture from surface measurements, coupled with EnKF; GRKAL, a new version of
GRHUM, which two independent near-surface and root-zone soil moisture layers are parameterized and the
drainage from the near-surface layer is used as the input for the root-zone layer; GRHUM, the soil water storage of
the GR4J reparametrized into a two layer system of the near-surface soil moisture layer and the bulk soil moisture
layer; GR4J, modèle du Génie Rural à 4 paramètres Journalier; SNODAS, Snow Data Assimilation System; HYMOD,
HYdrologic MODel; MAC-HBV, McMaster University–HBV.
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3.4. Remotely Sensed Snow Observations

In mid-altitude and high-altitude catchments, snowmelt can contribute largely to runoff, owing to
its influences on water storage and surface albedo [147–149]. Snowmelt accounts for about 70%–80%
of the total annual runoff in such regions of the northern United States [150]. Therefore, the accurate
estimate of snowmelt is important for streamflow predictions in these regions, especially in mountainous
areas [149,150]. Some studies have shown that assimilating snow observations, such as SWE, Snow
Depth (SD), and SCA, into a hydrologic model could achieve improved streamflow estimates [151–156].
This improvement was more notable in poorly calibrated basins than basins with a relatively higher
calibrated model performance [154].

In recent years, remotely-sensed snow observations have been increasingly taken account for
streamflow estimates in snow-dominated areas because of their increasing spatial resolution, reasonable
spatiotemporal continuity, and relatively short latency [155]. SCA can be measured using optical
sensors, such as Advanced Very High Resolution Radiometer (AVHRR), MODIS, and the Interactive
Multisensor Snow and Ice Mapping System (IMS), which have high spatial resolutions [157]. These
sensors can exploit the high reflectance of snow-covered areas in comparison with areas without snow
cover but are limited to cloud-free conditions [158,159]. Active microwave sensors, such as RADARSAT
Synthetic Aperture Radar (SAR), ENVironmental monitoring SATellite Advanced SAR (Envisat ASAR),
and Terra SAR-X, can also detect snow-cover characteristics, but they are only able to reliably recognize
wet snow [157,160]. SD or SWE can be retrieved via microwave technologies, especially passive
microwave (PM) sensors, such as Scanning Multichannel Microwave Radiometer (SMMR), Special
Sensor Microwave Imager (SSM/I), and AMSR-E [55,161]. Compared with active sensors, PM sensors
have a coarser spatial resolution and lower accuracy in regions with dense vegetation cover and
proximity to open water. They are also prone to signal saturation in regions with deep snowpacks but
can produce accurate observations under cloudy and nighttime conditions [159,162].

Assimilating these satellite-based snow observations can potentially lead to improved snow
predictions and improved streamflow predictions (e.g., [151,156]). However, this improvement is
limited mainly to the snowmelt season [147,153]. Moreover, some studies have reported that snow
data assimilation had limited success for streamflow simulations (e.g., [47,161,163]). For example,
Kumar et al. (2014) [161] found that the assimilation of SD datasets from SMMR, SSM/I, and AMSR-E,
which was augmented with in situ meteorological station-based measurements, improved the snow
fields but did not always translate to corresponding improvements in streamflow. This was mainly
caused by the low skill of PM-based retrievals, as mentioned above [161,162]. Bergeron et al. (2016) [153]
reported that the assimilation against SCA data from MODIS yielded little or no improvement for all
state variables and even a strong deterioration in most cases, compared to the open-loop scenario.
The most probable factor for this result was the absence of SCA as a state variable or a proxy with
a great enough linear relationship to SCA [153].

In light of the unsatisfactory results obtained from assimilating the single snow variable, there
are studies on integrating multi-source or multi-variable snow observations to improve streamflow
predictions. For instance, Kumar et al. (2015) [159] examined the approach of using SCA observations
from MODIS and IMS as additional snow detection constraints in PM-based SD data assimilation.
Their results showed that the SCA-based constraint, especially with the use of MODIS datasets, not only
effectively improved estimates of snow depth, but also enhanced simulated streamflow, despite only
small improvements. Liu et al. (2015) [155] found that the integration of SD data from AMSR-E, and
in-situ observations from the Snow Telemetry (SNOTEL) networks located at high altitudes, along
with the terrain aspect, could improve snow predictions and produce reliable streamflow predictions.
Incorporating SCA data from MODIS could further improve the streamflow results slightly [155].

In addition, some studies have explored the effect of the joint assimilation of snow and other
variables (e.g., streamflow, soil moisture) on the performance of streamflow predictions. Leach et al.
(2018) [49] found that the assimilation of remote-sensed soil moisture and SWE data into different
hydrological models improved hydrologic modeling and forecasting in the highly-urbanized Don
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River basin (350 km2). However, a study by Montero et al. (2016) [47] showed that the assimilation
of soil moisture, SWE, and SCA from H-SAF observations slightly reduced the streamflow forecast
skill compared to the assimilation of streamflow data alone. To sum up, snow data has a limited
ability to enhance streamflow estimates, but an improved state of SWE may contribute more accurate
information for the available water for the snowmelt, which is crucial for runoff prediction during the
snowmelt season [152].

3.5. Remotely Sensed TWSC Data

Remotely sensed TWSC from GRACE have been also used to improve hydrological modeling
(e.g., [53,164,165]). For instance, Chen et al. (2017) [53] reported that the joint application of remotely
sensed SCA, SWE, and TWSC, with streamflow observations in the hydrological model’s calibration,
provided more reliable streamflow, snow (both SCA and SWE), and TWSC simulations than the
calibration based on streamflow and/or SCA performance. However, several studies have demonstrated
that the improvement in streamflow estimates using GRACE-derived TWSC data was modest rather
than significant (e.g., [164,165]). In addition, some studies showed that the GRACE assimilation
could not enhance or might even degrade the performance of streamflow simulations [41,166,167].
For instance, Bai et al. (2018) [41] discovered that incorporating GRACE data into the model calibration,
along with the runoff observations, achieved more reliable TWSC and ET simulations but slightly
reduced the accuracy of streamflow simulations compared to the traditional single-objective calibration.
Overall, GRACE-derived TWSC data show great limitations in improving hydrological simulations,
especially in small catchments, as these data cannot help to capture high flow events because of
their coarse temporal and spatial resolution (monthly, 1◦ × 1◦ respectively) [167,168]. Nevertheless,
these data can still provide candidate complementary data to better constrain parameterizations of
hydrological models in conjunction with streamflow observations [41].

3.6. Remotely Sensed Land Surface Temperature

Land Surface Temperature (LST) is the connection between water and energy balances. LST derived
from polar orbiting or geostationary satellites can be used to calibrate the hydrological model [44].
Moreover, the calibration procedure based on satellite-based LST alone may outperform the calibration
based on discharge [169]. However, most studies reported that calibrations against satellite-derived
LST data, evenly combined with streamflow observations, produced poorer performance for
streamflow simulations [44,170,171]. Probably, the application of LST is more suitable for large-scale
catchments [169,170]. Nevertheless, LST can be helpful to constrain model parameters in the calibration
process and reduce parametric uncertainty, compared to streamflow only calibration [44,170,171].

3.7. Remotely Sensed River Width

In ungauged basins lacking any ground observations, satellite observations of river width can
be used as a surrogate to represent streamflow variations and be applied to hydrological model
calibration [172]. Even river discharge can be estimated exclusively using satellite-derived parameters
(e.g., river width, water depth, flow velocity) [173–176]. For example, Gleason and Smith (2014) [174]
proposed a satellite-only AMHG (at-many-stations hydraulic geometry) discharge retrieval method.
This method, based solely on Landsat Thematic Mapper images observations of instantaneous river
surface width, yielded river discharge agreeing to within 20%–30% of in situ observations. Moreover,
the AMHG method can also address global discharge knowledge gaps solely from repeat satellite
imagery [175]. Overall, promising results of streamflow retrievals from satellite observations of river
hydraulic variables have been reported in large continental rivers with river widths exceeding 100 m.
However, they have not been applied to smaller regional rivers. More importantly, satellite-based
streamflow retrievals cannot achieve the accuracy of in situ observations and should not be treated as
a gauge replacement strategy [176–178].
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4. The Application of Data Assimilation for Merging Satellite-Based Remote Sensing with
a Hydrological Model

Data assimilation (DA) techniques have been widely and increasingly applied in hydrological
studies [108,119,120,125,130,179]. Particularly, DA shows superiority in integrating multiple
observation types into hydrological models [45,46,49,120,121]. DA can not only update the hydrological
state variables and model parameters (simultaneously seeking the best model state and parameters to
enhance model performance) but also can account for and reduce various sources of uncertainties in
both the models and the assimilated data products [21,49,108,179,180]. Some studies have indicated
that, overall, the assimilation of observed data, even poor or coarse data, could produce at least a slight
improvement compared to the open-loop run (no DA) [20,21,130,181–183].

Early studies of data assimilation in hydrology focused on the application of soil moisture
in land surface models [119,184–186]. Further, streamflow or ETa data have been assimilated into
hydrological models, offering promising results [108,119,187,188]. Recently, the potential of observed
data such as SWE, SCA, and TWSC in hydrological predictions has been investigated, illustrating
both positive and negative results [148,153,154,164,166]. In addition, multiple observation data types
have been also assimilated into hydrological models, thereby achieving better performance in model
predictions [32,46,119,121,189]. For instance, Yan and Moradkhani (2016) [120] found that the joint
assimilation of remote-sensing surface soil moisture and streamflow significantly reduced RMSE
relative to the assimilation of the outlet streamflow solely. Xiong et al. (2019) [32] demonstrated that
the time-varying model parameters (evapotranspiration parameter and water storage capacity) gained
by adding ETa data into the assimilation with streamflow resulted in a significant improvement in
deterministic streamflow and ET simulation, compared to the separate assimilation of streamflow, with
time invariant approaches.

The main data assimilation techniques used to combine remotely sensed data with hydrological
models include the Kalman filter and its variants, particle filters (PF), and variational methods [15,119].
Each technique has its own advantages and weaknesses [190,191]. Among them, the ensemble Kalman
filter (EnKF) is the most widely used technique in hydrology [21,48,108,119,121,142,179,185,192],
because it can not only account for nonlinearities (and partially nonGaussianity) with few restrictive
assumptions [119,188], but can also continuously update hydrological state variables and parameters
when new measurements are available with simple implementation [108,119]. It can also flexibly
represent various uncertainties in simulations and observations [21,28,119]. However, EnKF assumes
a Gaussian distribution in model errors, which may lead to degeneration when the size of the
state space is much larger than the ensemble size [119,121]. In addition, the stationary parameter
assumption within EnKF is challenged under climate and land use change [120,193,194]. These
deficiencies may weaken the superiority of EnKF [120,179,195,196]. In contrast, Particle Filters (PFs)
can relax the Gaussian assumption of error distributions [120,179,191] and more completely represent
state/parameter posterior distribution for a given nonlinear and non-Gaussian system [120,179]. Hence,
PF is considered to be a more robust DA technique for hydrological studies [120,180,196–198] and
has received increasing attention as an effective tool to improve model predictions [179]. However,
PF commonly requires more samples than other DA methods and, hence, may impose an obvious
computational burden for achieving accurate results [191,199]. Besides, PF shows one potential
limitation in terms of the particle degeneracy that the particles lose their ability to correctly approximate
the posterior distribution [179].

Given these concerns, some researchers have explored new assimilation schemes based on popular DA
techniques for better assimilation performance [48,125,179,191,200]. For example, Andrieu et al. (2010) [200]
proposed the PF-MCMC technique to reduce weight degeneracy within the PF. Then, Abbaszadeh et al.
(2018) [179] presented the Evolutionary PF-MCMC (EPFM) to characterize a more accurate and reliable
posterior distribution for state variables of interest in data assimilation applications. Meng et al. (2017) [125]
established an effective data assimilation scheme based on the Ensemble Kalman Filter and Smoother
(named EnKF-S) by accounting for the runoff routing lag between streamflow and soil moisture, which
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has been rarely considered in most studies. To overcome the shortcomings in EnKF and PF, Fan et al.
(2017) [191] developed two integrated data assimilation schemes, i.e., the coupled EnKF and PF (CEnPF)
and parallelized EnKF and PF (PEnPF) approaches, which provided better results for both deterministic
and probabilistic predictions than traditional EnKF and PF approaches. Overall, these new DA methods
have made contributions to obtain better hydrological predictions. However, their practicability and
feasibility also need further verification.

In additional, it should be noted that the unconstrained implementation of DA to the model output
may result in model states beyond physically realistic limits, and, conversely, physical limits can be
controlled by using constraints [28,142,201,202]. Hence, a strongly-constrained (SC) DA approach has
been proposed to account for errors in the model’s initial and boundary conditions, as well as model
parameters to improve the fit of the model to the observations [203]. However, this SC DA approach
ignores the model error, and, hence, updated states may be over-adjusted in order to compensate for
model errors [142,167]. In contrast, a weakly-constrained (WC) DA approach has been developed,
which can account for model structural errors with less adjustment to state variables and can achieve
analyses that are similar to, or more accurate than, the SC DA results [201]. Lee et al. (2016) [201] found
that, compared to the SC DA approach, assimilating outlet streamflow using the WC DA approach
resulted in a larger correlation between the a priori and updated states and produced similar or
reduced RMSE of streamflow analysis and prediction. However, Maxwell et al. (2018) [142] reported
that these mass constraints, more commonly applied to ensure that the non-negativity and capacity
thresholds of model states were not exceeded, did little to improve forecast performance relative to the
unconstrained and free run model outputs. In contrast, the combination of mass and flux constrained
assimilation can improve the accuracy and reliability of streamflow predictions [142].

In general, a great number of studies have proved the potential of DA to effectively compensate
for inaccurate estimations, substantially improving hydrological forecasting and explicitly dealing
with various uncertainties (from model forcing data, model parameters, model structures, model
initial and boundary conditions, etc.) (e.g., [21,28,108,125,179,191]). However, differences in the
selected DA technique or its expansion, the hydrological model, the assimilated observation type,
data availability, the specification and quantification of the model and observation errors, basin
characteristics, and constrained or unconstrained DA would exert an effect on the performance of
streamflow predictions [15,20,29,120,141,142]. Hence, the optimal selection of appropriate settings
within a DA system based on catchment characteristics and data availability is crucial to provide less
uncertain and more reliable forecast model outputs.

5. Summaries, Discussions, and Outlooks

In conclusion, the application of satellite-based remote sensing to improve streamflow predictions
has received increasing attention. The popular observation variables mainly include precipitation,
soil moisture, ETa, SWE, SCA, TWSC, LST, and river width. Among them, SREs have been scarcely
used within hydrological modeling, because they are generally inferior in driving hydrological
models to ground observations. There are many reports about using satellite-based ETa to enhance
ETa estimation itself, but few have aimed at improving streamflow simulations, because ETa is
not a state variable of hydrological models and is difficult to measure. For remotely sensed SWE
and SCA, a number of studies have examined their utility in improving runoff estimations. Some
findings have demonstrated improvements in both snow and streamflow predictions through using
remotely-sensed snow observations. However, their limited contributions to, and even degradations in,
the ability of streamflow simulations have been also reported. In terms of TWSC, relevant studies using
GRACE-derived TWSC data to produce better streamflow estimation have been seldom mentioned.
Moreover, in most cases, only modest or poor improvements have been obtained, mainly due to the
low temporal and spatial resolutions of GRACE-derived TWSC data. The utility of LST and river
width provided good to poor model performance. Furthermore, their applications seem to be more
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appropriate for large-scale catchments. Particularly, river width is unable to replace in situ observations,
which is limited only to ungauged basins.

In contrast, more studies focused on applying remote sensing soil moisture products to improve
simulated streamflow because of the important role of soil moisture in runoff generations. In early
studies, satellite-based surface soil moisture was integrated into hydrological models, and, then, the root
zone soil moisture was estimated and applied to the models to attain more accurate hydrological
predictions. Moreover, several studies have employed the highest vertical error correlation in different
soil layers for updating the subsurface soil moisture in surface runoff estimates. In addition, many
studies have jointly used both soil moisture and streamflow (and/or snow data and TWSC data) to
achieve better performance for hydrological forecasting. Meanwhile, new assimilation or calibration
schemes have been developed, and different constraints to the data assimilation have been implemented
to improve assimilation performance.

Overall, the aforementioned studies have made great contributions to hydrological modeling
improvement through using satellite-based remote sensing. However, these results have shown more or
less of a difference, owing to the differences in the selected hydrological model, catchment characteristics,
assimilation or calibration procedures, and satellite-based observations. Thus, how to choose and apply
remote sensing data to provide better streamflow estimates should be regarded cautiously, particularly
in complex watersheds controlled by high-intensity human activities. For instance, in the Dagu River
basin, located in the Shandong peninsula of China, river runoff has been almost zero, and some river
reaches have dried up in the non-flood period over the past several decades [204]. Even in some dry
years, the Dagu River might have been cut off over an entire year. This was mainly attributed to
intense human activities, particularly water interception by cascade dams for human water consumption.
Cascade dams separated the Dagu River into many similar long narrow lakes, which resulted in
hydrological connectivity almost vanishing. Limited streamflow observations failed to provide sufficient
information for judging the accuracy of hydrological modeling. Therefore, it will be a challenge to
simulate hydrological processes in similar watersheds.

The application of satellite-based observations may help to achieve better model results. In light of this
goal, a framework is recommended to help apply remotely sensed observations to improve hydrological
modeling in highly regulated basins (the Dagu River basin, for instance). First, the information of land
use/land cover (LULC) can be interpreted using high-spatial-resolution remote sensing data, such as
Landsat images (30 m), Sentinel 2 (10 m), and GF-2 (1 m, 4 m). As one of the most important inputs into
hydrological models, high precision LULC data can improve the simulation of the impact of human
activity on hydrological cycles. Second, remotely-sensed soil moisture and ETa can be jointly used in
hydrological models, which were rarely reported in early studies. Better hydrological predictions can
be achieved by comparing different simulation results from using remotely-sensed soil moisture, ETa,
or streamflow observations alone, as well as their respective combinations. Third, data assimilation and
model calibration can be employed to extract useful information from remotely-sensed soil moisture
and ETa. Their contributions to hydrological estimations can be evaluated and compared to seek better
model performance. In addition, ML approaches, such as ANNs and SVM, can be attempted to represent
the complex and non-linear dynamics inherent to hydrological processes, complementary to hydrological
models. Finally, the available data concerning cascade dams and water consumption can be added to
hydrological models prior to parameter calibration or data assimilation to improve hydrological modeling.
Generally, this framework may be a functional solution for hydrological modeling in human-dominated
watersheds. In the future, it will be necessary to implement relevant studies to verify this framework’s
feasibility and effectiveness over highly regulated basins.

Encouragingly, the new development of remote sensing technologies, especially the new launch of
satellites, has great potential to improve estimates of relevant hydrological variables for hydrological
modeling, in terms of accuracy, resolution, and repeat times. For example, the Water Cycle Observation
Mission (WCOM) will provide synergetic observations for key global water cycle parameters, which
are focused on soil moisture, snow water equivalents, and freeze/thaw [205]. The second, third, and
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fourth spacecraft of the Joint Polar Satellite System (JPSS), JPSS-2, JPSS-3 and JPSS-4, will be launched in
2021, 2026, and 2031 respectively. These spacecraft will offer daily time series for retrievals of LST and
ET, as well as vegetation parameters and snow cover products [55]. Several hyperspectral missions are
planned, which can help to improve snow retrieval, vegetation monitoring, and ET estimates [55,206].
These upcoming missions would also benefit improvements of streamflow predictions, despite new,
emerging challenges.
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