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Abstract: Rainfall data is frequently used as input and analysis data in the field of hydrology.
To obtain adequate rainfall data, there should be a rain gauge network that can cover the relevant
region. Therefore, it is necessary to analyze and evaluate the adequacy of rain gauge networks.
Currently, a complex network analysis is frequently used in network analysis and in the hydrology
field, Pearson correlation is used as strength of link in constructing networks. However, Pearson
correlation is used for analyzing the linear relationship of data. Therefore, it is now suitable for
nonlinear hydrological data (such as rainfall and runoff). Thus, a possible solution to this problem
is to apply mutual information that can consider nonlinearity of data. The present study used
a method of statistical analysis known as the Brock–Dechert–Scheinkman (BDS) statistics to test
the nonlinearity of rainfall data from 55 Automated Synoptic Observing System (ASOS) rain gauge
stations in South Korea. Analysis results indicated that all rain gauge stations showed nonlinearity
in the data. Complex networks of these rain gauge stations were constructed by applying Pearson
correlation and mutual information. Then, they were compared by computing their centrality values.
Comparing the centrality rankings according to different thresholds for correlation showed that the
network based on mutual information yielded consistent results in the rankings, whereas the network,
which based on Pearson correlation exhibited much variability in the results. Thus, it was found that
using mutual information is appropriate when constructing a complex network utilizing rainfall data
with nonlinear characteristics.
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1. Introduction

Rainfall data are important in various fields such as hydrology, water resources, environment,
and ecology. These data are analyzed through the analysis of rainfall characteristics such as rainfall
intensity, variability, statistical characteristics, and trends [1–6]. Moreover, they have been widely used
as input data in runoff analysis, estimation of flood discharge and flood elevation, calculation of the
vulnerability index, computation of the drought index, and so on [7–10]. In rainfall-related research,
it is important to collect appropriate data and determine the relationships that can be obtained in the
data. For analysis of rainfall and related phenomena, it is necessary to have an adequate amount of
data that covers the relevant region. To obtain such data, it is necessary to construct a network of
rain gauge stations that cover the entire region under investigation. This rain gauge network aims at
collecting rainfall data, and the evaluation of such a rain gauge network includes the assessment of the
clustering and importance of rain gauges [11]. It must be conducted to determine the exact amount of
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available water resources, and also to properly estimate the area-average rainfall that is used as input
data in rainfall–runoff analyses [12]. If the rain gauge network does not attain the adequate levels in
these assessments, it will generate errors in estimating the area-average rainfall because of insufficient
rainfall data, and even larger errors in the rainfall–runoff analysis results that use the area-average
rainfall as input data [13]. It will also cause the further problem of greatly reducing the accuracy of
analyses that use the estimated rainfall as input data. Therefore, the evaluation and analysis of rain
gauge networks is an important prerequisite in the field of hydrology. Spatial connectivity between rain
gauge stations, which is one of the elements in the analysis of rain gauge networks, is a key component
in analysis because it can be used as a basis for interpolation, classification, and prediction in ungauged
basins [14–16]. In analyzing the connectivity between rain gauge stations, complex networks, based on
graph theory, are currently being used.

Complex networks are based on graph theory, which was first created by Leonhard Euler in
connection with the Königsberg bridge problem. Graph theory analyzes graphs, which are mathematical
structures that model pairwise relationships between objects to determine the characteristics of a given
set of data [17]. After Euler, the basic concepts and theories related to graph theory were established
by Francis Guthrie, Arthur Cayley, and William Thomas Tutte, among others. Through complex
network analysis, it is possible to determine the relationships between data points, and to know how
one element affects the entire system. Moreover, the analysis enables us to determine the dynamic
characteristics of the overall data by identifying their network structure, and to clearly grasp this
structure by simplifying a network consisting of a complex array of numerous data points [18]. Due to
the advantages of such complex network analysis, it is applied in diverse fields such as linguistics,
physics, biology, sociology, engineering, economics, and ecology [19–22].

In the field of hydrology, Yazdani et al. [23] analyzed the structure and vulnerability of the
water supply system by constructing a network based on correlations between the supply system and
related factors (such as hierarchy, evolution, performance reliability, and vulnerability). Boer et al. [24]
identified the climatic linkages of extreme rainfall and the spatial characteristics of extreme rainfall
synchronicity by analyzing the South American Monsoon System (SAMS), and provided a classification
of rainfall on this basis. Sivakumar and Woldemeskel [25] used complex networks to determine
the spatial connections between streamflow gauging stations. Halverson and Fleming [26] applied
the complex network method to stream flow gauges to check the applicability of the method in
hydrology data. Jha et al. [15] used the complex network anaylsis for rainfall modeling to check
the spatial connections. However, the above studies used Pearson correlation as the method of
determining relationships in the construction of complex networks. Pearson correlation is an index that
shows linear relationships between factors by analyzing the trends between them and, thus, has the
disadvantage of showing incorrect relationships when it is applied to nonlinear data. Using Pearson
correlation can cause an error to work out the relationships between target factors because rainfall data
is a representative case of nonlinear data. Mutual information can be a suitable solution to take into
account the nonlinearity of hydrological time series data.

Mutual information is an indicator that shows the mutual dependence between two variables.
With respect to two random variables X and Y, it measures how much our knowledge about one variable
X tells us about another variable Y. It is based on probability theory and information theory, and has the
advantage of taking into account the nonlinearity in the relationship between two variables [27]. Due to
this advantage, mutual information is utilized as a useful method for determining the dimension to
reconstructing the state space data in chaos analysis, and several studies have shown that it yields
better results in relation to nonlinear data [28,29]. Among studies that have applied complex networks,
Donges et al. [30] in climate research, Wang et al. [31] in economics, and Zhang et al. [32] in neuroscience
have constructed complex networks using both mutual information and Pearson correlation, and found
that mutual information is more adequate through indices and prediction models that analyzed the
networks. Therefore, given that mutual information as a method for analyzing relationships can take
into account the nonlinearity of rainfall data in constructing complex networks, the purpose of this
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study is to determine the applicability of mutual information to rain gauge networks. For this purpose,
Section 2 describes the Brock–Dechert–Scheinkman (BDS) statistic, which is used to identify linearity
and nonlinearity, and explains complex networks. Section 3 compares the results of applying mutual
information and Pearson correlation in relation to actual synoptic weather stations in the Republic of
Korea. Section 4, as the last section, summarizes the results of this study.

2. Basic Theory

2.1. BDS Statistic and Nonlinearity Test

The classification of data characteristics relies on various criteria. Among these criteria, linearity
and nonlinearity are often taken into account. Linear data can be expressed as a straight line, and refers
to data that has certain characteristics such as the superposition principle and so on [33]. Therefore,
it can be easily analyzed and predicted with statistical methods. Data with the opposite characteristics
is nonlinear. The relationship between data is not simply static or directly proportional to the input but
instead is dynamic and variable. It is a property of chaotic systems, characterized by approximation,
random behavior, and unpredictability [34]. There are several methods for classifying the linearity and
nonlinearity of data, but among these, the BDS statistic is the method that can clearly distinguish linear
and nonlinear data. The BDS statistic was proposed by Brock et al. [14,35], and it is one of the methods
for testing the null hypothesis that a given set of time series data follows a random distribution.
The BDS statistic is a particularly useful statistical technique for distinguishing between linear and
nonlinear systems [36,37]. Assuming that the data points of a time series are mutually independent
and have the same probability distribution, in short, independent and identically distributed (IID),
when m > 1, the BDS statistic is expressed as follows.

BDS(m, N, r) =

√
N

V(m, N, r)
[C[m, N, r] −Cm[1, N, r]] (1)

In here,

V(m, N, r) = V = 4[m(m− 1)C2(m−1)
(
K −C2

)
+ Km

−C2m + 2
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(
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)
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(
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(4)

θ(a) = 0, if a ≤ 0
θ(a) = 1, if a > 0

Here N = The number of data points.

• M = N (m − 1): The number of state vector points in m-dimensional (m = embedding dimension).
• r: Radius for determining the number of state vectors points.
• ||· ||: the sup-norm.

When the values evaluated in the confidence interval set by the researchers exceed the interval,
the null hypothesis is rejected, and the data is judged to be nonlinear [38–40].
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2.2. Pearson Correlation and Mutual Information

Pearson correlation is an indicator used in various fields to determine the relationship between
two variables. With respect to two variables (x, y), it describes the relationship between the two by
comparing the trends in their changing values.

ρX,Y =
E[(X − µX)(Y − µY)

σXσY
. (5)

Pearson correlation has a value between −1 and 1, such that ρX,Y = −1 indicates a strong
negative correlation between the two variables x and y, and ρX,Y = 1 indicates a strong positive
correlation. However, Pearson correlation is an index expressing a linear relationship and, thus, has
the disadvantage of failing to reflect any nonlinearity in the data.

Mutual information, on the other hand, is an indicator that shows the relationship between two
variables on the basis of probability theory and information theory. With respect to two variables (x, y),
it quantifies the extent to which we can know about y through x, and shows it as information content.

I(X, Y) =
∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
. (6)

Mutual information has a value between 0and∞, and a value of 0 indicates that the two variables
are statistically independent of each other. Mutual information has the advantage of reflecting
nonlinearity in the data, and this was confirmed in several studies. Moreover, it is not affected much
by outliers, and can be computed even when the two variables in question have different ranges [2].
Due to these advantages, mutual information is used frequently in studies of nonlinear phenomena.
In particular, it is utilized as a useful technique in setting the optimal dimension for reconstructing the
data in chaos analysis. In this study, both mutual information and Pearson correlation were applied to
determine the strength of links in constructing complex networks.

2.3. Graph Theory and Complex Network

2.3.1. General

Complex network is based on the graph theory. In graph theory, a graph is a network constituted
by nodes and links. Mathematically, a graph can be expressed as G = {P.E}, constituted by the node
set P = {P1, P2, · · · , PN} with N number of nodes, and the link set E with n number of links [25].
For instance, the graph in Figure 1 is constituted by six nodes (P = {1, 2, 3, 4, 5, 6}) and nine links
(E = {{1, 2}, {1, 3}, {1, 6}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {4, 5}, {5, 6}}. The graph shown below is a simple kind
of network. In the real world, however, there are very complex networks formed by numerous
factors, such as (i) when various kinds of nodes and links are involved in forming a network, (ii)
when various factors are additionally applied (e.g., weights) to each node or link, (iii) when the
links have directionality, and (iv) when a network is constituted by multi-links, self-links, hyperlinks,
and so on. It can be applied to actual cases because it has various complex forms. When applying
the methodology, the node and link must be defined firstly. After making a network with defined
node and link, researchers analyze the shape of network and apply many indicators for checking the
characteristic of target.
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Figure 1. Simplest form of network.

The most important thing in forming a complex network is link. Link is a node connection
element and is used to calculate various indicators for analyzing complex networks such as centrality,
clustering coefficient, and so on. Thus, the results may vary depending on how the link is defined.
In the hydrology field, the strength of link was calculated using the correlation coefficient.

2.3.2. Centrality (Dc)

There are various indices for determining the characteristics of a complex network. These indices
include centrality, clustering coefficient, adjacency, distance, and community structure. These indices
are used to quantify and evaluate the characteristics of a given network. Centrality is the most basic
indicator for quantifying the characteristics of a network, and it is used to determine the importance
of each node in a network. It was first used in regard to the community networks discussed by
Bavelas [41] and Leavitt [42], and Jeong et al. [43] and Newman [44] were the first to apply degree
of centrality to complex networks. The centrality can be computed for each node, and this can show
which nodes are more important (or more influential) compared to other nodes. The node that has
the highest degree of centrality in a network is the most important node, whereas the node that has
the lowest degree of centrality is the least important. In a network consisting of N number of nodes,
the degree of centrality of the ith node is calculated by dividing the number of directly connected nodes
(Nc) by the number of nodes that can be connected to the ith node (N − 1). The number of directly
connected nodes can be calculated according to some given threshold.

DC =
Nc

N − 1
(7)

3. Application and Results

3.1. Study Area and Data

In this study, complex networks were constructed for the Automated Synoptic Observing System
(ASOS) weather stations in South Korea. ASOS weather stations are managed by the Korean government
and they have highly qualified observation data. In the ASOS weather stations, weather stations on
Jeju Island were excluded from the networks because they are situated far away from the stations in
mainland Korea, and various intervening factors, such as the sea, exist in between (Figure 2). Among
the data from each synoptic weather station, daily rainfall data was used. To cover as many weather
stations as possible, daily rainfall data from 1980 to 2019 was selected, and as a result, 55 ASOS stations
were used in the complex networks (Latitude: 34.3959–38.2509◦ N, Longitude: 126.3812–129.4128◦ E).
Table 1 explained the basic statistics of observed data (In the Supplementary Materials, Appendix A,
basic statistic of each stations were written.). Through the Figure 2 and Table 2, location, number and
name of station can be indentified.
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Figure 2. The 55 rainfall gauge stations in the study area (Latitude: 34.3959–38.2509◦ N, Longitude:
126.3812–129.4128◦ E).

Table 1. Basic statistics of daily rainfall series of 55 rainfall gaging stations: all basic statistics of each
station are in Supplementary Materials, Appendix A.

Statistics Max Mean Standard Deviation Coefficient of Variation

Value (Range) 122.40–870.50 0.35–5.11 3.54–18.54 3.31–10.00

Table 2. Numbers of rainfall gauge stations.

Number 1 2 3 4 5 6 7 8 9 10

Station Sokcho Wonju Inje Chun
cheon

Hong
cheon Suwon Yan

pyeong Icheon Geoje Geo
chang

Number 11 12 13 14 15 16 17 18 19 20

Station Namhae Miryang San
cheong Jinju Tong

yeong
Hap

cheon Gumi Mun
gyeong

Yeong
deok Yeongju

Number 21 22 23 24 25 26 27 28 29 30

Station Yeong
cheon Uljin Uiseong Pohang Goheung Mokpo Yeosu Wando Jang

heung Juam

Number 31 32 33 34 35 36 37 38 39 40

Station Haenam Gunsan Namwon Buan Imsil Jeonju Jeong
eup Geumsan Bor

yeong Buyeo

Number 41 42 43 44 45 46 47 48 49 50

Station Seosan Cheonan Boeun Jecheon Cheong
ju

Chupung
yeong Chungju Ganghwa Incheon Gwangju

Number 51 52 53 54 55

Station Daegu Daejeon Busan Seoul Ulsan

3.2. Nonlinearity of Rainfall

To determine the nonlinearity of the rainfall data, the BDS statistic was applied. To apply the BDS
statistic, the m and r values must be carefully selected. After conducting various kinds of analyses,
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Brock et al. [14] proposed that the suitable value for m is 2 ≤ m ≤ 5, and for r, 0.5 s ≤ r ≤ 2.0 s (here, s is
the standard deviation). In this study, m = 2, 3, 4, 5 and r = 0.5 s, 1.0 s, 1.5 s, 2.0 s were applied in
determining the nonlinearity of rainfall data. These values were applied to the above mentioned
55 weather stations, and the data was tested for nonlinearity at the 95% confidence interval. Applying
the BDS statistic showed that all the values exceeded the 95% confidence interval, thus indicating that
the rainfall data is nonlinear (the result is shown in Supplementary Materials, Appendix B). One result
for Geoje station is shown in Table 3 and the other stations also showed the same result, in which the
rainfall data has nonlinear characteristics.

Table 3. Brock–Dechert–Scheinkman (BDS) statistic results of observed daily rainfall (09: Geoje):
all values of BDS statistics results are out of Confidence Interval. The null hypothesis is rejected,
and observation data is determined as nonlinear data. The results of the other stations are shown in the
Supplementary Materials, Appendix B.

Index r = 0.5 s r = 1.0 s r = 1.5 s r = 2.0 s C.I

m = 2 22.978 21.580 20.429 20.406 (−1.96, 1.96)
m = 3 18.091 17.193 16.335 16.254 (−1.96, 1.96)
m = 4 15.559 14.115 13.364 13.318 (−1.96, 1.96)
m = 5 14.740 13.520 13.071 12.956 (−1.96, 1.96)

3.3. Analysis and Results

Complex network analysis was applied to a total of 55 weather stations. Each station was
represented as a node in the networks, and the correlation coefficients between stations were represented
as the links between the nodes. The strength of the links was determined using the Pearson Correlation
Matrix (MP) and the Mutual Information Matrix (MMI), which were computed by means of Pearson
correlation and mutual information, respectively. We attempted to compare the two matrices, but as
shown in Figure 3, the matrixes have a different range of values (Pearson coefficient: 0.000 to 1.000,
mutual information: 0.000 to 2.339). Therefore, we sought to compare the two matrices by shape of
graph and centrality, which is an indicator for analyzing complex networks

Figure 3. Mutual information—Pearson correlation graph (09: Geoje): The X-axis is the Pearson
coefficient and the Y-axis is the mutual information. In the graph, the two axes have different ranges
(X: 0.0–1.0, Y: 0.0–1.5).

In calculating the degree of centrality, two nodes were judged to be connected when the calculated
strength of the link between nodes was larger than the threshold set by the researchers. There has been
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much research on setting the threshold, but there is still no specific method for setting the appropriate
threshold [30]. In this study, we established the threshold 0.1 to 0.9 at 0.1 intervals. Then we calculated
the number of links according to the threshold and drew the graph (Figure 4.). Through the graph,
we found the range which showed the dramatic change of links according to the threshold. This is
because we believed that the key to comparing the two networks, given the different ranges of the
strength of links in these networks, is to analyze the changes in each network by identifying the
points where drastic changes occur. With respect to the two matrices, the threshold was applied at
0.1 intervals from 0.1 to 0.9, and the number of links was calculated. The results of these calculations
are represented in the graph below (Figure 4.).

Figure 4. The number of links according to threshold: (a) mutual information; (b) Pearson correlation.

The number of links at each threshold was compared to those of others, and those thresholds
that show a difference of 10% or higher were set as the interval where drastic changes occur. Namely,
as shown in Figure 4a, the complex network where mutual information was applied showed drastic
changes in the number of links from 0.3 to 0.7, and the one where Pearson correlation was applied
showed drastic changes in the same interval. Therefore, the network links were calculated by applying
the thresholds in the interval (0.3, 0.4, 0.5, 0.6, 0.7) where the number of links changes drastically,
and the complex networks were constructed on this basis (Figure 5).

Figure 5. Cont.
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Figure 5. Selection of links according to threshold: the mutual information and Pearson coefficient
between stations are calculated as links. According to the threshold, the values, which is bigger than
threshold, are filled with red color and the others remain as white color.

Looking at the changes in the number of links according to the threshold, it can be seen that
the same kind of change occurs in the case of both complex networks. As the threshold increases,
the number of links decreases at certain points. As for differences, we can see that the network based
on Pearson correlation has more links than the one based on mutual information at all thresholds.
Figure 6 shows the complex networks when the threshold is set at 0.7. When the two networks are
compared, it shown that the network based on Pearson correlation has more links, and the stations
in geographically similar locations are mostly connected together. By contrast, the network based
on mutual information shows that in some cases, stations in geographically similar locations are not
connected together. In particular, these differences can be clearly seen in the case of the stations located
on the eastern coast of the Korean Peninsula (i.e., Station 19 (Yeongdeok), Station 22 (Uljin), Station
24 (Pohang), and Station 55 (Ulsan)). Looking at the links between them, it can be seen that the
network based on Pearson correlation shows these stations to be connected to one another and also
with other stations located inland, whereas in the network based on mutual information, these stations
are unconnected not only to inland stations but also to one another. In the Korean Peninsula, there
is a large mountain range (i.e., Taebaek Mountains) stretching along the eastern seaboard, and, thus,
the coastal stations have rainfall characteristics that are different from those of inland stations on the
other side of the mountain range. Therefore, there should be little correlation between the stations on
either side of the mountain range, and the network based on mutual information reflects this, whereas
the one based on Pearson correlation does not.
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Figure 6. Complex network connected by threshold 0.7: (a) mutual information; (b) Pearson correlation.

The centrality values were computed for these two networks. Based on these computed values,
each station was ranked according to its importance (Figures 7 and 8). If we examine the ranks of
stations according to threshold values, the rank by mutual information is less sensitive to threshold
than that by Pearson correlation. Especially, Pearson correlation shows large variability in the ranks of
stations according to threshold values rather than data characteristics. Therefore, there is the problem
of using Pearson correlation for analyzing the importance of stations. However, mutual information
that is not sensitive to threshold values can be used for the evaluation of rain gauge networks.
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Figure 7. Cont.
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Figure 7. Estimation of centrality and rank of station by Pearson correlation: The X-axis mean the rank
of station and the Y-axis is the values of centrality. The number upon the bar mean the stations which
belong to the rank.

Figure 8. Cont.
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Figure 8. Cont.
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Figure 8. Estimation of centrality and rank of station by mutual information: on the X-axis is the rank
of station and on the Y-axis are the values of centrality. The number upon the bar mean the stations
which belong to the rank.

Table 4 shows the stations that were ranked as the most important and the links connecting them
with other stations. When the threshold is set at 0.3, however, the station ranked as the most important
is connected to all the other 54 stations, making it difficult to identify its characteristics and both
cases have the same shape of network; therefore, this was excluded. In the network based on mutual
information, the changes according to the threshold show that as the threshold increases, the number
of links connecting the most important station with outer stations decreases. In particular, the number
of links with coastal stations decreases. Moreover, it can be seen that the network constructed around
the most important node forms a gauge network that covers most of the southern half of the Korean
Peninsula. In the network based on Pearson correlation, the changes according to the threshold show
that the network constructed around the most important node grows from inland to coastal areas,
and that this network covers a lesser area in the Korean Peninsula.

Table 4. The first station of centrality and links. The most important stations and their links are
expressed in the map according to the threshold (0.4 to 0.7). In the case of threshold 0.3, many stations
are selected and each of the chosen stations connected with all stations in both cases (mutual information
and Pearson coefficient).

Threshold Mutual Information Pearson Correlation

0.4
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Table 4. Cont.

Threshold Mutual Information Pearson Correlation

0.5

0.6

0.7

3.4. Discussion

In this study, two complex networks were constructed using the daily rainfall data from 55 ASOS
weather stations in the Republic of Korea. These complex networks were generated by applying mutual
information and Pearson correlation. It was impossible to compare these networks directly because
they had values with mutually different ranges; therefore, they were evaluated using the degree of
centrality index. To compare the two networks using the degree of centrality index, it is necessary to
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set the threshold, but there is currently no established method for setting the threshold. Therefore,
in this study, we computed the changes in the number of links according to different thresholds,
and identified the interval where there is at least 10% difference in the number of links compared to the
preceding threshold as the interval where drastic changes occur. This is the interval where drastic
changes occur in the network structure due to the drastic changes in the number of links, thus changing
the characteristics of the network and of each node. As it is possible to analyze all the characteristics of
the network within this interval, we selected it as the threshold interval. To compare the characteristics
of the two networks constructed via the two different methods, we compared their node rankings
according to the centrality. The figure below shows the geographical locations of the stations ranked as
the most important (Figure 9).

Figure 9. Locations of the most important station according to the threshold. The stations that have the
highest value of centrality are expressed in the map according to the threshold (0.3, 0.4, 0.5, 0.6, 0.7).
The location of the station in the case of mutual information is in the central of the Korean peninsula.
The result of Pearson correlation shows that locations of the highest ranked station are moving into the
south part of the Korean peninsula.

As shown above (Table 5), in the network based on mutual information, it can be seen that Station
18 (Mungyeong) is ranked as the most important at all threshold values except 0.3. Here, it can be
noted that the geographical location of Station 18 is at the center of the southern half of the Korean
Peninsula. By contrast, in the network based on Pearson correlation, it can be seen that the most
important station varies according to the threshold. When we locate the most important stations on the
map, it can be noted that their locations are skewed to the south except when the threshold is 0.3 or 0.4.
In terms of geographical location, therefore, it is difficult to accept that the stations ranked as the most
important in the Pearson correlation-based network are indeed the most important. Moreover, in the
network based on Pearson correlation, the most important station varied according to the threshold,
thus showing that the network is sensitive to the choice of threshold. As the rankings of all the stations
vary according to changes in the threshold, the evaluation of the gauge network is highly dependent
on the choice of threshold, and it is difficult to determine which stations are important. By contrast,
the network based on mutual information yields the same results even when the threshold changes,
and, thus, it is adequate for evaluating rain gauge networks. Therefore, if mutual information is used
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in constructing complex networks, we expect that it will contribute to solving the extant problem of
choosing which threshold to apply.

Table 5. The most important station according to threshold. The stations which have the highest value
of centrality are chosen according to the threshold (0.3, 0.4, 0.5, 0.6, 0.7). The mutual information results
have consistent results, but the Pearson correlation results have variability.

Method Mutual Information Pearson Correlation

Threshold

0.3
# 10, # 17, # 18, # 20, # 21, # 23,
# 32, # 33, # 34, # 35, # 36, # 38,
# 43, # 44, # 45, # 46, # 47, # 52

# 18, # 20, # 32, # 38, # 40, # 43,
# 45, # 52

0.4 # 18 # 18, # 20

0.5 # 18 # 17

0.6 # 18 # 10

0.7 # 18 # 10, # 14

#: Station number.

4. Conclusions

In this paper, we recommended the use of mutual information, that can consider nonlinearity,
instead of Pearson correlation, which was frequently applied in previous studies using complex
networks to analyze relationships in the field of hydrology. First, a useful statistical method known as
the BDS statistic was used to determine the nonlinearity of rainfall data. Using the 95% confidence
interval, the null hypothesis was rejected in all cases, thus observed daily rainfall data was determined
as the nonlinearity of the data. Next, both Pearson correlation and mutual information were used to
calculate the strength of the links in complex networks. As the two resulting networks have values
in mutually different ranges, it was impossible to compare them directly, so the two networks were
compared using degree of centrality. However, the degree of centrality varies its numerator according
to changes in the threshold; therefore, the number of links was compared according to the threshold,
and a threshold interval in which the number of links undergoes drastic changes was identified.
Then, the two networks were compared, and the results indicated that the network based on mutual
information is consistent in its ranking of stations, whereas the network based on Pearson correlation
varied its ranking according to changes in the threshold. Moreover, a comparison of stations ranked
as the most important station indicated that the network based on Pearson correlation assigned high
ranking to geographically skewed stations, whereas the one based on mutual information assigned
high ranking to a centrally located station. Furthermore, mutual information has the advantage
of factoring in nonlinearity and being relatively free from the influence of outliers [28]. Therefore,
when constructing complex networks involving rainfall data, which have nonlinearity, using mutual
information is more suitable than Pearson coefficient.
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