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Abstract: The accuracy of a complementary relationship (CR) evapotranspiration (ET) model depends
on how to parameterize the relationship between apparent potential ET and actual ET as the land
surface changes from wet to dry. Yet, the validity of its inherent symmetric assumption of the original
CR framework, i.e., the B value equal to one, is controversial. In this study, we conduct a comparative
study between a linear, symmetric version (B = 1) and a nonlinear, asymmetric version (B is not
necessarily equal to 1) of the advection-aridity (AA) CR model in a large ephemeral lake, which
experiences dramatic changes in surface/atmosphere humidity. The results show that B was typically
1.1 ± 1.4 when ET ≤ ETPT ≤ ETPM, where ETPM and ETPT are estimated using the Penman (PM) and
Priestley–Taylor (PT) equations, respectively; the AA model performed reasonably well in this case.
However, the value of B can be negative and deviate from 1 significantly if the inequality ET ≤ ETPT

≤ ETPM is violated, which is quite common in humid environments. Because the actual ET can be
negatively (B > 0) or positively (B < 0) related to the evaporative demand of the air, the nonlinear
AA model generally performs better than the AA model if ET ≤ ETPM is satisfied. Although B is not
significantly correlated with the atmospheric relative humidity (RH), both models, especially the
nonlinear AA model, resulted in negative biases when ET > ETPM, which generally occur at high RH
conditions. Both the linear and the nonlinear AA models performed better under higher water level
conditions, however, our study highlights the need for higher-order (≥3) polynomial functions when
CR models are applied in humid environments.

Keywords: complementary relationship; Advection-Aridity ET models; surface/atmosphere
humidity changes

1. Introduction

Evapotranspiration (ET), which refers to water vapor transfer from the land surface to the
atmosphere [1], serves as a key variable in hydrological and ecological cycles [2–4]. Numerous ET
models [5–7] have been proposed in the past 50 years, among which complementary relationship
(CR) models have been widely used because of their simple formulation and relatively few input
requirements. The actual ET [8,9] or, specifically, its component, soil evaporation [10–12], can be readily
estimated using the CR concept and meteorological variables. Additionally, CR provides a simple but
useful tool for evaluating global hydrological responses to climate change [13,14].
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CR was first proposed by Bouchet [15] and was further developed by many others [16–23]. CR
refers to the opposite behaviors of the actual ET (ETa) and the apparent potential ET (ETpa) when
they deviate from the potential evaporation (ETpo) as the land surface changes from completely wet
to completely dry. ETa of a large uniform area occurs at its potential rate (ETpo) if the evaporating
surface is saturated and the ambient air is fully adjusted to the saturation condition of the surface.
ETpa, which is usually represented by pan evaporation, also equals ETpo in this case. Therefore, as
the land surface becomes dry, ETa decreases due to the limited water supply, whereas ETpa increases
because of the extra sensible energy, i.e., Q1 = ETpo − ETa, will be used to increase ETpa by the amount
of Q2, where Q2 = ETpa − ETpo. B = Q2/Q1 represents the ratio of the sensible energy that has been
used in increasing the evaporative demand of the air. B has to be parameterized in CR applications.
For example, the aridity-advection (AA) model [16] assumes that B = 1, i.e., ETpa − ETpo = ETpo − ETa.
Therefore, actual ET can be estimated readily from the potential and apparent potential ET, ETa =2
ETpo − ETpa. Although the AA model has been intensively used at various spatial and temporal scales,
e.g., catchment scales [24], local-site scales [25], daily scales [26] and sub-daily scales [27], studies have
shown that Q2 is not necessarily equal to Q1 under local advection conditions [26,28]. Szilagyi [29]
concluded that the symmetric assumption is valid only when no energy exchange occurs between the
source of ETpa and its surroundings. Recently, Brutsaert [21] formulated a nonlinear version of the
AA model (denoted as NAA in this paper) by invoking a generalized complementary principle with
physical constraints, thus eliminating the B = 1 assumption. The NAA model has been tested using
flux measurements or water balance results under various climatic and vegetation conditions [30–33].
However, few studies have compared the applicability of the linear (B = 1) and nonlinear (B is not
necessarily equal to 1) AA models.

Note that CR describes the ET of the land surface that changes from completely wet to completely
dry. However, few studies have examined the utility of the CR models and the B = 1 assumption under
an environment that experiences large humidity variations in both the land surface and the atmosphere.
In addition, by definition, ET ≤ ETpo ≤ ETpa is valid in any circumstances. However, ETpa and ETpo

are usually estimated using the Penman (PM) and Priestley–Taylor (PT) equations, respectively. At
humid conditions, the equality ET ≤ ETPT ≤ ETPM can be violated, which may introduce errors in CR
applications. In this paper, we conduct a comparative study between the AA and NAA models in a
large ephemeral lake and examine the variations in B under different saturation conditions. The eddy
covariance (EC) system that was located in an ephemeral lake provides ET measurements under the
land surface and water surface conditions.

2. Model Description and General Definitions

Potential evaporation (ETpo, W/m2) refers to the evaporation rate of a large uniform saturated
surface where the ambient air has been fully adjusted to the saturation condition of the surface. ETpo is
mainly controlled by the available energy, i.e., Rn −G, where Rn and G are the net radiation (W/m2) and
soil heat flux (W/m2), respectively. ETpo is usually estimated using the Priestley–Taylor equation [34],
ETPT, as shown in Equation (1), where ∆ (hPa/K) is the slope of the saturated vapor pressure to the air
temperature and γ (hPa/K) is the psychrometric constant. ∆ and γ are functions of air temperature and
air pressure, respectively. α is a parameter that is widely accepted as 1.26 from the work of Priestley
and Taylor [34].

ETpo = α
∆

∆ + γ
(Rn −G) (1)

Apparent potential evaporation ETpa (W/m2) refers to the evaporation rate of a small saturated
surface, e.g., the evaporating pan, which is surrounded by a large non-saturated homogeneous surface.
ETpa thus represents the evaporative demand of the air. ETpa can be represented using pan evaporation
measurements or can be estimated using the Penman equation [35], ETPM, as shown in Equation (2).
Ea is calculated as the product of the vapor pressure deficit (VPD, hPa) and the wind function, i.e.,
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f(u2) = 7.43 × (1 + 0.54u2) [36], where u2 is the wind speed at the height of 2 m. u2 is estimated using
the wind speed measurement ur at the height of zr [37].

ETPM =
∆

∆ + γ
(Rn −G) +

γ

∆ + γ
Ea (2)

u2 = ur(2/zr)
1/7 (3)

Both ETa and ETpa are equal to ETpo when the surface and the atmosphere are both saturated.
As the evaporating surface changes from wet to dry, ETpa increases, whereas ETa decreases. The
original AA model [16] states that the deviations of ETpa and ETa with ETpo are equal to each other, i.e.,
ETpa − ETpo = ETpo − ETa. Therefore, the actual ET can be estimated using ETpo and ETpa, as shown
as follows:

ETa = 2ETpo − ETpa (4)

Brutsaert [21] abandoned the assumption that ETpa − ETpo = ETpo − ETa. Instead, he solved a
more generalized function y = x −

∑
aixi (i = 0, . . . , n), where x = ETpo/ETpa, and y = ETa/ETpa, by

invoking the physical constraints as boundary conditions, as shown as follows.

y = 1, x = 1
y = 0, x = 0
dy
dx = 1, x = 1
dy
dx = 0, x = 0

(5)

A cubic polynomial equation satisfies the four boundary conditions, i.e.,

y = 2x2
− x3 (6)

or, in terms of ET,

ETa = (
ETpo

ETpa
)

2

(2ETpa − ETpo) (7)

When applying the AA and the NAA model, ETpa and ETpo are substituted by ETPM and ETPT.
ETPM and ETPT are mainly used in the subsequent analysis in the rest of the paper.

3. Study Area and Data Processing

We use EC and meteorological measurements from Poyang Lake (28◦22′–29◦45′N, 115◦47′–116◦45′

E) in this study. Poyang Lake is located on the south bank of the Yangtze River (Figure 1). The Poyang
Lake basin is characterized as humid subtropical climate. Annual mean air temperature is 17.5 ◦C and
mean annual precipitation is 1635.9 mm for 1960–2010. Precipitation is the largest in April, May, and
June, and decreases sharply from July to September [38]. Five rivers (Xiushui, Ganjiang, Fuhe, Xinjiang,
and Raohe) are the main water suppliers to the lake [39], and the lake discharges to the Yangtze River
at Hukou (Figure 1). The inundated area of Poyang Lake varies remarkably from more than 3000 km2

in summer to less than 1000 km2 in winter [39–41].
Eddy covariance and meteorological devices were mounted on a 38-m tower (29.09◦ N, 116.38◦ E)

on Sheshan Island (Figure 1), which is located in a periodically inundated zone of Poyang Lake. Xingzi
station is the most representative site of the overall water level status of Poyang Lake [42]. The water
surface coverage within the EC footprint ranges from >90% when the water level at Xingzi station
is greater than 14 m to less than 20% when the water level is less than 12 m during the low-water
period [43]. The EC system thus measures the latent heat flux (LE, equivalence to ET in energy
units, W/m2) from the water surface and land surface during the high-water and low-water periods,
respectively. In addition, surface radiation components, including the downward/upward short-wave
and long-wave radiation are measured by the pyrgeometers/pyranometers (CNR4, Kipp & Zonen B.V.,
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Delft, The Netherlands), and the air temperature and relative humidity are measured by HMP155A
(Vaisala, Helsinki, Finland).
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Figure 1. The study area and the measuring site in Sheshan Island. Surroundings of the measuring
site are revealed using Landsat 8 images acquired at 24 August (high-water) and 13 February
(low-water), 2015.

Nighttime data were not used to avoid the underestimation of LE under low turbulence conditions.
Moreover, the data points at which the available energy (H + LE) is smaller than 10 W/m2 were
also discarded. Therefore, the data at the timings when the downward shortwave radiation and the
available energy were larger than 10 W/m2 within a day were aggregated to the daily scales for analysis.
Daily data (1 January–21 December 2015) from Poyang Lake were used for the analysis in this study.

4. Results

4.1. Seasonal Variations in Surface/Atmosphere Humidity Conditions

The water level (WL) of Poyang Lake usually experiences dramatic seasonal changes. In 2015, the
WL fluctuated from 7.6 to 19.5 m, with the minimum and maximum values occurring on DOY 48 and
DOY 175, respectively (Figure 2A). The WL was approximately 8 m in January and February when the
bottom of the lake region was exposed with mudflat and short grass. The WL rose to an average of
11.9 m during March and April, and then rose rapidly to an average of 16.0 m during May and June.
Mixed footprints (water + land) existed during March and April, whereas footprints basically consisted
of the water surface in May and June. The EC system still measured the water surface evaporation
during July and August, when the WL was 16.1 m on average. The WL fell to an average of 13.1 m
during September and October, and an average of 12.7 m during November and December. The lake
bottom was exposed for only a short period around DOY 310 when the WL was less than 12 m.
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Figure 2. Seasonal variations in the (A) water level (Xingzi station), (B) air temperature, dew
temperature, (C) relative humidity and (D) VPD in 2015. DOY is day of the year.

A single-peak sinusoidal seasonal cycle was found for the air temperature (Ta) (Figure 2B). The
minimum Ta was still larger than 0 ◦C, whereas the maximum reached approximately 30 ◦C. The dew
temperature (Td) was an average of 4.4 ◦C lower than Ta. The difference between Ta and Td was highly
correlated (−0.99) with relative humidity (RH). RH was generally higher during the period of high
WL. However, RH also reached as high as 80% when WL was the lowest, e.g., from January to March.
In contrast, VPD during January to March was generally smaller than in the high-water period because
the saturated vapor pressure of the air was lower in the spring due to the low Ta.

4.2. CR under Different Surface/Atmosphere Humidity Conditions

The relationships between LE and the apparent potential LE are shown in Figure 3 under different
surface/atmosphere humidity conditions. For proper demonstration, the y-axis was scaled using LEPT.
Superficially, the scatter points in Figure 3 do not seem to conform to one single pattern. However,
we observe that in the high RH (≥85%) and LE/LEPM > 1 condition, LE/LEPT increases as LE/LEPM

increases. In addition, when the ideal inequality LE ≤ LEPT ≤ LEPM is met, LEPM/LEPT and LE/LEPT

exhibit opposite trends as LE/LEPM increases, as shown in the fitted line in Figure 3. The rest of the
data points, e.g., those in the ellipse in Figure 3A, occur when both LEPM/LEPT and LE/LEPT are larger
than 1.

Therefore, for proper demonstration, we divided the dataset into three categories. Category 1
satisfies the ideal inequality LE ≤ LEPT ≤ LEPM. Category 2 violates the inequality LE ≤ LEPT ≤ LEPM

but still satisfies the inequality LE ≤ LEPM, i.e., LE may be larger than LEPT or LEPT may be larger than
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LEPM in this category (e.g., those in the ellipse in Figure 3A). Category 3 contains the data points where
LE is larger than LEPM, which generally occurs under RH ≥ 85% conditions. Notably, each category
broadly exists in all water level conditions (Figure 3). The number of data points in each category is
shown in Table 1. Category 1 and 3 consist of 27.4% and 28.1% of the total data, respectively, and
category 2 accounts for the largest proportion of the data. The proportion of data in category 1 reaches
its maximum in the period of January and February when the lake bottom is rarely covered by water.
As the water level rises, the proportion of data in category 1 in the entire dataset generally decreases,
especially during the rapid water-rising period, e.g., May and June.
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Figure 3. Complementary relationship under various water level and atmospheric humidity conditions
throughout the year. (A), Jan and Feb; (B), Mar and Apr; (C), May and Jun; (D), Jul and Aug; (E), Sep
and Oct; (F), Nov and Dec.

Table 1. Numbers of data points in each category.

Date

Category 1 Category 2 Category 3

TotalLE ≤ LEPT ≤

LEPM

LE ≤ LEPM AND (LE ≥
LEPT OR LEPT ≥ LEPM) LE ≥ LEPM

January & February 23 19 12 54
March & April 15 23 17 55

May & June 5 26 24 55
July & August 16 17 10 43

September & October 22 27 7 56
November & December 9 29 19 57

When LE ≤ LEPT ≤ LEPM, LEPM/LEPT and LE/LEPT exhibit opposite trends as LE/LEPM increases
(Figure 3). Both the upper (LEPM/LEPT) and lower (LE/LEPT) scatter points in Figure 3 were fitted using
exponential functions. The slopes of the fitted LEPM/LEPT curves are generally smaller in high-water
periods, whereas the slopes of the lower line exhibit no significant changes with the water level. Both
LEPM/LEPT and LE/LEPT do not seem to be significantly correlated with RH (Figure 3). In addition, the B
values exhibit no significant trends with RH or the water level. The mean values of B are approximately
1.1 during most of the periods (Figure 4A,B,D,E), indicating that the AA model assumption is generally
feasible for category 1 data. However, the value of B can also be close to 2 during the rapid water-rising
periods, e.g., May and June, and November and December. It is worth noting that the number of data
points during the rapid water-rising periods is much smaller than in other periods.
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year. (A), Jan and Feb; (B), Mar and Apr; (C), May and Jun; (D), Jul and Aug; (E), Sep and Oct; (F), Nov
and Dec.

The value of B is generally negative for category 2 data because LEPT is usually smaller than
both LE and LEPM (Figure 3). The negative value of B in the equation LEPM − LEPT = B (LEPT − LE)
implies that LE increases rather than decreases with increasing atmospheric demand (LEPM). Note
that the B values in this category do not seem to exhibit significant trends with RH. However, the
distribution of B is correlated with the water level. B is much closer to 0 during the high-water periods,
i.e., May to October. The mean values of B are −1.9, −2.0 and −1.6 in Figure 4C–E, respectively, which
are larger than those in other periods (Figure 4A,B,F). In addition, more data points are distributed
approximately 0 from May to October than in other periods. One main reason for this phenomenon
may be because LEPT is close to LEPM for water-covered surfaces.

The LE ≥ LEPM cases (category 3) generally occur when RH is relatively large (>85%). Note that
most of the points in category 3 satisfy the inequality LE ≥ LEPT ≥ LEPM; therefore, B is generally
positive in category 3. Compared to category 2, the value of B in category 3 is much closer to 0 during
the low-water periods, which is shown in Figure 4A,B,F.

4.3. Comparison of the AA and the NAA Simulations on the LEPT/LEPM~LE/LEPM Relationship

Let x = LEPT/LEPM and y = LE/LEPM; then, we can rewrite LEPM − LEPT = B (LEPT − LEa) as
y = B+1

B x − 1
B . As shown in Section 2, the AA model assumes that B equals 1, i.e., y = 2x − 1. In

contrast, the NAA model obtained a nonlinear formulation from a more general perspective (B is not a
fixed value), i.e., y = 2x2

− x3. The performances of the AA and the NAA models in simulating the
LEPT/LEPM~LE/LEPM relationships are shown in Figure 5.

The results showed that the nonlinear formulation generally performed better than the AA model.
For example, the Root mean square error (RMSE) of the AA and NAA models were 0.24 and 0.15,
respectively, during May and June. The RMSE of the two models were close to each other during
January and February; however, the absolute bias of the NAA model was smaller than that of the
AA model. Moreover, the model performances were found to be related to humidity conditions. For
example, both the AA and the NAA models performed better during the periods with the highest
water level (Figure 5C,D) than during the low-water periods. Large negative (<−0.10) biases were
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found during the low-water periods (Figure 5A,B,F) for both the AA and the NAA models. One
main reason for such large negative biases is the underestimation of the models when the air is near
saturated, i.e., RH > 85% (Figure 5A,B,F).
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More detailed examinations show that the linear formulation y = 2x − 1 performed reasonably
well for the data points that satisfied the inequality LE ≤ LEPT ≤ LEPM (category 1) (Figure 6). However,
for category 2, y = 2x − 1 underestimates LE/LEPM at most of the points, especially when LEPT/LEPM

was smaller than 1. In contrast, the nonlinear x-y formulation (y = 2x2
− x3) performed better than
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the linear formulation for the data in category 2. However, the nonlinear formulation performed
worse than the linear formulation for the data points in category 3. The nonlinear formulation greatly
underestimated LE/LEPM at high humidity conditions because y = 2x2

− x3 increases much more
slowly at high humidity conditions.

4.4. AA and NAA Model Performances in Estimating LE

Performances of the AA and the NAA models in estimating LE are analyzed in this section.
Overall, the AA model had a 35.6 W/m2 RMSE and a −8.8 W/m2 mean bias, whereas the NAA model
had comparable accuracy, i.e., a 36.9 W/m2 RMSE and a −6.4 W/m2 mean bias. Both the AA and the
NAA models produced similar trends compared to the measured LE time series (Figure 7). However,
the AA model performed worse with larger negative biases than the NAA model when LE was
relatively small (<150 W/m2), as shown in Figure 7. In contrast, the NAA model resulted in larger
negative biases than the AA model when the LE was larger than 200 W/m2 (Figure 7).
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The distribution of measured LE under various water level conditions is shown in Figure 8. LE
was generally higher in the high-water periods. In addition, LE generally increased with LEPT/LEPM

(Figure 8). Worth noting, LE in category 1 was not significantly different from that in category 2,
whereas most of the highest LE values are for data in category 3. The AA model performed reasonably
well in simulating LE in category 1 (Figure 9). Prediction biases were confined within ±50 W/m2

and their averages were close to 0 for different water-level conditions. Prediction biases showed no
significant trend with respect to atmospheric humidity (RH). Such a result indicates that the AA model
is robust in estimating LE across different surface/atmospheric humidity conditions, if the inequality
LE ≤ LEPT ≤ LEPM is met. In contrast, the prediction biases (absolute values) in category 2 decreased as
RH increased in relatively low-water level periods (Figure 9A,B,F). The model simulations in category
2 were better during the relatively high-water periods (Figure 10C,D,E). Overall, model performances
improved under humid surface/atmospheric conditions for the data points in category 2. In contrast,
large negative biases resulted from the AA model simulation in category 3. However, for category 3,
the model performances were also better during the high-water periods (Figure 10C,D,E) than during
the relatively low-water period (Figure 10A,B,F). Compared to the AA modeling biases, the NAA
model biases exhibited similar distributions under different water level and atmospheric humidity
conditions (Figure 10). However, the NAA model outperformed the AA model for the data points in
category 2 and performed worse for the category 3 data.
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5. Discussion

By definition, the actual ET should be smaller than both the potential and the apparent potential ET,
and the apparent potential ET should be the upper-most ET rate because it represents the evaporative
demand of the air. Note that if LEpo and LEpa are estimated using the PT and the PM equations,
respectively, the inequality LE ≤ LEPT is generally met in arid environments because of the limited
water supply. The inequality LEPT ≤ LEPM is also easily met because the atmospheric evaporative
demand is usually quite large (due to the hot dry/air in arid environments) compared to the available
energy of the land surface in arid environments. Therefore, LE ≤ LEPT ≤ LEPM is usually met in arid
environments. However, in a humid climate environment such as in our study area, because the water
supply for evaporation is usually adequate, LE/LEPT may increase to be larger than 1 as LEPM/LEPT

increases with the atmospheric evaporative demand. Examples of such cases can be found in the
eclipse area in Figure 3A, where LE/LEPT > 1. In addition, in high RH conditions (RH ≥ 85%), the LEPM

that is estimated using the Penman equation can be relatively small due to the relatively small VPD;
thus LE/LEPM can be larger than 1 as LE/LEPT increases.

One way to avoid the violation of the inequality LE ≤ LEPT ≤ LEPM is to adjust the parameter
α in the LEPT estimation. Numerous studies have shown that α can vary around its recommended
value (1.26) for land surfaces [44–47]. Furthermore, α varies even under water body conditions [48,49].
However, no consistent parameterization of α has been established. A prior α is often used in CR
applications. Therefore, violations of the inequality LE ≤ LEPT ≤ LEPM are usually inevitable.

Our results indicated that the relationships between x and y differ significantly depending on
the magnitude order in LE, LEPT and LEPM. For example, for LE ≤ LEPT ≤ LEPM cases (category 1),
the average values of parameter B vary around 1.1~2.1 with different WL conditions (Figure 4A–F).
A linear equation y = 1.625x − 0.63 results if B is taken as the median value, 1.6, indicating that the
AA model (y = 2x − 1) is quite accurate for the data points that satisfy the inequality LE ≤ LEPT ≤

LEPM. The AA model predicts that LE will be 0 when LEPT equals half of LEPM, i.e., y = 0 when
x = 0.5. The tendency of the data points in category 1 seems to satisfy this character. However, our
data show that in category 2, y is still positive when x is smaller than 0.5 (Figure 6). The intercepts of
the linear regressions of the data in category 2 seem to be positive instead of negative as in the AA
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model. The average values of the parameter B vary around −3.0~−1.9 for category 2. A linear equation
y = 0.6x + 0.4 results if B is taken as −2.5. Therefore, in terms of ET, ETa = 0.6ETPT + 0.4ETPM. Such
a result indicates that the actual ET increases instead of decreasing with increasing ETpa. Note that
the increase in the actual ET with ETPM is not contradictory to the CR [50], and there are also many
studies that have reported that y is still positive when x is smaller than 0.5, even in arid and semi-arid
environments [20,31]. Nevertheless, the slope and intercept of the linear equation y = 0.6x + 0.4 is
significantly different from that in the AA model.

From a modeling perspective, LE is not known a priori; therefore, the magnitude order in LE,
LEPT and LEPM is not known. Whether a data point belongs to category 1 or category 2 cannot easily
be determined in advance for humid environments. Higher-order polynomial equations such as the
nonlinear AA model may be more useful than linear equations. We further fitted the x-y relationships
using quadratic polynomial equations (Figure 11). The mean biases are close to 0, which are much
smaller than those from the AA and the NAA models. RMSE values from the quadratic functions are
approximately half of the values from the AA and the NAA models.Water 2019, 11, x FOR PEER REVIEW 13 of 16 

 

 
Figure 11. Quadratic fitting of x-y relationships under various water level conditions, where x = 
LEPT/LEPM, and y = LE/LEPM. (A), Jan and Feb; (B), Mar and Apr; (C), May and Jun; (D), Jul and Aug; 
(E), Sep and Oct; (F), Nov and Dec. Red line represents fitted line and black circle represents the 
original data. 

The magnitude order of LEPT and LEPM can be determined before the actual LE is estimated. 
Therefore, we further evaluated the performances of the AA and the NAA models under the LEPT ≤ 
LEPM and the LEPT > LEPM conditions. When LEPT ≤ LEPM, both the AA and the NAA models 
performed better during the high-water periods. However, the NAA model outperformed the AA 
model, with much smaller RMSE and absolute biases during all periods (Figure 12). The biases of the 
NAA model were even close to 0 during some of the periods. In contrast, the NAA model was 
comparable or slightly worse than the AA model under the LEPT > LEPM condition. 

 
Figure 12. Performances of the AA and the NAA models under the LEPT ≤ LEPM. (A) and (B) and the 
LEPT > LEPM (C) and (D) conditions. 

  

Figure 11. Quadratic fitting of x-y relationships under various water level conditions, where
x = LEPT/LEPM, and y = LE/LEPM. (A), Jan and Feb; (B), Mar and Apr; (C), May and Jun; (D),
Jul and Aug; (E), Sep and Oct; (F), Nov and Dec. Red line represents fitted line and black circle
represents the original data.

The magnitude order of LEPT and LEPM can be determined before the actual LE is estimated.
Therefore, we further evaluated the performances of the AA and the NAA models under the LEPT

≤ LEPM and the LEPT > LEPM conditions. When LEPT ≤ LEPM, both the AA and the NAA models
performed better during the high-water periods. However, the NAA model outperformed the AA
model, with much smaller RMSE and absolute biases during all periods (Figure 12). The biases of
the NAA model were even close to 0 during some of the periods. In contrast, the NAA model was
comparable or slightly worse than the AA model under the LEPT > LEPM condition.
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6. Conclusions

The CR models have been widely used due to their simple formulation and relatively few
input requirements. However, although CR depicts the ET process as the land surface changes from
completely wet to completely dry, few studies have compared the utility of CR models in different
surface/atmosphere humidity conditions. In this study, we conducted a comparative study between
the AA and the NAA models over a periodically inundated area of the Poyang Lake.

The results show that both the AA and the NAA models generally performed better under higher
water level conditions. In addition, CR and the applicability of the CR models varied across different
data categories. The value of B was typically 1.1 ± 1.4 when LE ≤ LEPT ≤ LEPM, and the AA model
performed reasonably well in these cases. However, the value of B was generally negative in category
2 and the AA model had large negative biases in these cases. Under near-saturated air conditions, both
the AA and the NAA models had negative biases.

Although different linear equations can separately fit the data points (x, y) in different categories,
we were not able to classify the data points into different categories before ET was known. Compared
to the AA model, the NAA model showed a more robust performance when LE < LEPM. In humid
climate areas, actual ET can be negatively or positively related to the evaporative demand of the air; our
study shows that a higher-order CR model may provide more robust predictions in such conditions.
New theoretical considerations of the boundary conditions by which the x-y relationship is established
may be needed in future studies. Moreover, more data from humid climate regions are needed to study
variations in the LEPT/LEPM ~ LE/LEPM relationships.
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