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Abstract: Due to nonuniform rainfall distribution in Taiwan, groundwater is an important water source
in certain areas that lack water storage facilities during periods of drought. Therefore, groundwater
recharge is an important issue for sustainable water resources management. The mountainous
areas and the alluvial fan areas of the Jhuoshui River basin in Central Taiwan are considered
abundant groundwater recharge regions. This study aims to investigate the interactive mechanisms
between surface water and groundwater through statistical techniques and estimate groundwater
level variations by a combination of artificial intelligence techniques and the Gamma test (GT).
The Jhuoshui River basin in Central Taiwan is selected as the study area. The results demonstrate
that: (1) More days of accumulated rainfall data are required to affect variable groundwater levels in
low-permeability wells or deep wells; (2) effective rainfall thresholds can be properly identified by
lower bound screening of accumulated rainfall; (3) daily groundwater level variation can be estimated
effectively by artificial neural networks (ANNs); and (4) it is difficult to build efficient models for
low-permeability wells, and the accuracy and stability of models is worse in the proximal-fan areas
than in the mountainous areas.

Keywords: groundwater level; recharge groundwater; Gamma test (GT); accumulated rainfall;
artificial neural networks (ANNs)

1. Introduction

Due to industrial and economic development along with rapid population growth in Taiwan
in recent years, more water sources are required to satisfy the increasing water demands from the
development of human civilization and livelihoods. Due to its easy accessibility, low cost, and stable
quality and temperature, groundwater is often considered an important water source. The interactive
mechanism of groundwater level variations is rather complex and includes precipitation, tides,
atmospheric pressure, and even earthquakes. Previous research has shown that rainfall can be regarded
as a leading indicator of groundwater levels by applying time series to analyze the relationship between
rainfall and groundwater levels [1–7]. However, the temporal relationship between groundwater and
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rainfall might vary widely in different regions. In this study area, Taiwan, some research has suggested
that time lags between rainfall and groundwater level variation might occur [8]. Chen [9] identified
that different durations of rainfall affected groundwater levels and that response time spans range
from a few hours to a few days.

Artificial neural networks (ANNs) are recognized as an effective technique for modeling
complicated systems (nonlinear issues) and have been widely adopted in various hydro system
problems in past decades. The advantages of ANNs include their ability to learn from datasets, their
flexible noise tolerance, and their ability to generalize. Additionally, ANNs can extract significant and
meaningful features from complex data structures and can learn the implicit relationship between inputs
and outputs based on sufficient training data [10,11]. Pradhan and Lee [12] used a back-propagation
neural network (BPNN) coupled with a geographic information system (GIS) to analyze the risk of
landslides. Karthikeyan et al. [13] predicted ground water levels in India by using two networks, feed
forward neural networks (FFNN) and recurrent neural network (RNN), and adjusting the parameters
according to the related input factors revealed that the hydro-meteorological parameters affect the
models. Sreekanth et al. [14] predicted groundwater levels to deal with the problems of water resource
usage through FFNN-LMB applied to groundwater level forecasting and verified that ANN is a
promising tool. Li et al. [15] executed the back-propagation (BP)coupled with a sensitivity analysis
to determine that the most sensitive anthropogenic factor, coal mining drainage, has a major effect
on groundwater levels in the Jinci Spring Basin in northern China. Mohanty et al. [16] used various
methods to construct models of groundwater systems and found that ANN models provided better
short-term groundwater level prediction than MODFLOW-based numerical models without sufficient
parameters, data and boundary conditions. New techniques such as the neuro-fuzzy inference system
that integrates ANNs and fuzzy logic methods have also proven powerful. The neuro-fuzzy inference
system has the potential to incorporate the strengths of both ANN and fuzzy logic in one framework.
The adaptive neuro-fuzzy inference system (ANFIS) was introduced to provide a new approach on the
reservoirs’ optimal operations [17] and rainfall-runoff simulations [18].

Some studies have focused on the interactive mechanism of surface water and groundwater in
mountainous areas. The purpose of this study is to explore the interactive mechanism of surface
and subsurface water by analyzing and modeling groundwater level variations using statistical and
artificial intelligence techniques. The approaches consist of correlation analysis between precipitation
and groundwater level variation and the estimation of groundwater level variations. The Jhuoshui
River basin in Central Taiwan is selected as a study area.

2. Methodology

This study investigates the interactive mechanism of groundwater level variations through artificial
neural networks, statistical analyses, the Gamma test and sensitivity analysis. The methodologies used
in this research are briefly addressed as follows:

2.1. Pearson Correlation Coefficient

The Pearson correlation coefficient [19] is a quantitative method used to measure the linear
correlation between two variables. In this study, it is used to determine the temporal relationship
between groundwater level variations and precipitation as well as stream flow. The Pearson correlation
coefficient ranges between [−1,1], in which 1 denotes a positive exact linear relationship, −1 indicates
a negative perfect linear relationship, and 0 indicates that no linear relationship exists between the
two variables.
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For variables of P (precipitation) and G (groundwater) with n datasets (each dataset can be denoted
by pi and gi, where i = 1, 2, . . . , n), the correlation coefficient can estimate the Pearson correlation (R)
between P and G. The calculation of the correlation coefficient is given as:

RP,G =

∑n
i=1

(
pi − P

)(
gi −G

)
√∑n

i=1

(
p− P

)2
√∑n

i=1

(
gi −G

)2
(1)

where P and G are the means of P and G accordingly.

2.2. Gamma Test (GT)

The Gamma test (GT) is designed to estimate noise variance by measuring the smooth relationship
between the input-output dataset. The GT was initially proposed by Končar and Aðalbjörn [20,21] to
determine the best input combination for a neural network [22,23]. This study implements the GT for
the extraction of nonlinearity between groundwater level variations and precipitation, along with the
identification of important factors affecting groundwater level variations.

Given an input-output pair denoted by (X, y) = ((x1, . . . , xm), y), where X is the input items and
scalar y is the output items, the observations can be described as Equation (2).

{(Xi, yi), 1 ≤ i ≤M} (2)

where, Xi ∈ Rm are the m-dimensional input variables with a dataset length of M, which is constrained
to a closed bounded set C ∈ Rm. The corresponding outputs yi ∈ R are scalars. The underlying
relationship of the data set can be denoted:

y = f (x1, . . . xm) + r (3)

where, f is a smooth function, and r denotes a random variable for noise. The Gamma statistic (Γ) is
a variance estimation of noise. Let Xi,k denote the kth nearest neighbor to Xi in terms of Euclidean
distance. The delta function is defined:

δM(k) = 1
M

M∑
i=1
|Xi,k Xi| (1 ≤ k ≤ p) (4)

where, |· · · | is the Euclidean distance, and p is the number of neighbors. For computing the Γ, the line
of least squares regression is built for p points:

γ = Aδ+ Γ (5)

where, A is the gradient. The steeper the gradient is, the more complex is the model. The Γ is an index
to evaluate the model performance of an input combination. A Γ closer to 0 implies a more appropriate
input combination.

2.3. Back-Propagation Neural Network (BPNN)

The back-propagation neural network (BPNN), developed by Rumelhart et al. [24], is used to
build a model for estimating the groundwater level variations in this study. Figure 1 shows the BPNN
structure in this study.
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The input items comprise the streamflow and accumulated rainfall. The node number of the hidden
layer is determined by trial and error. The model target is groundwater level variation. The BPNN
applies the gradient steepest descent method for adjusting the neuron weights for minimizing the
output error. In the learning process (calculation iterations), the neuron weights can be adjusted by an
error convergence technique to approximate the model target based on the given input set. The output
layer error may propagate backward to the input layer. Further details of the BPNN algorithm are
found in Rumelhart et al. [24].

2.4. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The adaptive neuro-fuzzy inference system (ANFIS) was proposed by Jang [25] who used the fuzzy
inference system as an essential core in combination with the artificial neural network. The ANFIS
preserves the learning process of ANNs for projecting input features to an output space and retains
the fuzzy advantages, including if-then rules (rule layer), for describing the regional behavior of such
projection. Then, the results of the inference system are acquired through the reasoning capability of
fuzzy logic. The ANFIS was shown to have powerful modeling abilities in comprehensive fields such
as motor fault detection and diagnosis [26], power systems dynamic load [27], forecasting systems for
the demand of teachers’ human resources [28] and real-time reservoir operations [29].

This study applies the Takagi-Sugeno fuzzy model [30] in a fuzzy rule layer. Here, 2 input
variables, p (precipitation) and s (streamflow), and 1 output variable, g (groundwater), are taken as an
example for describing the rule layer. The rule sets of the rule layer can be expressed as:

Rule 1: If p is A1 and s is B1 then g1 = k1*p + t1*s + r1

Rule 2: If p is A2 and s is B2 then g2 = k2*p + t2*s + r2

where k, t and r are linear parameters in the consequent part (then-part) of the first-order Takagi-Sugeno
fuzzy model.

The typical ANFIS includes 5 layers (Figure 2). The input layer—in this layer, each node produces
membership degrees that belong to each of the fuzzy sets by using appropriate membership functions.
The rule layer—the AND operator is used to obtain one output that represents the result of the
antecedent for that rule. The average layer—the ratio of each ith rule’s firing strength to the sum of
all the rules’ firing strength is calculated. The consequent layer—the node function determines the
contribution of each ith rule’s toward the total output. The output layer—the defuzzification process
transforms each rule’s fuzzy results into the model output. The details of the ANFIS are found in
Chang and Chang [31].
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3. Case Study

This study investigates the interactive mechanism of groundwater level variations and precipitation
in mountainous areas in the Jhuoshui River basin by using statistical methods. The Jhuoshui River
basin is located in Central Taiwan with a maximum elevation of 3200 m. The watershed area of
Jhuoshui River is approximately 3157 km2. Figure 3a shows the distribution of the gauge stations
and the hydrogeological information of groundwater monitoring wells in the study area. There are
2 main regions in this study area: The mountain area and the alluvial fan. The alluvial fan can be
roughly divided into 3 districts: The fan-top district; the fan-mid district; the fan-tail district (Figure 3a).
The G1~G4 monitoring wells belong to the mountain area, and the G5~G8 monitoring wells belong to
the fan-top of the alluvial fan. As shown in Figure 3b, the fan-top district is the only district without
a significant confined aquifer. In general, the hydrogeological feature of the fan-top district in this
study area is recognized as a high potential groundwater recharge area because the main geological
components are sandstone, phyllite and slate (the gravel of the geological structure) (Figure 3b).
According to investigations of core drilling samples, the soil thickness of this study area (the depth to
bedrock, including the soil layer, colluvium layer and saprolite) is deep [32]. The Central Geological
Survey (CGS) (Ministry of Economic Affairs (MOEA), R.O.C.) indicated that the hydrogeological
structure of the study area can be divided into several strata. Based on the depth from the land surface
(Figure 3b), these strata are as follows: Aquifer 1 (F1), Aquitard 1 (T1), Aquifer 2 (F2), Aquitard 2 (T2)
and Aquifer 3 (F3). The average thicknesses of Aquifer 1, Aquifer 2 and Aquifer 3 are 42 m, 95 m and
86 m, respectively. The thickness of the gravel and sand strata in the fan-top areas can reach more
than 130 m [33]. In this study area, some groundwater monitoring wells include two different depth
monitoring records (in a different aquifer), such as G1, G4, G7 and G8 (Figure 3c). However, according
the hydrogeological information provided by the CGS (Figure 3b), it is recognized that the shallow
groundwater well in G7 belongs to Aquifer 3 (F3). The rainfall is distributed unevenly, which mainly
occurs from May to September due to the unique topographical terrain and location. The total rainfall
in wet periods comprises 75% of the annual rainfall, which implies rainfall differs significantly between
wet and dry periods.

The groundwater level data at twelve groundwater monitoring wells and the flow data at two
streamflow gauging stations were collected from the Water Resources Agency in Taiwan during
2001 and 2011, and rainfall data at seventeen rainfall gauging stations were collected from the
Water Resources Agency, Central Weather Bureau and Taiwan Power Company in Taiwan in 2001
and 2011 (Tables 1–3). The missing data were infilled by using linear regression techniques based
on the data of the surrounding stations. The flowchart of this study is shown in Figure 4. First,
this study conducts rainfall duration analyses by investigating the effective duration of accumulated
rainfall on groundwater level variations. Second, this study conducts effective rainfall analysis by
identifying significant accumulated rainfall amount thresholds affecting groundwater level variations,
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and therefore the correlation between accumulated rainfall amounts and groundwater level variations
can be estimated. Third, this study constructs estimation models of the groundwater level variations
by using the BPNN and ANFIS based on rainfall, streamflow and groundwater level variation data,
in which the GT is used to determine the proper input variables associated with the rainfall gauging
stations as well as the streamflow gauging stations (S1), and rainfall durations for each model at
individual groundwater monitoring stations. Finally, the performance of the models is compared.
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Table 1. The statistics of seventeen rainfall stations.

Rainfall Station Elevation (m)
Rainfall (mm)

Mean SD 1 Annual Rainfall

R1 400 8.18 29.16 2985
R2 231 8.43 30.64 3076
R3 203 6.24 20.77 2278
R4 215 6.35 21.33 2320
R5 296 5.93 22.96 2166
R6 393 5.76 20.99 2103
R7 724 8.14 37.45 2970
R8 322 5.64 21.60 2059
R9 1666 7.31 26.50 2669

R10 485 8.91 29.34 3250
R11 2200 7.84 30.56 2863
R12 1135 6.04 25.60 2203
R13 1200 7.38 26.33 2695
R14 1520 7.01 27.07 2558
R15 2303 5.46 22.40 1991
R16 82 5.15 19.30 1880
R17 110 4.44 18.33 1620

1 Standard deviation.
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Table 2. The basic statistics of twelve groundwater monitoring wells.

Monitoring Well Well Depth (m) Elevation (m)
Groundwater Level (m)

Mean SD

G1(1) [shallow] 102.6 151.2 141.7 1.86
G1(2) [deep] 199.3 151.2 142.7 1.46

G2 150 113.3 109.0 4.63
G3 24.1 179.3 169.1 1.03

G4(1) [shallow] 78.2 151.1 137.6 2.17
G4(2) [deep] 193.2 151 135.5 1.45

G5 112.7 82.4 38.75 3.35
G6 96 72.3 38.48 2.84

G7(1) [shallow] 140 49.5 35.97 2.38
G7(2) [deep] 269 49.6 34.02 2.31

G8(1) [shallow] 38.7 46.6 34.73 1.55
G8(2) [deep] 97.5 46.5 34.73 1.52

Table 3. The basic information of two streamflow gauging stations.

Stream Flow Station Elevation (m)
Discharge (cm s)

Mean SD

S1 107.17 136.51 401.22
S2 279.09 113.59 272.19

The Pearson correlation coefficient and the root mean square error (RMSE) are used to evaluate
the performance of the estimation model. The calculation of RMSE is given below:

RMSE =

√√√
1
N

N∑
i=1

(yi − di)
2 (6)

where, yi is the model estimation and di is the observation, and N is the number of datasets. The RMSE
is used to evaluate the accuracy of the estimations of the groundwater level variations. The lower the
RMSE value is, the better is the model’s performance.

4. Results and Discussion

4.1. Duration of Accumulated Rainfall Analysis

First, this study uses the Pearson correlation coefficient to investigate the relationship between the
duration of accumulated rainfall (1–10 days) and the groundwater level variation. A high correlation
coefficient indicates a strong relationship between the accumulated rainfall and the groundwater level
variation. To generate a comprehensive data set, rainfall levels at each rainfall gauging station can be
determined by the average rainfall over the basin obtained from the Thiessen polygon method [34].
Figure 5 shows the time series of groundwater levels at the groundwater monitoring wells and the
rainfall data at R2. This study also analyzed the relationship between the groundwater level variation
and the rainfall at a 1-day lag (from the current day to the previous day), and further compared
the results with a duration analysis. At all groundwater monitoring stations, the results show that
the correlation coefficient of groundwater level variations and accumulated rainfall with different
durations (2–10 days) is higher than the rainfall at the current day and 1-day lag. In other words, the
accumulated rainfall has a stronger positive relationship with the groundwater level variation than the
rainfall of the previous day at all wells.
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Figure 5. Time series of the groundwater level at the groundwater monitoring wells and the rainfall
data at R2.

As shown in Figure 6, the highest correlation between the groundwater level variation and
two-day accumulated rainfall occurs at G4(1), G4(2) and G2, which might result from the gravel of
the geological structure at G4 and G2. The highest correlation between groundwater level variations
and three-day accumulated rainfall occurs at G1(1) and G3, which may be because of the shallow
well depth of G1(1) and G3. The highest correlation between the groundwater level variation and
a five-day accumulated rainfall occurs at G1(2), which might be caused by the deep well depth of
G1(2). Therefore, the accumulated rainfall over different durations is selected as an input variable
in the ANN models for estimating the groundwater level variations. In addition, the differences in
geological structure and depth at each groundwater monitoring well produces different relationships
between the groundwater level variations and the accumulated rainfall of different durations.
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Figure 6. The correlation coefficient between the groundwater level variation and rainfall durations at
different groundwater monitoring wells.

4.2. Effective Rainfall Analysis

The different quantities of rainfall may have different impacts on the groundwater level variation.
This study considers the average rainfalls associated with different thresholds for evaluating the
rainfall amount impacts on the groundwater level variations at G1 to G4 by the use of the Pearson
correlation coefficient. The duration of the accumulated rainfall adopts the result of Section 4.1 Duration
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of accumulated rainfall analysis: G4(1), G4(2) and G2—two days; G1(1) and G3—three days; G1(2)—five
days. This study includes two types of screening:

(1) Lower bound screening: Delete the data sets below the rainfall threshold

The rainfall data (a total more than 3986) were screened at thresholds from 1–50 or 1–100 mm (with
1 mm increasing). Figure 7 shows the Pearson correlation between the groundwater level variations
and the accumulated rainfall at different lower bound thresholds. In Figure 7a, the correlation patterns
of G4(1) and G4(2) change slightly, and the correlation curve rises at the 13 mm threshold of the
accumulated rainfall. This might be due to the greater structural permeability of G4 (gravel), as well as
the location of G4 close to the Jhuoshui river, so that the groundwater level at G4 is affected by rainfall
and the stream flow at the same time. The correlation curve of G2 rises obviously at the accumulated
rainfall threshold of 26 mm. It is suspected that this causes saturation when the accumulated rainfall
is 26 mm, and furthermore, the excess rainfall causes percolation to recharge the groundwater layer.
Therefore, the effective rainfall thresholds affecting the groundwater level variation at G2 can be
identified as 26 mm. In Figure 7b, the correlation pattern of G1(1) and G3 are uniform. At G1(1),
the correlation increases gradually at the accumulated rainfall threshold of 34 mm, and the highest
correlation coefficient is 0.8 at the accumulated rainfall threshold of 63 mm. In Figure 7c, the correlation
pattern of G1(2) is similar to G2. The correlation curve of G1(2) rises obviously at the threshold of
48 mm of the accumulated rainfall, which causes effective groundwater recharge activity when the
accumulated rainfall rises to 48 mm in five days.
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With the higher upper bound rainfall threshold (which retain more heavy rainfall data), the
correlation coefficient increases. This indicates that the groundwater level variations increase with
more accumulated rainfall. This study can identify the lower bound threshold of the accumulated
rainfall affecting the groundwater level effectively, but the authors cannot identify the upper bound
threshold of accumulated rainfall.

4.3. Estimation of Groundwater Level Variations

This study built two estimation models (BPNN and ANFIS) for the groundwater level variations
for each groundwater monitoring well. The learning and training efficiency of ANN models decrease
if the data from all hydrology information is incorporated into the models. Therefore, the GT was
used to determine the critical input factors (i.e., rainfall and streamflow) that correlated strongly with
the groundwater level variations for ANN models. According to Chang et al. [35], it is better to use
rainfall gauging stations as well as streamflow gauging stations as simultaneous input factors while
constructing the groundwater level variation models at G1 to G4. Therefore, the study adopts the GT
to evaluate the critical rainfall stations from G1 to G4, and streamflow gauging stations S1 and S2 are
used as two other inputs for the ANN models. However, due to uncertainty as to whether or not the
streamflow information is the critical factor of the groundwater level in the proximal-fan areas, this
study adopts the GT to determine the critical rainfall gauging stations and streamflow gauging stations
at G5 to G8. The GT is also used to detect rainfall durations (2–5 days) that have the highest correlations
with the groundwater level variations at all wells. Table 4 shows the results of the GT analysis.

Table 4. The results of the Gamma test at the groundwater monitoring wells.

Groundwater
Monitoring

Well

Input Type:
Streamflow

Input Type: Rainfall
Number of

Datasets
Rainfall
Duration

(days)

Rainfall Gauging
Station Selected

Average
Rainfall

(mm)

Standard
Deviation

(mm)

G1(1) S1; S2 three R2; R4 130 141 236
G1(2) S1; S2 four R3; R13 146 152 169

G2 S1; S2 two R3; R6 60 79 372
G3 S1; S2 three R3 102 98 243

G4(1) S1; S2 two R4; R7; R9 88 134 312
G4(2) S1; S2 two R7; R9; R13 88 135 364

G5 S1 two R4; R12 64 94 251
G6 S1 two R3; R12 62 93 330
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Table 4. Cont.

Groundwater
Monitoring

Well

Input Type:
Streamflow

Input Type: Rainfall
Number of

Datasets
Rainfall
Duration

(days)

Rainfall Gauging
Station Selected

Average
Rainfall

(mm)

Standard
Deviation

(mm)

G7(1) S1 four R17 145 120 139
G7(2) four R6; R7 171 252 154
G8(1) S1 four R17 139 120 142
G8(2) S1 four R17 138 119 150

The node numbers of the hidden layer in BPNN and the rule numbers in ANFIS were determined
by trial and error. The optimal model structure is determined by the lowest RMSE value and
the highest correlation coefficient in the validation phases at each groundwater monitoring station.
The observations were divided into the training, validation and testing phases in the ratio of 5:2.5:2.5
or 6:2:2. Table 5 shows the estimation results of BPNN and ANFIS at each groundwater monitoring
well (G1 to G8), and Table 6 shows the statistics of the observed data.

Table 5. The estimation performance of the BPNN and the ANFIS at the groundwater monitoring wells.

Well ANN Model:
BPNN 1 ANFIS 2

RMSE (m) Correlation Coefficient

Training Validation Testing Training Validation Testing

G1(1) BPNN (4-3-1) 0.091 0.108 0.11 0.844 0.696 0.724
ANFIS (4-2-1) 0.085 0.112 0.133 0.867 0.666 0.578

G1(2) BPNN (4-4-1) 0.115 0.137 0.149 0.481 0.304 0.221
ANFIS (4-2-1) 0.114 0.138 0.149 0.491 0.275 0.22

G2
BPNN (4-4-1) 0.055 0.091 0.112 0.342 0.394 0.274
ANFIS (4-2-1) 0.056 0.092 0.115 0.308 0.312 0.121

G3
BPNN (3-6-1) 0.058 0.083 0.128 0.844 0.846 0.682
ANFIS (3-2-1) 0.063 0.107 0.129 0.806 0.753 0.667

G4(1) BPNN (5-9-1) 0.063 0.089 0.109 0.895 0.806 0.893
ANFIS (5-3-1) 0.058 0.094 0.144 0.912 0.779 0.775

G4(2) BPNN (5-10-1) 0.048 0.067 0.069 0.928 0.88 0.865
ANFIS (5-2-1) 0.045 0.064 0.062 0.938 0.887 0.89

G5
BPNN (3-3-1) 0.077 0.084 0.164 0.522 0.407 0.355
ANFIS (3-2-1) 0.076 0.086 0.168 0.541 0.365 0.289

G6
BPNN (3-3-1) 0.06 0.079 0.126 0.438 0.368 0.167
ANFIS (3-3-1) 0.049 0.065 0.124 0.677 0.705 0.236

G7(1) BPNN (2-3-1) 0.12 0.121 0.138 0.752 0.715 0.734
ANFIS (2-3-1) 0.076 0.126 0.147 0.907 0.703 0.662

G7(2) BPNN (2-2-1) 0.132 0.186 0.186 0.619 0.625 0.582
ANFIS (2-2-1) 0.124 0.192 0.213 0.675 0.599 0.504

G8(1) BPNN (2-3-1) 0.093 0.096 0.146 0.847 0.843 0.841
ANFIS (2-3-1) 0.055 0.121 0.207 0.949 0.692 0.841

G8(2) BPNN (2-3-1) 0.103 0.112 0.118 0.874 0.859 0.832
ANFIS (2-2-1) 0.07 0.122 0.126 0.944 0.841 0.909

1 (number of input-number of nodes in the hidden layer-number of output); 2 (number of input-number of
rules-number of output).
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Table 6. The statistics of the observed data at the groundwater monitoring wells.

Well
Statistics (m)

Mean SD Maximum Minimum

G1(1) 0.15 0.19 1.19 0.01
G1(2) 0.08 0.11 0.76 0.01

G2 0.16 0.65 7.95 0.01
G3 0.15 0.22 1.67 0.01

G4(1) 0.27 0.45 2.78 0.01
G4(2) 0.11 0.16 1.26 0.01

G5 0.07 0.1 0.86 0.01
G6 0.06 0.07 0.8 0

G7(1) 0.06 0.07 0.37 0.01
G7(2) 0.08 0.13 0.76 0.01
G8(1) 0.08 0.09 0.45 0.01
G8(2) 0.08 0.09 0.45 0.01

The results indicate that the ANN models provide an effective simulation and prediction of the
groundwater level variation because the observations and the estimations have high correlations
and small RMSE values. When comparing Tables 5 and 6, the RMSEs are smaller than the standard
deviation at G1 to G4. When comparing the two types of models, the estimations from BPNN are
better than those from the ANFIS model. In particular, BPNN shows more than 23% improvement in
terms of the correlation coefficient at G1(1), G2 and G5. Therefore, when comparing the two areas of
this study, it is easier to predict the groundwater level variation with adequate reliability and accuracy
in mountainous areas than in proximal-fan areas.

5. Conclusions

Water resource deficiency is a global problem, especially under severe climate change. In Taiwan,
groundwater is considered an important alternative water resource due to its low cost and convenient
accessibility. The improper groundwater development may result in disasters coupled with
environmental and economic losses, and strategic development for groundwater conservation is
therefore a critical issue. Precipitation is the main source of groundwater recharge, so this study used
statistical methods to explore the relationship between precipitation (duration and amount) and the
groundwater level variation. The statistical results demonstrate that the connection of precipitation
and groundwater can be described by the hydrogeological features. The geological structure (potential
high-porosity and high-permeability) of the gravel and the thin soil thickness (shallow monitoring
wells) resulted in a high correlation between the groundwater level variation and the short precipitation
duration. The results also show that the groundwater level variation in the high-permeability geological
structures would have minor effects on accumulated rainfall. In the other words, the high-permeability
area can be considered to be an area sensitive to precipitation.

After identifying the relationship between precipitation and the groundwater level variations,
this study built an estimation model of the groundwater level variation by artificial intelligence
techniques. This study demonstrates that limited data can be used to build a robust estimation model
for the groundwater level variation in the potential groundwater recharge area by artificial intelligence
techniques. In other words, a model estimating the groundwater level variations with less parameter
bias can be built since this model needs only the streamflow and the rainfall variables (which are easier
to measure) as input items. This model feature is helpful when applied to complex hydrogeological
systems. Furthermore, from the authors’ viewpoint, the groundwater level variation is an important
issue for water resource management, especially in the potential recharge area. If information can
be accurately provided about the variation in the groundwater level to water resources decision
makers, they can develop more appropriate water resource allocations or water management policies.
Overall, the model shows better performance for high-permeability areas (mountain regions) than
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the low-permeability area (the proximal-fan region). This study also adopted the Gamma test to deal
with the complex correlation between the surface water and the groundwater. The model results
show that neural network models can provide accurate performance with suitable data preprocessing.
In summary, the results indicate that neural network-based estimation models perform well. These
results can also provide valuable information for the prevention and treatment of land subsidence and
can serve as an effective reference for water resource management in the alluvial fan and mountain
areas. The results also demonstrate that the application of artificial neural networks in the study of
groundwater is a promising avenue.
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