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Abstract: Previous research on compound trapezoidal cross sections has mainly focused on improving
the prediction of the discharge (flow rate) because of its inherent challenges. This paper focuses on
two other important aspects: Section shape and optimal construction cost. First, the paper proposes a
new compound section with third-degree polynomial sides of main channel with horizontal bottom
(HB) that allows its top corners to be smooth, called herein compound polynomial section. The
special cases of this versatile section include the simple polynomial section, polygonal section,
trapezoidal-rectangular section, two-segment linear-side section, and parabolic bottom-trapezoidal
section. The simple polynomial section, which is the bank-full part of the compound polynomial
section, can further produce parabolic (with or without HB), trapezoidal, rectangular, and triangular
sections. Second, an optimization model that minimizes construction cost (excavation and lining)
of the compound (or simple) polynomial section is developed. The model includes discharge and
physical constraints. Theoretical and empirical methods of discharge prediction were used in the
model. The results show that the simple polynomial section was more economical than the popular
parabolic section by up to 8.6% when the side slopes were restricted. The new polynomial-based
sections not only reduced construction cost, but also improved maintenance and aesthetics. As such,
the new sections should be of interest to researchers and practitioners in hydraulic engineering.

Keywords: compound; cross section; polynomial sides; smooth corners; construction cost; horizontal
bottom; optimization

1. Introduction

Many types of open channel cross sections have been developed over the years to improve
construction cost and hydraulic efficiency, and to provide the users with flexibility in accommodating
physical constraints. Open channel sections can be classified into three families [1]: Linear family (only
linear segments), curved family (only curved segments), and linear-curved family (combined linear
and curved segments). The development of these sections started with conventional sections, followed
by inspiring sections, and continued with more new recent sections (Table 1). To put the research of
this study in perspective, it is useful to present a brief description of these section families.

The linear family includes trapezoidal, rectangular, triangular, and compound. The characteristics
of the trapezoidal section and its special cases (rectangular and triangular) are well documented
in the literature [2–4]. The optimal design of these sections has been addressed by numerous
researchers, including Swamee [5], Guo and Hughes [6], Das [7], Jain and Bhattacharjya [8], Aksoy and
Altan-Sakarya [9], Han et al. [10], and Froehlich [11]. The curved family includes parabolic, power-law,
catenary, circular, and horseshoe. The most popular in this family is the parabolic section whose
optimal characteristics have been addressed by numerous authors, including Mironenko et al. [12],
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Loganathan [13], Chahar and Ahmed [14], Hussein [15] Strelkoff and Clemmens [16], Anwar and
Clarke [17], and Anwar and de Vries [18]. The horseshoe, egg-shaped, and circular sections have
been used in the sewerage systems, particularly combined systems, for more than a century, see
Carson et al. [19]. However, current systems use mainly circular sections and tend to be separate.
The closed non-circular sections were developed mostly for combined systems, basically due to the
great discrepancy between sanitary and stormwater flow rates. These systems are being replaced
with separate systems using circular sections due mainly to the need of wastewater treatment, see
Diogo et al. [20].

Table 1. Historical developments of the main shapes of open channel sections.

Section
Designation

Section
Family

Section
Type 1 Reference Year

Conventional

Linear Trapezoidal, rectangular Chow [4] 1959
Linear Compound Chow [4] 1959

Curved Circular, Parabolic Chow [4] 1959
Curved Horseshoe Carson et al. [19] 1894
Curved Power-law Strelkoff and Clemmens [16] 2000

Linear-curved P-bottom trapezoidal Babaeyan et al. [21] 2000
Linear-curved C-bottom trapezoidal Chahar and Basu [22] 2009

Inspiring
Initiatives

Linear Polygonal Kurbanov and Khanov [23] 2003
Linear Trapezoidal-rectangular Abdulrahman [24] 2007

Linear-curved HB-PS Das [25] 2007
Linear-curved Trapezoidal-RC Froehlich [26] 2008
Linear-curved TSPS-HB Easa [27] 2009

Recent
Developments

Linear TSLS-HB Vatankhah [28] 2010
Linear MSLS-HB Easa [29] 2011

Linear-curved Standard ES-HB Easa and Vatankhah [30] 2014
Linear-curved General ES-HB Easa [31] 2016

Curved Cubic parabolic sides Han and Easa [32] 2017
Curved Super PL Han and Easa [33] 2018

1 C = circular, ES = elliptic sides, HB = horizontal bottom, MSPS = multi-segment linear sides, P = parabolic, PL =
power-law, PS = parabolic sides, RC = round corners, TSPS = two-segment parabolic sides, TSLS = two-segment
linear sides.

The linear-curved family includes parabolic-bottom trapezoidal, circular-bottom trapezoidal,
round-corner rectangle, and pipe-handle sections, which is normally used in the sewer system. The
round corners at the bottom of the rectangular section help improve maintenance. Limited research
has been conducted for the sections of this family, see Babaeyan-Koopaei et al. [21] and Chahra and
Basu [22].

During the period (2003–2009), a few authors started to modify the conventional shapes of
channel sections. The new sections included polygonal section by Kurbanov and Khanov [23],
trapezoidal-rectangular section by Abdulrahman [24], parabolic sides with horizontal bottom (HB)
by Das [25], trapezoidal section with round corners by Froehlich [26], and two-segment parabolic
sides with HB by Easa [27]. These sections have subsequently inspired the development of more new
sections (2010–2018), such as semi-regular polygon by Vatankhah [28], multiple-segment linear sides
by Easa [29], standard elliptic sides by Easa and Vatankhah [30], general elliptic side by Easa [31], and
cubic and power-law (PL) sections by Han and Easa [32,33]. As noted, the trend of recent advances
in section shape has been to introduce additional linear or curved elements, such as HB and round
bottom corners, to improve discharge (flow rate) and maintenance.

Among the preceding sections, the compound section has presented a challenge to researchers
regarding how to estimate its discharge accurately. Considerable research has been conducted to
improve the prediction accuracy of the discharge, as will be discussed in the next section. However,
to the authors’ knowledge, the optimal characteristics of this section have not been addressed in the
literature. In addition, unlike the trapezoidal section, the shape of the compound section remains linear.
Better geometric (linear-curved) shapes of this section can be easily analyzed, given the advances
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in mathematical optimization and computer technology. This paper presents two main research
contributions to compound sections. First, a new curved shape of the sides of the main channel of
the compound section that have smooth top corners is modeled using a third-degree polynomial.
The new section, called herein the compound polynomial section, is versatile and can produce many
sections as special cases, including the simple polynomial section (bank-full part), polygonal section,
trapezoidal-rectangular section, two-segment linear-side section, and parabolic bottom-trapezoidal
section. In addition, the simple polynomial section can produce the trapezoidal, rectangular, triangular,
and parabolic sections. Second, an optimization model that minimizes the construction cost of the
compound (or simple) polynomial section is presented. Besides improving maintenance and aesthetics,
the simple polynomial section was found to be more economical than the popular parabolic section.
Due to the challenge in accurately estimating the discharge of the compound section (which is required
by the optimization model), various discharge methods were reviewed.

The next section reviews various methods of discharge prediction for compound sections. The
following section presents the geometric and hydraulic characteristics of the proposed compound and
simple polynomial sections, and conditions for special cases. The optimization model of the most
economic compound (or simple) polynomial section and application of the model are then presented,
followed by the conclusions.

2. Review of Discharge Methods

2.1. General

Prediction of the true discharge of the compound section has been a challenge. Numerous
analytical methods have been developed to improve the accuracy of estimating the discharge, including
Posey [34], Shiono and Knight [35], Wark et al. [36], Ackers [37], Wormleaton and Merrett [38], Lambert
and Myers [39], Bousmar and Zech [40], and Ervine et al. [41]. Other methods based on nonlinear
regression analysis and artificial neural networks were developed by MacLeod [42], Liu and James [43],
Zahiri and Dehghani [44], and Unal et al. [45]. To further improve prediction accuracy and reduce the
extensive computations required by some methods, general empirical methods have been recently
developed by Azamathulla and Zahiri [46] and Hosseini [47]. The empirical methods use field and
laboratory experiments to develop revised formulas of the discharge of the compound section to
improve prediction accuracy. The methods of discharge prediction for compound sections are divided
here into two categories: Theoretical methods and empirical methods.

2.2. Theoretical Methods

The theoretical methods rely on developing better formulas for the composite Manning roughness
coefficient of the compound section. Several methods have been proposed by researchers and have
produced substantially different results. In these methods, the coefficient is calculated based on
different assumptions regarding the relationship between the subsections with respect to discharges,
velocities, shear stresses, and forces. One of the widely used theoretical methods (conventional method)
assumes that the total discharge equals the sum of subsection discharges. The compound section is
simply divided into several subsections. Different ways can be used to divide the section. The vertical
division is adopted here as it is the basis for the empirical discharge prediction method used in the
proposed optimization model (Figure 1). Then, based on this divided channel method (DCM), the
discharge is calculated as the sum of subsection discharges, as follows [4].

QDCM =
N∑

i=1

Qi =
N∑

i=1

A5/3
i S1/2

o

niP
2/3
i

 (DCM) (1)

where QDCM = total discharge of the compound section using DCM (m3/s), N = number of subsections
of the compound section, Qi = discharge of Subsection i (m3/s), Ai = flow area of Subsection i (m2),
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So = longitudinal bed slope (m/m), ni = Manning roughness coefficient of Subsection i, and Pi = wetted
perimeter of Subsection i (m).
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The conventional method ignores the shear stress at the interfaces of the subsections and therefore
may overestimate the discharge. In a recent laboratory experiment by Fernandes et al. [48], the
difference between the DCM-computed and measured discharges was up to 7% and 32%, respectively,
for constant roughness and rougher floodplains with relatively small water depths.

Since each subsection generally has different roughness coefficients, frequently with the upper
subsection rougher, the equivalent Manning’s roughness coefficient proposed by Horton [49] is used,

ne =


∑m

j=1

(
P jn1.5

j

)
P


2/3

(2)

where m = number of wetted elements in the subsection (m = 3 in Subsection 1 and m = 2 in Subsection 2
or 3), P j = length of element j of the subsection, n j = roughness coefficient of element j of the subsection,
and P = wetted perimeter of the subsection. It should be noted that Equation (2) assumes that all
subsections have the same average velocity, which may be a coarse approximation. In addition, the
types and sources of the errors and their components do not seem to be fully known.

McAtee [50] evaluated seven theoretical methods for computing the composite roughness of
compound channels, nc, and found that the largest discharge of these methods was 35% greater than the
smallest discharge. However, the author cited two studies, one by Motayed and Krishnamurthy [51]
who used data from 36 gauged streams in four states to test four different methods for calculating nc.
They found that the mean error between the computed and measured nc was the smallest for the Lotter
method. Another study in 2007 by Yang et al. [52] that used a single artificial composite compound
channel at 50 different discharge rates also found that the mean relative error for nc was smallest for
the Lotter method.

The Lotter method assumes that the total discharge equals the sum of the three subsection
discharges. As such, it is identical to the DCM of Equation (1). Based on the preceding studies, the
Lotter method (DCM) is used, along with the empirical methods, in the proposed optimization model
for compound sections. Note that even though these methods may produce very different results, the
preceding studies [51,52] indicate that other theoretical methods are clearly worse than the DCM.

2.3. Empirical Methods

2.3.1. Azamathulla and Zahiri Method (2012)

Azamathulla and Zahiri [46] developed a precise dimensionless model for estimating the flow
discharge of a compound section using linear genetic optimization. The model was calibrated
using published stage–discharge data for 394 laboratories and field data for 30 compound channels.
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The discharge ratio in the compound section (total discharge to bank-full discharge) was developed as
a function of dimensionless variables. The formula of the total discharge can be written as:

QE−AZ = 1.496 Qb

(
QDCM

Qb

)0.8642Dr

(1− coh)−0.1687D0.214
r (3)

where QE−AZ = discharge of the compound section based on the empirical Azamathulla and Zahiri
(E-AZ) method (m3/s), Qb = bank-full discharge (m3/s), coh = coherence variable of the compound
section, and Dr = ratio of water depth in the floodplain to that in the main channel. The coefficient of
determination, r2, of Equation (3) is 0.951.

The coherence variable coh is defined as the ratio of the conveyance of the compound section as a
single unit to that based on the conventional DCM. That is,

coh =

A5/3
c

(
∑N

i=1 n1.5
i Pi)

2/3

∑N
i=1

(
A5/3

i

niP
2/3
i

) (4)

2.3.2. Hosseini Method (2004)

Hosseini [47] used experimental data from a United Kingdom flood channel facility to develop
adjustment coefficients for the DCM subsection discharges. The total adjusted discharge is then
given by:

QE−H = uQ1 + v(Q1 + Q2) (5)

where QE−H = total discharge of the compound section based on the empirical Hosseini (E-H) method
(m3/s), u, v = adjustment coefficients for the DCM discharges of the main channel and floodplain
subsections, respectively, and Q1, Q2, Q3 = DCM discharges of Subsections 1–3, respectively (m3/s).
The adjustment coefficients are given by:

u = 0.782
(

h2

H

)−0.128

coh0.353 (6)

v = 0.903
(

h2

H

)−0.197

coh0.547 (7)

where H = water depth in the main channel (m) and h2 = water depth in the floodplain (m). The values
of r2 of Equations (6) and (7) are 0.999 and 0.998, respectively.

3. Proposed Polynomial Sections

3.1. Compound Polynomial Section

3.1.1. Section Geometry

The compound section consists of the main channel and the floodplain. For the purpose of
calculating the discharge, the compound section can be divided into subsections in different ways
using horizontal, vertical, or inclined dividing lines [50]. However, since the discharge constraint
used in the proposed optimization model is based on a vertical division, this division scheme was
implemented to maintain consistency in the entire model. The compound section is divided into three
subsections using two vertical lines (Figure 2). Subsection 1 is the main channel, subsection 2 is the left
floodplain, and subsection 3 is the right floodplain. Subsection 1 has a HB width b1. Subsection 2 has a
horizontal bank width b2, while that of subsection 3 is b3. Both subsections 2 and 3 have inverse side
slope z2, water depth h2, and freeboard f 2 (vertical distance). For the compound section, the water
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surface width is T2 and the section width at the ground level is T2f . To make the model more general,
different Manning roughness coefficients were assumed for the HB of the main section (n1), main
section sides (n2), floodplain bank (n3), and floodplain sides (n4), as shown in Figure 2.
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3.1.2. Polynomial Side Characteristics

Consider Cartesian coordinate axes with an origin at the right end of the HB, where the
x-axis is along the HB. The sides of the main channel section are represented by the following
third-degree polynomial:

y = bx + cx2 + dx3 (8)

where b, c, d = parameters to be determined by optimization. The first derivative of y with respect to x
of Equation (8), y’, is given by:

y′ = b + 2cx + 3dx2 (9)

Let the inverse side slope at the ground level be zf (horizontal to vertical distances) and Bf be
the horizontal distance from the y-axis to the top point of the main channel side. Then, when x = Bf,
y’ = 1/zf. Solving Equation (9) for Bf gives:

B f =


−2c±

√
4c2−12d

(
b− 1

Z f

)
6d , for d , 0

1
z f
−b

2c , for d = 0

(10)

To ensure that the radical in Equation (10) is positive, the following condition applies:

z f

 ≤ 3d
3bd − c2 , for

(
3bd − c2

)
> 0 and d > 0

≥
3d

3bd − c2 , for
(
3bd − c2

)
< 0 and d < 0

(11)

Other conditions are used to ensure a feasible geometry of the compound section (e.g., zf ≥ 0).
Then, the bank-full water depth h1 is given by:

h1 = bB f + cB2
f + dB3

f (12)

The total width at the bank level, T1f is given by:

T1 f = b1 + 2B f (13)

where b1 = width of the HB of the main channel.
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3.1.3. Subsection Characteristics

For subsection 1, the flow area A1 and the wetted perimeter P1 are easily calculated. That is,

A1 = Amain f + h2T1 f (14)

P1 = b1 + 2Ps f (15)

where Amain f = bank-full flow area of subsection 1 and Psf = length of the total side of subsection 1.
The area Amain f is given by:

Amain f =
(
b1 + 2B f

)
h1 − 2

∫ B f

0
ydx =

(
b1 + 2B f

)
h1 − 2

bB2
f

2
+

cB3
f

3
+

dB4
f

4

 (16)

The length Ps f is given by:

Ps f =

∫ B f

0

√
1 + (dy/dx)2dx (17)

Substituting for the first derivative of y from Equation (9) into Equation (17), then:

Ps f =

∫ B f

0

√
1 + (b + 2 cx + 3 dx2)2dx (18)

The integral of Equation (18) can be approximated using the three-point Gauss-quadrature
method as:

Ps f =
B f
18

5

√
1 +

[
b + 1.7746 cB f + 2.3619 dB2

f

]2

+ 5

√
1 +

[
b + 0.2254cB f + 0.0381dB2

f

]2

+8

√
1 +

[
b + cB f + 0.75 dB2

f

]2


(19)

For subsection 2, the flow area A2 and the wetted perimeter P2 are given by:

A2 = h2

(
b2 +

h2 z2

2

)
(20)

P2 = b2 + h2

√
1 + z2

2 (21)

Similarly, for subsection 3, the flow area A3 and the wetted perimeter P3 are given by:

A3 = h2

(
b3 +

h2 z2

2

)
(22)

P3 = b3 + h2

√
1 + z2

2 (23)

For the compound section, the water surface width T2 and the ground surface width T2f are
given by:

T2 = T1 f + b2 + b3 + 2z2h2 (24)

T2 f = T2 + 2z2 f2 (25)

For construction cost, the total areas of subsections 2 and 3 and their side lengths are given by:

A1 f = A1 + T1 f f2 (26)
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A2 f = A2 + b2 f2 +
f2z2( f2 + 2h2)

2
(27)

A3 f = A3 + b3 f2 +
f2z2( f2 + 2h2)

2
(28)

P2s f = P3s f = (h2 + f2)
√

1 + z2
2 (29)

where A1 f = total area of subsection 1, A2 f = total area of subsection 2, A3 f = total area of subsection 3,
and P2s f , P3s f = lengths of the side of subsections 2 and 3, respectively.

3.2. Simple Polynomial Section

The bank-full part of the main channel (no floodplains) is a special case of the compound section
and can be designed and implemented in its own. The simple polynomial section has HB width b1 and
third-degree polynomial sides (Figure 3). The inverse side slope at the bank level is zf, where the x and
y coordinates are Bf and h1, respectively. The water surface width is T1 and the width at the bank level
is T1f .
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The flow depth of the simple polynomial section h is calculated as (h1 − f 1). Let B be the distance
along the water surface from the y-axis to section side. Since x = B when y = h, substituting these
values in Equation (8) and solving the cubic equation for B gives:

B = 2
√

−K cos
(
θ
3
+ 240

◦

)
−

c
3 d

(30)

where:

θ = cos−1
(

R
√

−K3

)
(31)

K =
3
(

b
d

)
−

(
c
d

)2

9
(32)

R =
9
(

c
d

)(
b
d

)
+ 27h− 2

(
c
d

)3

54
(33)

For the special case of parabolic sides (b = d = 0), B = (h/c)1/2.
The flow area and wetted perimeter of the simple polynomial section are denoted by Amain and

Pmain. The flow area is calculated similarly using Equation (16) after replacing Bf with B. The wetted
perimeter Pmain = b1 + 2Ps, where Ps = length of the wetted side, which is calculated similarly
using Equation (19) after replacing Bf with B. The water surface width is given by T1 = b1 + 2B.
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For construction cost, the total section area equals Amain f of Equation (16) and the total length of the
side is Psf of Equation (19).

3.3. Special Cases

The special cases of the compound and simple polynomial sections are shown in Table 2. As noted,
beside the simple polynomial section, the compound polynomial section can produce several existing
sections, including parabolic bottom-trapezoidal section [21], polygonal section with two sides [23],
rectangular-above-trapezoidal section [24], section with two-segment linear sides, and HB [28]. These
sections are obtained by setting b2 = b3 = 0 and specifying the appropriate conditions for b1, zf, z2, and
the polynomial parameters. It is interesting that other non-conventional shapes can also be generated
from this versatile compound polynomial section.

Table 2. Special cases of compound and simple polynomial sections.

Polynomial Section
Type

Special
Section Condition Reference

Compound

Simple polynomial h2 = f 2 = 0 This paper

Parabolic bottom- trapezoidal
b2 = b3 = 0, b1 = 0,
b = d = 0, zf = z2

Babaeyan et al. [21]

Polygonal with two sides
b2 = b3 = 0, b1 = 0,
c = d = 0, zf > z2

Kurbanov and Khanov [23]

Rectangular above trapezoidal b2 = b3 = 0, c = d = 0,
z2 = 0 Abdulrahman [24]

Two-segment linear sides with HB
b2 = b3 = 0, c = d = 0,
zf > z2

Vatankhah [28]

Simple
(h2 = f 2 = 0)

Trapezoidal c = d = 0 Chow [4]
Rectangular c = d = zf = 0 Chow [4]
Triangular c = d = b1 = 0 Chow [4]
Parabolic sides without HB b = d = b1 = 0 Chow [4]
Parabolic sides with HB b = d = 0 Das [25]

The simple polynomial section generally has smooth corners at the bank level (called POLY-SM).
For a certain condition of the polynomial parameters, the corners become sharp. Sharp corners occur
before the inflection point of the third-degree polynomial. This condition is determined by equating
the second derivative of y with respect to x, y”, to zero. Then, the following condition for sharp top
corners is obtained.

B f ≥ −
c

3d
(34)

The special cases of the simple polynomial section that have sharp top corners are trapezoidal
(c = d = 0), rectangular (c = d = zf = 0), triangular (c = d = b1 = 0), parabolic without HB (b = d = b1 = 0),
and parabolic with HB (b = d = 0).

4. Optimization Model

4.1. Objective Function

The objective function of the optimization model for most economic section minimizes construction
cost (excavation and lining) of the compound (or simple) polynomial section. Let λ be a binary variable
defined as:

λ =

{
1
0

, for compound polynomial section
, for simple polynomial section

(35)

Then, the objective function can be written as:

Minimize C = c1
[
λ
(
A1 f + A2 f + A3 f

)
+ (1− λ)

(
A1 − h2T1 f

)]
+ c2

(
2Ps f

)
+c3

{
λ
[
2( h2 + f2)

√
1 + z2

2

]}
+ c4[λ( b2 + b3) + b1]

(36)
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where C = total construction cost per unit length of the channel, c1 = per-area unit cost of section area,
c2 = cost per unit length of the side for subsection 1, c3 = cost per unit length of the side for subsections
2 and 3, and c4 = cost per unit length of the HB for subsection 1 and the banks for subsections 2 and 3.
The term multiplied by c1 is the section area that includes the freeboard. The terms multiplied by c2

and c3 are the length of the channel side that includes the freeboard for subsection 1, and subsections 2
and 3, respectively. The term multiplied by c4 is the width of horizontal distance. As noted, for λ = 1,
the term multiplied by c1 will be the area of the compound polynomial section and for λ = 0 this term
will be the area of the simple polynomial section, and similarly for other terms.

4.2. Design Discharge Constraint

Three methods for estimating the discharge were used in the optimization model: DCM
(Equation (1)), E-AZ method (Equation (3)), and E-H method (Equation (5)). The discharge constraint
is expressed as:

Q =


QDCM, (DCM)

QE-AZ, (E-AZ Method)
QE-H, (E-H Method)

, (37)

where Q = design discharge (m3/s).

4.3. Physical Constraints

A variety of physical constraints can be used in the model. Those include constraints on the
physical output dimensions and possibly constraints on some decision variables. For example,
constraints on the top section width may be specified as:

T1 f ≤ T1 f max (38)

T2 f ≤ T2 f max (39)

where T1 f max and T2 f max = maximum allowable widths of the compound section at the bank and
ground levels, respectively. Clearly, a combination of physical constraints may be used.

4.4. Decision Variables, Input Data, and Model Solution

The decision variables of the optimization model are the polynomial parameters (b, c, and d),
bottom width of the main channel b1, inverse slope of the main channel side at the bank level zf,
floodplain water depth h2, inverse side slope of the floodplain section z2, and bank horizontal widths
b2 and b3. The solution method requires as input the lower and upper bounds of each decision
variable. The basic input data to the model are the design discharge Q, roughness coefficients (n1 to
n4), construction unit costs (c1 to c4), longitudinal bed slope So, freeboards f 1 and f 2, binary variable λ,
and any constraints on section dimensions.

The optimization model, which is nonlinear, was solved using Solver software that is available in
Microsoft Excel [53]. The software implements the generalized reduced gradient method that uses
multi-start strategy for global optimization. This method requires that lower and upper bounds on
the decision variables be specified. In this strategy, candidate starting points are randomly generated
within the specified bounds of the decision variables. Those points are then grouped into clusters
and the software is run from a representative point in each cluster. As the process continues, clusters
become smaller and capture each locally optimal solution, where a decision is then made to whether to
continue the process. Ultimately, the software converges in probability to a globally optimal solution.
Obviously, the model can be solved using other nonlinear optimization software.
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4.5. Model Verification

Model verification was performed in two ways: Verifying the formulas of the compound section
and verifying the optimization model for the simple polynomial section. For the compound section,
the DEC discharge and roughness coefficient, QDCM and ne, of Equations (1) and (2) of the numerical
example of McAtee [50] were compared with those calculated in this study. The author’s example
involved a compound section with straight line sides for both the main channel and the floodplain
subsections. Therefore, the parameters of the polynomial sides were set as c = d = 0 to obtain a
trapezoidal main channel. The section was divided using vertical lines similarly to Figure 1. The
author’s input data were b1 = 15 ft, zf = 5, b2 = b3 = 25 ft, z2 = 0, h1 = 3 ft, and h2 = 2 ft. The values of
QDCM and ne in this study were 848 ft3/s and 0.031, which are identical to those of McAtee [50].

For the E-H method, the numerical example used by Hosseini [47] was used for comparison. The
author’s data were b1 = 1.1 m, zf = 1.2, b2 = b3 = 4.03 m, z2 = 0, h1 = 1.2 m, H = 2.8 m, and average
h2 = 0.95 m. In this example, the floodplain depth varies linearly from 1.6 m to 0.3 m. After making
appropriate adjustments to maintain compatibility with the section in Figure 3, the values obtained in
this study were u = 0.869, v = 1.061, coh = 0.910, QDCM = 107.04 m3/s, and QE−H = 99.54 m3/s, which are
identical to those of Hosseini [47]. Note that in this example the DCM overestimates the discharge by
7.5%. As for the E-AZ method [46], there was no numerical example to be used for comparison.

For the simple polynomial section, it was reduced to a section with parabolic sides and a horizontal
bottom (PSHB) by setting b = d = 0. Then, the model was verified by comparing the results of this
special case with those of Das [25] who developed the PSHB section. The following input data of
Das [25] were used: Q = 100 m3/s, So = 0.0016, n1 = 0.015, n2 = 0.018, and 0.020 for the two sides,
c1 = 0.6, c2 = 0.1 and 0.2 for the two sides, and c4 = 0.4, where the unit costs are in Indian Rupees (IR).
The case of fixed freeboard f 1 = 0.5 m was used. The comparison results of the simple polynomial
and parabolic sections for C, h, b1, zf, and T1f are presented in Table 3. As noted, the results are almost
identical. The small differences occurred because Das [25] considered different side slopes (z1f and z2f )
for the right and left sides, while in the simple polynomial section, the two side slopes were assumed
equal (zf).

Table 3. Comparison of minimum construction costs of the special case of simple polynomial section
and parabolic sides and a horizontal bottom (PSHB) Section 1.

Variable PSHB Section Simple Polynomial Section (b = d = 0)

C (IR) 22.185 22.185
h (m) 4.700 4.699
b1 (m) 2.415 2.416

zf 1 0.269 0.273
zf 2 0.278 0.273

T1f (m) 8.103 8.101
1 Input data are Q = 100 m3/s, c1 = 0.6, c2 = 0.1 and 0.2 for the two sides, c4 = 0.4, f = 0.5 m, So = 0.0016, n1 = 0.015,
and n2 = 0.018 and 0.020 for the two sides.

5. Application

5.1. Example 1: Compound Polynomial Section

Consider a compound section with the input data shown in Table 4. The three methods of
discharge prediction were used in the optimization model, one at a time, to design the optimal
dimensions of the compound section. The decision variables (and their lower and upper bounds) were
b1 (1, 3), b (−3, 6), c (0, 6), and d (−0.1, −10). The constraint 0.3 ≤ (h2/H) ≤ 0.45 was also used.
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Table 4. Input data for Examples 1 and 2.

Input
Variable

Example 1
(Compound Section) 1

Examples 2 and 3
(Simple Section)

n1 0.013 0.015
n2 0.013 0.020 (left), 0.018 (right)
n3 0.016 n.a. 2

n4 0.016 n.a.
So (m/m) 0.0016 0.0016
Q (Q3/s) 30 20
c1 (IR) 0.6 0.6
c2 (IR) 0.3 0.1 (left), 0.2 (right)
c3 (IR) 0.3 n.a.
c4 (IR) 0.2 0.4
f 1 (m) 0.3 0.5
f 2 (m) 0.3 n.a.

zf 2 or 1 0.6 or 0.8 (for Ex. 2), 1000 (for Ex. 3)
1 Other input data are b2 = b3 = 1 m and z2 = 0.5. 2 n.a. = not applicable.

The optimal parameters corresponding to the three discharge methods are shown in Table 5a.
As noted, the least cost corresponds to the DCM, while the largest cost corresponds to the E-H method.
The discharges corresponding to the optimal design for each method are shown in Table 5b. The DCM
predicts higher discharges, which are calculated as the sum of the three subsection discharges. This
theoretical discharge was expected to be possibly greater than the discharge of the empirical methods,
which are based on actual discharge measurements.

Table 5. Comparison of optimal results of the three discharge methods for the compound section.

Variable DCM
Method

E-AZ
Method

E-H
Method

(a) Optimal Dimensions

C (IR) 9.007 9.813 9.861
b1 (m) 2.03 2.99 2.05
b (m) 0.227 5.51 0.245
c (m) 4.244 0 4.256
d (m) −3.387 −10 −2.832
h2 (m) 0.95 0.80 0.80
h1 (m) 1.16 1.57 1.66

T2f (m) 6.88 6.90 7.09

(b) Discharges Corresponding to Optimal Dimensions

QDCM (m3/s) 30 33.4 34.5
QE-AZ (m3/s) 23.1 (−22.9% 1) 30 (−10.2%) 29.2 (−15.5)
QE−H (m3/s) 25.2 (−16.1%) 29.0 (−13.1%) 30 (−13.1%)

1 Percent difference from the DCM discharge value.

To illustrate, the discharge of the optimal section of the DCM (Table 5b) equals the design discharge
(Q = 30 m3/s) and the discharges corresponding to the E-AZ and E-H methods for that optimal section
were 23.1 m3/s and 25.2 m3/s, respectively. Therefore, the optimal design based on the empirical
methods would require larger dimensions and in turn larger costs than that of the DCM. The percentage
deviations of the discharge of the empirical methods from the DCM are shown in Table 5b. As noted,
there was no specific trend in the discharge prediction of the two empirical methods, where the
discharge estimate of one method was sometimes greater or less than the other’s estimate, depending
on the geometry of the compound section. It is also noted that the percentage deviation ranged from
−10.2% to −22.9%. Typically, a deviation of up to around 10% to 15% may be somehow tolerable due
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to the nature of the equations used. However, the deviation of the E-AZ method corresponding to the
DCM as the design discharge constraint (−22.9%) lied outside the expected range. This large deviation
maybe due to the uncertainness in the measurements, the empirical prediction of the discharges, the
estimation of the roughness coefficient, and the best mode in which the Manning equation should
be applied for compound sections. The optimal section corresponding to the E-AZ method, as an
example, is shown in Figure 4a.
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To illustrate the flexibility of the polynomial compound section, a constraint on the top width was
used as T2f = 6.4 m instead of the unconstrained value of 6.9 m obtained previously with the E-AZ
Method. The variable zf, with lower and upper bounds of 1 and 2, was considered as a decision variable
to allow a feasible solution to be obtained. The optimal compound section is shown in Figure 4b.
As noted, the bottom width b1 was reduced to accommodate the constraint, while both h1 and h2

increased to satisfy the design discharge. The total cost slightly increased from 9.813 to 9.958 because
the unit cost of the polynomial sides is greater than that of the horizontal bottom.

5.2. Example 2: Simple Polynomial Section

To compare the performance of the simple polynomial section with the PSHB section, different
scenarios were used. For most scenarios, the POLY-SM and PSHB sections produced identical results
(equally economical) since the parabolic section is a special case of the simple polynomial section.
The only case where the simple polynomial section was more economical was when the section had
a restricted side slope. This will be illustrated using a restricted inverse side slope zf = 0.6 and 0.8.
The input data for this example are shown in Table 4.

Consider Case 1 of Das [25], where the unit cost of the sides was less than that of the bottom.
The optimal results of the simple polynomial and parabolic sections are presented in Table 6. As noted,
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the simple polynomial section was more economical than the parabolic section and the cost saving
increased as the restricted inverse slope increased. For example, for zf = 0.6 the total costs of the
parabolic and simple polynomial sections were 22.991 and 22.516, respectively, indicating a cost saving
by the POLY-SM section of 2.1%. For zf = 0.8 the total costs of the parabolic and simple polynomial
sections were 24.109 and 22.568, respectively, indicating a cost saving by the POLY-SM section of 6.4%.
In Case 2, the unit costs of the sides were greater than the unit cost of the bottom. The comparison results
are shown in Table 6 for only zf = 0.6. As noted, the total costs of the parabolic and simple polynomial
sections were 26.211 and 23.961, respectively, indicating that the cost saving by the POLY-SM section
was 8.6%. Note also that the constraint on polynomial parameter b was binding at the lower bound
(−1.000) and if this bound was relaxed, the cost saving would be even greater but the top corners of the
sides would be less smooth.

Table 6. Optimal characteristics of simple polynomial section with smooth corners (POLY-SM) and
parabolic section (PSHB) for restricted inverse side slope.

Item

Case 1 1 Case 2 2

(zf = 0.6)zf = 0.6 zf = 0.8

PSHB POLY-SM 3 PSHB POLY-SM 4 PSHB POLY-SM 5

C (IR) 22.991 22.516 24.109 22.568 26.211 23.961
h (m) 4.15 4.57 3.62 4.53 3.21 3.53
b1 (m) 0 3.37 0 3.83 3.35 6.06

zf (left and right) 0.6 0.6 0.8 0.8 0.6 0.6
T1f (m) 11.15 8.65 13.17 8.53 12.26 0.6

Amain f (m2) 34.54 32.37 36.17 32.24 34.51 9.46
Psf (m) 7.57 5.82 8.03 5.65 6.05 32.01

Amain (m2) 29.11 28.18 29.78 28.13 28.53 4.43
Pmain (m) 13.96 13.88 14.77 13.96 14.27 27.41

1 The side unit cost is less than the bottom unit cost: c1 = 0.6, c2 = 0.1 and 0.2, c4 = 0.4. 2 The side unit cost is greater
than the bottom unit cost (c1 = 0.6, c2 = 0.4 (for both sides), c4 = 0.2). 3 Polynomial parameters: b = 0.0315, c = 1.5326,
and d = −0.3091. 4 Polynomial parameters: b = 0.0, c = 2.2040, and d = −0.5501. 5 Polynomial parameters: b = 0.1936,
c = 2.9825, and d = −1.000.

The optimal geometry of the parabolic and simple polynomial sections for Cases 1 and 2 (zf = 0.6)
are shown in Figure 5. Note that due to the larger unit cost of the bottom in Case 1, the parabollic section
had no HB, but had resulted in considerably larger sides to satisfy the restricted slope. For Case 2, the
parabolic section tried to use as long a bottom width as possible to minimize the total cost, but was
unable to produce a larger width because of the side slope restriction. On the other hand, the simple
polynomial section was able to use a larger bottom width and produce the required side slope because
of the flexibility afforded by the extra parameter of the polynomial.

Another important advantage of the simple (or compound) polynomial section was that it could
handle multiple constraints, such as restrictions on inverse side slope and total section width at the
ground level. For example, for Case 1 and zf = 0.8, the optimal PSHB section had T1f = 13.17 m and
horizontal bottom b1 = 0 (Table 6). Therefore, if there was a constraint on the top width such that
T1f < 13.17 m, the parabolic section would have no feasible solution. On the contrary, under the same
conditions, the simple polynomial section already had a feasible solution with T1f = 8.53 m, as shown
in Table 6. The flexibility of the simple polynomial section was due to the extra degree of freedom
(extra parameter) of the third-degree polynomial.
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Figure 5. Comparison of simple polynomial section (POLY-SM) and parabolic section (PSHB) with
restricted inverse side slope (zf = 0.6): (a) Lining cost of sides is less than that of bottom (c1 = 0.6, c2 = 0.1
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5.3. Example 3: Simple Polynomial Section with zf =∞

To illustrate further the flexibility of the simple polynomial section, the data of Example 2 were
used to develop the optimal section that had smooth top corners with a horizontal slope, where zf =∞

(very large value). The input data for this example are presented in Table 4. The decision variables
(and their bounds) were b1 (0, 3), b (0, 1), c (0, 5), and d (0,–2). The optimal section is shown in Figure 6.
The optimal decision variables were b1 = 1.74 m, b = 0.1465, c = 4, and d = −1.7463. Other section
dimensions were h = 2.80 m, T1 = 4.05 m, and T1f = 4.81 m. The optimal cost was C = 8.252 IR.Water 2019, 11, x FOR PEER REVIEW 16 of 23 
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5.4. Sensitivity Analysis

A sensitivity analysis was conducted for the compound polynomial section to examine the
sensitivity of the discharge and cost to small changes in the input variables. The variables were:
(1) Roughness coefficients ni, (2) longitudinal bed slope S0, and (3) unit costs ci, where i = 1 to 4. The
analysis was performed using the data of Example 1 (Table 4) and the optimal dimensions of the
compound section based on the E-AZ method. Each of the three preceding types of variables was
changed one at a time by 10%, 20%, and 30%.
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For the discharge sensitivity, the design discharge QE−AZ = 30 m3/s was used as the base discharge.
Using Equation (3), the calculated discharges corresponding to 10%, 20%, and 30% increase in ni
were −9.1%, −16.7%, and −23.1%, respectively. Those corresponding to S0 were 4.9%, 9.5%, and
14.0%, respectively. Clearly, the discharge is more sensitive to the roughness coefficient than to the
longitudinal bed slope. For the cost sensitivity, a change in the unit costs will result in identical change
in the total cost since C is a linear function of ci (Equation (36)). However, the effect of a change in the
design discharge on the total cost will be different. Table 7 shows the change in the total cost due to
different changes in the design discharge, along with other optimal variables. As noted, a 30% increase
in the design discharge causes only 13.9% increase in the total cost. This moderate sensitivity of the
cost to the design discharge is a useful finding, given the relatively large magnitude of error that is
involved in the discharge prediction methods.

Table 7. Sensitivity of construction cost to changes in the design discharge.

Increase in Q
(%)

Q
(m3/s)

C
(IR)

Increase in C
(%)

Ac
(m2)

Pc
(m)

b1
(m)

10 33 10.388 4.8 10.76 10.34 3.11
20 36 10.847 9.4 11.36 10.62 3.23
30 39 11.292 13.9 11.95 10.89 3.35

6. Concluding Remarks

This paper presented a new open channel compound section with third-degree polynomial sides
for the main channel. The special case of no floodplains was also modeled as a simple polynomial
section. The geometric and hydraulic characteristics of both polynomial-based sections were presented
and an optimization model that minimized the construction cost for either section was presented.
Based on this research, the following conclusions were made:

• The polynomial sides allow the top corners of the main channel sides to be smooth and this
feature provided three advantages compared with conventional sharp corners: (1) The optimal
construction cost of the section was reduced for the cases where there are restrictions on side slope
and/or top section width, (2) smooth corners provide better maintenance than sharp corners and
are less subject to erosion in the compound sections, and (3) smooth top corners of the simple
polynomial sections provide better aesthetics.

• Given the challenge of estimating an accurate discharge of the compound section, care should be
exercised in selecting a discharge constraint to be used in the optimization model. The conventional
method, which assumes that the discharge is the sum of the subsection discharges, predicts higher
discharges, and therefore could lead to inadequate design. In this study, two empirical methods
for estimating section discharge were evaluated: One method is based on both field and laboratory
experiments (E-AZ method) and the other is based on only laboratory experiments (E-H method).
The results showed that there was no specific trend in the discharge prediction of the two empirical
methods, where the discharge estimate of one method was sometimes greater or less than the
other’s estimate, depending on the geometry of the compound section. As such, either method
may be used for estimating the discharge of compound channels.

• The compound polynomial section produced as special cases linear and parabolic sides of the main
channel as well as several existing compound-like sections. In addition, the simple polynomial
section produced as special cases other conventional sections such as trapezoidal and parabolic.
The polynomial sides represent a useful contribution to the compound section that had always
consisted of linear segments. The compound (or simple) polynomial section could be designed
to minimize construction cost by considering different shapes of the sides and various types of
physical constrains.
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• The geometry of the compound polynomial section involved polynomial sides for only the main
channel. The floodplain sides were assumed to be linear for simplicity. The purpose of adopting
polynomial sides for the main channel was to provide a smooth transition between the main
channel sides and the floodplain: (1) To reduce the effect of the erosion of the top corners of the
main channel and (2) to improve aesthetic for the simple polynomial section. If necessary (e.g.,
as a result of side slope constraint), polynomial sides can also be used for the floodplain section.
In this case, the compound section will consist of two simple polynomial sections on top of each
other, which may simplify the analysis.

• This study showed that there was substantial difference between the discharges computed by
the DCM and those predicted by the empirical methods. Further research should be conducted
to develop more accurate empirical methods. Previous methods have focused on developing a
single discharge formula using several dimensionless variables that have wide ranges of values.
Accuracy may improve if the range of one (or more) critical variable is divided into subranges
and a discharge formula is developed for each subrange. In addition, with respect to field
and laboratory measurements, an analysis of experimental error and its propagation should be
conducted as some variables may be not be fully controlled and the estimation of some parameters
or coefficients required in the formulas (like roughness coefficient) may introduce important
uncertainty in the analysis.

• An issue of compound channel hydraulics remains unresolved. In open channel sections (excluding
closed ones), it is expected that the discharge increases when the flow depth increases. However,
in compound channels, when the discharge is calculated in the transition from the lower to the
upper trapezoidal section (considering the compound section as a single unit), it is well known
that as the flow depth increases, the calculated discharge decreases abruptly and drastically.
This occurs due to the great increase in the wetted perimeter, which is associated with a small
increase in the flow area. Clearly, this is not logical and implies an error. The error increases when
the roughness of the upper trapezoidal section is higher than that of the lower section. Future
research to resolve this issue is needed.

• The results show that the simple polynomial section is more economical than the popular parabolic
section for the cases of restricted side slope or top section width. In addition, the simple polynomial
section is certainly more economical than the trapezoidal section, which has been shown in the
literature to be inferior to the parabolic section. Since the polynomial side has an extra parameter,
the new polynomial-based sections can handle multiple constraints, unlike the parabolic section.
Given the important benefits provided by the new sections, they should be of interest to open
channel designers.
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Notation

The following variables are used in this paper:

Ac Flow area of the compound section
Amain f Bank-full flow area of Subsection 1
Amain Flow area of the simple polynomial section
A1 Flow area of Subsection 1
A1 f Total area of Subsection 1
A2 Flow area of Subsection 2
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A2 f Total area of Subsection 2
A3 Flow area of Subsection 3
A3 f Total area of Subsection 3
B Distance along water surface of the simple polynomial section from the y-axis to section side
Bf Distance along bank level of the simple polynomial section from the y-axis to section side
b, c, d Parameters of the third-degree polynomial
b1 Width of HB of the main channel
b2, b3 Bank horizontal widths on the left and right sides of the compound section, respectively
C Total construction cost per unit length of the channel
c1 Per-area unit cost for section area
c2 Cost per unit length of side for Subsection 1
c3 Cost per unit length of side for Subsections 2 and 3
c4 Cost per unit length of HB for Subsection 1 and banks of Subsections 2 and 3
u, v Adjustment coefficients of Hosseini Method to improve the DCM discharges
coh Coherence variable of the compound section
Dr Ratio of water depth in the floodplain to that in the main channel
f 1, f 2 Freeboard of simple and compound polynomial sections, respectively
H Water depth of the main channel
h Water depth of the simple polynomial section
h1 Bank-full water depth
h2 Water depth in the floodplain subsections
K Constant for a given polynomial
m Number of wetted elements in the subsection
nc Composite Manning roughness coefficient
ne Equivalent Manning roughness coefficient based on Horton
ni Manning roughness coefficient of Subsection i
nj Roughness coefficient of element j of the subsection
n1 Manning roughness coefficient of HB
n2 Manning roughness coefficient of the main channel sides
n3 Manning roughness coefficient of bank
n4 Manning roughness coefficient of floodplain sides
N Number of subsections of the compound section
Pi Wetted perimeter of a Subsection i
Pj Wetted length of element j of the subsection
Pc Wetted perimeter of the compound section
Pmain Wetted perimeter of the simple polynomial section
Ps Length of the wetted side of the simple polynomial section
Psf Length of the wetted side of Subsection 1
Pmain Wetted perimeter of the simple polynomial section
P1 Wetted perimeter of Subsection 1
P2 Wetted perimeter of Subsection 2
P3 Wetted perimeter of Subsection 3
P2s f , P3s f Lengths of the side of Subsections 2 and 3, respectively
Q Design discharge
QDCM Total discharge of the compound section based on divided channel method
Qb Bank-full discharge
Qi Discharge of subsection i
Qt Total discharge of the compound section based on the A-Z method
Q1, Q2, Q3 Discharges of Subsections 1–3, respectively, using the DCM
Qm, Qf Adjusted discharges of Subsection 1 and (2 and 3), respectively, using the DCM
R Constant for a given polynomial
r2 Coefficient of determination
S Channel longitudinal bed slope
T1 Width of the simple polynomial section at water surface
T2 Width of the compound polynomial section at water surface
T1 f Width of the main channel at the bank level
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T2 f Width of the compound polynomial section at ground surface
T2 f min Minimum allowable widths of the compound section at the bank level
T2 f max Maximum allowable widths of the compound section at the bank level
x, y Cartesian coordinate axes
y’ First derivative of y with respect to x
y” Second derivative of y with respect to x
zf Inverse side slope of the main channel at the ground level (horizontal to vertical)
z2 Inverse side slope of the floodplain side slopes
λ Binary variable (1 or 0 for compound or simple polynomial section)
θ Constant for a given polynomial
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