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Abstract: The potential costs and benefits of a combination of asset management actions on the water
distribution network are predicted. Two types of actions are considered: maintenance actions and
renewal actions. Leak detection and reparation of failures on connections and pipes define the set of
potential maintenance actions to be carried out. Renewal actions concern connections, pipes, and
meters. All these actions represent the model’s decision variables in order to determine a trade-off

between two objectives: (i) the maximization of the water efficiency rate and (ii) the minimization of
the total cost of actions to be carried out on the water system. The assessment of objective functions is
ensured by an artificial neural network (ANN) trained on a French mandatory database «SISPEA».
A non-dominated sorting genetic algorithm (NSGA-II) is coupled to the ANN to reach the set of
compromised solutions representing potential actions to achieve. Applied to a real water distribution
system in the southeast of France, the proposed decision model indicates that the improvement of
water efficiency rate (WER) in the short term requires increasing operation expenditures (OPEX),
which represent 99% of the total cost. Results show the existence of a threshold effect that implies to
use the budget in a certain way to improve performance. A potential solution can be chosen by the
decision maker among the generated Pareto front with regard to the constraint on the budget and the
targeted WER.

Keywords: actions; asset management; ANN; prediction; performance; water utility; water system;
NSGA-II

1. Introduction

Water utility performance monitoring is widely addressed in the literature. IWA initiative carried
out by Ref. [1] to build key performance indicators (KPIs) led to the emergence of national mandatory
databases in several countries in order to improve the management of water utility and ensure
transparency against stakeholders and users. However, KPIs are generally measured on an ex-post
basis in order to assess the ability of conducted policy to achieve planned goals; otherwise, corrective
actions can be planned in the case of a mismatch. This way of management could be expensive in
terms of time and money.

One possible improvement to avoid this mismatch is the use of a decision-aiding model to predict
KPIs based on potential decisions and a set of explanatory data. A possible shortfall concerns the
absence of data collection at the scale of the water utility, which renders it difficult to train and fit
a prediction model. The existence of an information system (IS) seems to be a prerequisite for the
assessment and the prediction of KPIs. This shortfall tends to be solved. In fact, in the last 2 decades,
we observe the development of sensors technologies and information and communications technology
(ICT) that encourage water utility to install smart devices in order to monitor water systems in real
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time and collect information about their operation. The relevance of adopting smart water systems
and the potential benefits in terms of leak management, water quality monitoring, and energy savings
are discussed in Ref. [2]. Smart systems generate an important quantity of data which are not always
exploited in the decision-making process. Data gathering improves the water utility information
system (IS) and constitutes a prerequisite for prospective analysis. The current research addresses
the assessment of KPIs in an ex-ante way based on the exploitation of data due to the emergence of
mandatory databases and the deployment of smart devices in the water systems. The current paper
aims at answering the following question: How can the existing data collections or IS be exploited for
prospecting asset management actions and assessing their costs and benefits in an ex-ante way?

For any planning of asset management actions, the assessment of expected costs and benefits is
recommended because it allows decisions mitigation. The importance of cost–benefit quantification in
the determination of optimal maintenance time is underlined in Ref. [3]. Models for asset management
of water pipes seem to be driven by the estimation of the optimal date of renewal based on the
deterioration of the asset, the assessment of whole life costing [4], the achievement of a critical threshold
for the number of breaks [5] or the rendered service (pressure, flow, quality) under economic or
technical constraints [6,7]. Pipes renewal planning considering multiple objectives can be achieved by
genetic algorithms [8]. The problem of water pipe renewal planning based on a cost–benefit approach
is addressed in Ref. [9]. Authors define five items of benefit. Items calculate the benefit of reduction
of the repair cost, the benefit from avoiding potential damages of water suspension for domestics
and non-domestics, and the benefit from avoiding the social cost in case of roads unavailability. The
optimal time for pipe renewal is reached when expected benefits are greater than costs.

The use of genetic programming for pipe breaks prediction is discussed in Ref. [10]. Authors
develop an economic-based model for pipes replacement. They assume that there exist two categories
of models for pipe breaks prediction: The physically-based models that aim at identifying physical
causes of breaks and statistical models that analyze historical data to identify explanatory variables.

The use of machine learning seems relevant to tackle prediction problems. Between 2006 and 2016,
the use of Artificial Neural Networks (ANNs) has increased in the drinking water sector, particularly
for modeling the infrastructure and water quality [11]. ANNs address water quality problems by
modeling chlorine concentration [12]. To improve leakage management, hydraulic and water quality
data collected from sensors are used to fit ANNs for detecting and locating leakage in Yorkshire Water’s
Keighley distribution system [13]. A principal component analysis (PCA) and ANN was carried out to
predict the leakage ratio in the drinking water system using six effective parameters: pipe deterioration
ratio, the volume of water supplied, pipe length, mean pipe diameter, the number of leaks, and an
energy ratio [14]. Authors show the advantage of coupling ANN with PCA. To estimate the magnitude
and the location of leaks, ANNs were trained on different sets of input data (pressure and flow rate)
collected from sensors installed in the piping network [15].

It appears from the literature review that despite the output variable to predict, the training of
ANNs in the drinking water sector is done at the local scale by using a series of monitoring data
collected by sensors disseminated in the network. What can be done in case of the absence of monitoring
data? A partial answer is given by Ref. [16], who investigated the training of ANNs not on monitoring
data but on aggregated data or KPIs, representing high-level data gathered in mandatory databases.
Authors establish cause–effect relationships between KPIs. They compare the use of ANN or multiple
regression analysis (MRA) for calibrating a decision model that is able to predict the water efficiency
ratio from a set of nine mandatory indicators considered as input variables.

In the context of absence or paucity of low-level monitoring data, the current work improves
the model developed in Ref. [16] by prospecting asset management actions based on high-level data
represented by ex-post KPIs measured at the scale of the water utility.
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We assume that the proposed model can be adapted in the context of smart water systems where
monitoring data are available at a low-level scale. The main added value of the proposed model is its
ability to prospect asset management actions by measuring KPIs in an ex-ante way using an adaptation
of ANNs and a multi-objective genetic algorithm. The prediction model can be fitted with a multiset of
data from several water utilities or a national database of mandatory KPIs as SISPEA (French context)
and the IS of the water utility. This can be very helpful in case of absence of enough monitoring data at
the scale of the water utility.

The paper is organized into five sections. The current section proposes a literature review of
asset management of water pipes and the use of ANN for KPI’s prediction and genetic algorithm for
problem optimization. Section 2 defines the objective functions and the mathematical formulation
of the considered problem. The characteristics of the ANN and NSGA II are also detailed. Section 3
illustrates the use of the developed model on a real case study and shows how it is carried out. Section 4
discusses the results and the main added value of the model. Finally, the last section concludes
the paper.

2. Materials and Methods

This paper focuses on the prediction of two KPIs considered as objective functions: (1) the water
efficiency rate considered as a benefit and (2) the total cost obtained by the sum up of OPEX and capital
expenditures (CAPEX). Considered costs are the result of the implementation of asset management
actions: renewal of pipes, connections and meters on one hand; and leak detection, connections and
pipes reparation on the other hand. The prediction of KPIs is ensured by an adaptation of ANNs
coupled with a multi-objective genetic algorithm NSGA II [17].

2.1. The Water Efficiency Rate (WER)

In the French context, the WER is a mandatory KPI calculated for each water utility according
to the decree of May 2007 [18]. It measures the ratio between the billed and distributed water. The
prediction model uses the theoretical model developed in Ref. [16] to establish relationships between
WER (output) and nine other mandatory KPIs (Input) considered as explanatory variables. Table 1 lists
the explanatory variables with their corresponding code (taken from SISPEA) and their link with asset
management actions.

Table 1. Explanatory variables for efficiency rate.

Asset Management Actions SISPEA Code Explanatory Variables—Indicators

Metering and metering error

VP.056 Number of users
VP.228 Linear density of users
VP.063 Billed metered domestic consumption
VP.221 Volume of unmetered consumption
VP.232 Billed metered consumption
VP.234 Volume produced + Volume imported

Leakage and water losses VP.225 Average network efficiency rate over last 3 years
P106.3 Linear leakage index on distribution mains (LLI)

Pipes renewal P107.2 Average renewal rate of water mains over the last 5 years

The assessment of WER requires the analysis of the yearly hydraulic balance of the whole network.
Table 2 lists the required variables.
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Table 2. List of variables required for hydraulic balance.

Symbol Definition of the Variable Unit

Wb Annual volume of water-billed metered consumption m3

Wm Annual volume of water loss due to metering error m3

Wp Annual volume of water loss due to leaks on main pipes m3

Wc Annual volume of water loss due to leaks on connections m3

Wi Annual volume of water loss due to invisible leaks m3

εm Metering error in percentage %

Agem Average age of meters #

MTTRvl Mean time to repair visible leak s

MTTRinv Mean time to repair hidden leak s

dp Average flow rate for a leak on pipe L/s

dc Average flow rate for a leak on connection L/s

d Average flow rate for a hidden leak L/s

ninv Number of invisible breaks/leaks #

np Number of breaks/leaks on pipes per year #

nlc Number of breaks/leaks on connections per year #

nc Number of connections #

rb Pipe breakage rate #/km

rcb Connection breakage rate #/km

rd leak detection efficiency rate %

α Invisible leakage rate on main pipes/connections %

Lnet Network length km

To be able to calculate WER, the listed explanatory variables in Table 1 should be calculated or
estimated. WER can be indirectly estimated from the linear leakage, which encompasses four types of
losses: losses due to metering errors Wm, losses due to leaks on main pipes Wp, losses due to leaks on
connections Wc, and losses due to invisible leaks Wi. We assume that losses due to metering errors
Wm(t) can be calculated by Equation (1):

Wm(t) = Wb(t)(t) × εm (t) (1)

with:

εm (t) = εm (t− 1) ×
Agem(t)

Agem(t− 1)
(2)

By considering the meter renewal rate, εm (t) is calculated by Equation (3):

εm (t) = εm (t− 1) × (1− rm) (3)

where rm is the rate of annual meter renewal in percentage per year as listed in Table 3.
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Table 3. List of required variables for cost calculations.

Symbols Definition of the Variable

Crep Cost of a leak reparation in € per unit

Cdet Cost of leak detection in € per km

Cmeter Cost of a meter in € per unit

Ccon Cost of a connection renewal in € per unit

Cp Cost of pipe renewal in € per km

nlc Number of leaks on connections per year

np Number of leaks on pipes per year

nd Number of leaks detected by leak detection

nm Number of installed meters

lnet Length of the network

ldet Length of the network investigated by leak detection

rc Rate of annual connections renewal in percentage per year

rp Rate of annual pipe renewal in percentage of the length renewed per year

rm Rate of annual meter renewal in percentage per year

Losses due to leaks on pipes are computed by taking into account the estimated number of leaks
on pipes from which the effect of the pipe renewal is subtracted:

Wp(t) = MTTRvl(t) × dp(t) ×
[
np(t) − rp(t) × Lnet(t) × rb(t)

]
(4)

Analogously, losses due to leaks on connections at a given year Wc(t) are computed by taking
into account the estimated number of leaks on connection minus the effect of connections renewal:

Wc(t) = MTTRvl(t) × dc(t) × [nlc(t) − rc(t) × nct (t) × rcb(t)] (5)

The model also involves water losses Wi(t) caused by invisible leaks. Equation (6) indicates how
they are calculated:

Wi(t) = MTTRinv(t) × d(t) ×
[
ninv(t) ×

(
1− α× rp(t) − (1− α) × rc(t)

)
− rd(t) × Lnet(t)] (6)

Asset management actions in terms of renewal (pipe, connections) and leak detection have an
impact on leaks. Actions decrease the number of invisible leaks and the mean time to repair; this
assumption is introduced by Equation (6). The total water loss for year t, Wl(t), is obtained by the sum
up of all types of water losses as shown in Equation (7):

Wl(t) = Wm(t) + Wp(t) + Wc(t) + Wi(t) (7)

Based on previous equations, it is possible to compute the linear leakage index according to
Equation (7).

LLI(t) =
Wl(t)

Lnet(t)
(8)

The average renewal rate of water mains over the 5 last years rp(t) (code: P107.2) measures the
mean value of the annual renewal rate of water pipes (without connections) over the last 5 years. This
includes renewed, reinforced and rehabilitated pipes but does not take into account maintenance
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actions as pipes reparation. The average renewal rate of water mains over the last 5 years is calculated
by Equation (9):

rp(t) =
3∑

i=0

rp(t− i− 1) + rp(t)
5

(9)

with rp(t − i − 1) for i ∈ [0, 3] being the annual renewal rate of pipes from the previous 4 years (known);
and rp(t) is the annual renewal rate envisaged.

The remaining explanatory variables: number of users (VP.056), linear density of users (VP.228),
billed metered domestic consumption (VP.063), volume of unmetered consumption (VP.221), billed
metered consumption (VP.232), volume produced + volume imported (VP.234) are estimated based on
water utility manager opinion, historical data and Monte Carlo analysis using a uniform distribution
function as explained in Ref. [16].

In the context of a lack of low level data, we advise to use Equation (7) to estimate the mean and
standard deviation of the following parameters: leakage flow rate, the number of hidden leaks and
repair time for both pipes and connections over an observation period of at least 5 years. Obtained values
represent a set of feasible solutions that satisfy the yearly hydraulic balance on the observation period.

The number of visible breaks and leaks on pipes and connections are supposed to be available as
local data from the water utility. To involve the uncertainty of estimation, a Monte Carlo analysis is
implemented using Equation (7), where a set of parameters and variables of the equation are randomly
generated as shown in Figure 1. In the absence of data concerning the characteristics of leaks, normal
distribution functions are used to randomly generate the flow rate, the number of leaks and time
to repair. The achievement of this analysis provides a potential range of values for parameters of
Equation (7) that make the estimation of water losses possible for prediction purposes. Figure 1
illustrates the required steps to estimate annual water losses.
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Figure 1. Steps for annual water losses estimation, adapted from Ref. [16].

2.2. The Total Annual Cost

The total annual cost (CTot) of decisions or a policy defined by asset management actions is
calculated by Equation (10). Required variables for cost calculations are resumed in Table 3.

CTot = CAPEX + OPEX (10)
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OPEX are derived from curative maintenance actions of repairing pipes and connections, on the
one hand, and preventive maintenance actions of leak detection, on the other hand; Equation (11)
summarizes the annual maintenance costs as follows:

OPEX = Cpipe_reparation + Cconnection_reparation + Cleak_detection (11)

Each component of the maintenance cost is displayed in Equation (12) as follows:

OPEX = Crep × (np + nd) + Crep × nlc + Cdet × ldet (12)

CAPEX measure the cost of asset management actions in terms of pipes, connections and meters
renewal as indicated in Equation (13):

CAPEX = Cpipe_renewal + Cconnection_renewal + Cmeter_renewal (13)

Equation (13) becomes as follows when each component of investment cost is displayed:

CAPEX = Cp × rp × lnet + Ccon × rc × nlc + Cmeter × rm × nm (14)

2.3. The Artificial Neural Network (ANN)

A neural network is composed of multiple perceptron and is called a deep neural network when
the number of hidden layers is greater than or equal to 2 [19]. We use a multiple layers neural
network in order to predict the WER based on nine KPIs considered as input [16]. Figure 2 illustrates a
perceptron representing a layer in an ANN.
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The value assigned to neuron i in Figure 2 can be calculated by Equation (15) as follows:

neuronk
i = relu

(
wi,1 × neuronk−1

1 + wi,2 × neuronk−1
2 + wi,3 × neuronk−1

3 + bk−1
i

)
(15)

The rectified linear unit function relu is given by Equation (16):

relu(x) =
{
0 f or x < 0 ; x f or x ≥ 0

}
(16)
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The vector neuronk that groups all the values assigned to the neurons in layer k is calculated
as follows:

neuronk = relu


w0,0 . . . w0,n

· · ·
. . .

...
wi,0 . . . wi,n




neuronk−1
0

...
neuronk−1

n

+


bk−1
0
...

bk−1
n

 (17)

Equation (17) becomes:

neuronk = relu
(
Mk−1

w × neuronk−1 + bk−1
)

(18)

where:

• Mw is the matrix of weights;
• neuron is the vector of neuron values;
• k is the index of the layer;
• i is the number of neurons in the kth layer;
• n is the number of neurons in the (k− 1)th layer;
• b is the bias vector.

The output value of the ANN can be computed by Equation (18). In our case, it is a single neuron
which produced the water efficiency rate WER. The value of this neuron depends on the values of the
previous neuron layers and the associated weights and biases.

Values of the previous layers also depend on weights and biases as well as input variables. The
input variables are known, the objective is to determine the optimal values of weights and biases to
give a good prediction.

To do this, during the learning phase, the prediction is compared to the real value. Weights and
bias are adjusted until a satisfactory error is obtained. Error is commonly calculated with a Loss
function noted L. For regression problems, the function L corresponds to the mean square error which
computes the square difference between the observed and predicted value:

L(yi, ŷi) =
1
n

n∑
i=1

(yi − ŷi)
2 (19)

where n is the number of input values, yi is the value of input i, and ŷi is the corresponding
predicted value.

To minimize the loss function L, we use an optimization function Adagrad which modifies weights
and bias in order to minimize the error. Adagrad was introduced by Ref. [20] and it is called so
for adaptive gradient algorithm. During the learning process, the weights are updated considering
Equation (20):

∆wi(t) = −
η√

Gi(t) + ε
×
∂L
∂wi

(t) (20)

with:  Gi(t) = Gi(t− 1) +
(
∂L
∂wi

(t)
)2

Gi(0) = 0
(21)

The term η
√

Gi(t)+ε
is the effective learning rate, with η being the initial learning rate. The term

∂L
∂wi

(t) is the gradient (partial derivative of loss function with respect to weights). By this definition, Gi
is a monotone increasing function. So, the effective learning rate is monotonously decreasing. Note
that Gi and the effective learning rate are different for each weight.

Figure 3 illustrates the ANN built for our prediction model. It is designed for the nine input
explanatory variables representing KPIs (with French mandatory codes), two hidden layers with the
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same number of neurons as the input layer. The output layer considered as the output of the model is
only composed of the neuron corresponding to the water efficiency rate, WER (code: P104.3).
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Since the number of input samples is more than 10,000, the model is trained with a batch size of
200. The batch size corresponds to the number of samples that will be propagated through the neural
network. After propagation, weights and biases are updated in order to decrease the error. Once all
training samples are passed once through the network, this counts as 1 epoch. The network training is
done by performing multiple epochs.

2.4. NSGA II and the Problem Formulation

The problem to solve concerns the optimization of asset management actions in an ex-ante way in
order to maximize the WER and minimize the annual total costs. The decision variables measure the
level of actions in terms of pipes, connections, and meters maintenance and renewal. We consider that
the following variables ldet, rc, rp, and rm are the most relevant for the decision maker in terms of asset
management. The problem can be formulated as the following:

Maximize f 1(ldet,rc,rp,rm) = WER(t) (22)

Maximize f2
(
ldet, rc, rp, rm

)
=

1
CTot(t)

(23)

constrained by:
ldet_min ≤ ldet ≤ ldet_max (24)

rp_min ≤ rp ≤ rp_max (25)

rc_min ≤ rc ≤ rc_max (26)

rm_min ≤ rm ≤ rm_max (27)
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The value of upper and lower limits of decision variables are defined according to the water utility
manager expectations. By considering the two fitness functions f 1 and f 2, NSGA II will attempt to find
the best 4-tuple (ldet, rc, rp, and rm) from a population of potential solutions. The population size is set
in advance and the values of the 4-tuple elements are generated randomly between the upper and
lower boundaries to initialize the population as shown in Figure 4.
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2.4.1. The Concept of Non-Dominance

The NSGA II implements the concept of dominance to reach potential solutions. The concept
of dominance is well defined in Ref. [21]. Two definitions can be considered. The first one considers
two solutions, that solution X1 dominates solution X2 if both conditions are true: (i) solution X1 is
not worse than X2 for all the objectives, and (ii) solution X1 is strictly better than X2 for at least one
objective. Conditions are resumed in Equations (28) and (29).

∀ i ∈ {1,2}: fi (X1) ≥ fi (X2) (28)

∃ j ∈ {1,2}: fj (X1) > fj (X2) (29)

The second definition considers as non-dominated solutions those that are not dominated by any
member of the considered population.

2.4.2. The Crowding Distance

To sort solutions, NSGA II uses a crowding distance [17,22,23]. It is used to estimate the density
of solutions surrounding an individual in the population by considering the difference of the objective
values of the nearest neighbor as shown in Figure 5. It is an estimate of the size of the largest cuboid
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enclosing point k, without including any other point in the population. In the following sections, the
term individual designates a potential solution.
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Let’s consider F the size of the front, for individuals, the crowding distance is calculated by the
difference between the objective values of the two nearest neighbors:

di =
∑M

m=1

f m
i+1 − f m

i−1

f m
max − f m

min
(30)

The edge, the first individual and the last individual in the rank, are assigned with a large distance
to ensure that boundary points will always be selected as shown by Equation (31).

d0 = dF−1 = ∞ (31)

where M is the number of objectives, f m
i is ith fitness values in the mth objective, and f m

max and f m
min are

the maximum and minimum objective values of the mth objective (in the non-dominated set).
This formulation maintains diversity in the population by eliminating redundant individuals but

suffers from a loss of both vertical and horizontal diversity as explained by Ref. [22]. To improve the
diversity in the final front, an improvement of the crowding distance has been proposed by Ref. [23] by
defining a dynamic crowding distance:

Ddi =
di

log
(

1
Vi

) (32)

with:

Vi =
M∑

m=1

(∣∣∣ f m
i+1 − f m

i−1

∣∣∣− di
)2

(33)

The dynamic crowding distance is computed for each individual in the non-dominated set. The
individual which has the lowest dynamic crowding distance is removed. The dynamic crowding
distance is updated after each removal. These operations are repeated until the size of the non-dominated
set is equal to the population size.
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2.4.3. The Selection Method

Once individuals have been assessed and sorted, k Elements of the population are taken as
candidates for the mating pool, where k designates the tournament size [17]. Random selection is
a particular case of tournament selection when k = 1. For k > 1, the selection method is called
tournament selection. The k individuals are compared to each other based on their rank and crowding
distance. The best individual is added to the mating pool. The operation is repeated a second time
to obtain two individuals in the mating pool as shown in Figure 6. Selected solutions are subject to
crossover and mutations to create offspring. Tournament selection is repeated until the number of
created offsprings is sufficient.
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There exists other selection operators where individuals are chosen based on their proportional
fitness value, as the roulette wheel selection (RWS). The individual is selected according to a probability
of selection calculated by the ratio between its fitness value and the sum up of fitness values of
individuals in the mating pool [24].

2.4.4. The Crossover

Realizing a crossover is a way of using the information of two parents in the population to obtain
one child [25]. There are different possible recombinations and several authors have compared them
to each other in different problems [26,27]. There is no consensus in the literature concerning the
effectiveness of single point crossover or multi-point crossover. This depends on the particularities of
the problem. The danger of algorithms comparison on a small sample according to their performance
is underlined in Ref. [28]. The authors advise to integrate problem-specific knowledge into the
functioning of the algorithm; this integration can also concern crossover operators. In our case, there
are two objective functions and the only constraints in this problem are upper and lower bounds of
the 4-tuple variable. Hence, we choose to use the flat crossover which is a widely used crossover
method [29]. Considering two parents in the current population:

Parent1 =
(
ldet1, rp1, rc1, rm1

)
(34)

Parent2 =
(
ldet2, rp2, rc2, rm2

)
(35)

and a random vector:
r = (r1, r2, r3, r4) (36)
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with random values ri ∈ [0, 1]. The ith child
(
ldet

i, rp
i, rc

i, rm
i
)

is a linear combination of the two parents:

ldet
i = r1 × ldet1 + (1− r1) × ldet2 (37)

rp
i = r3 × rp1 + (1− r3) × rp2 (38)

rc
i = r2 × rc1 + (1− r2) × rc2 (39)

rm
i = r4 × rm1 + (1− r4) × rm2 (40)

Table 4 shows an example of the offspring that two parents can give by applying this crossover.

Table 4. Crossover and offspring generation.

Individual ldet rp rc rm

Parent1 74.18 0.0042 0.0083 0.028

Parent2 82.07 0.0031 0.0068 0.035

Random vector, r 0.61 0.77 0.75 0.55

Offspring1 77.27 0.0040 0.0079 0.031

Offspring2 78.98 0.0033 0.0072 0.032

2.4.5. The Mutation

The mutation is an operator that modifies an individual to explore the entire search space [25]
and to escape from local optima thanks to small changes in the values of the 4-tuple variables. It is
used to maintain diversity in the population of potential solutions. We use the polynomial mutation
introduced by Ref. [30]. For each variable, there is a mutation probability. The mutation probability is
set at 1/4 since each solution is represented by a 4-tuple. There is one mutation per offspring on average.

2.4.6. The Selection of Offspring

Once the crossovers and mutations have been achieved, we end up with a population of P
individuals and a population of P offspring. The total size of the selection is 2P and this must be
reduced to P individuals. This selection is made by keeping the best individuals as requested by NSGA
II [17]. In this way, the next generation will be better than the previous generation or equivalent if no
individual from the descendants is better than the current population. This is called elitism selection.
To select the best individual, we defined an operator ≥n basis on individual domination rank rankp and
dynamic crowding distance Ddp. The partial order ≥n is defined as:

p ≥n q if
(
rankp < rankq

)
or ((rankp = rankq) and Ddp > Ddq) (41)

The individual with the lower rank, according to the non-dominated sorting algorithm, is preferred.
If two individuals have the same rank, the one which is located in the lower density of solutions
is preferred.

The selection of 2P individual is first sorted in the ascending order with respect to their rank
obtained by the non-dominated sorting algorithm. Then, individuals are sorted with respect to the
dynamic crowding distance in descending order. The next generation is thus generated until there are
P individuals in the new population.

2.4.7. Performance Metrics

The effectiveness of the model depends on its ability to ensure diversity, a good distribution
and spread of solutions. To evaluate the distribution, we use the Spacing index (SP) introduced by
Ref. [31]. To be able to assess the spread in a population of P individuals (potential solutions), we need
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to calculate di which is the minimum of the sum of the absolute difference in objective fitness values
between the ith solution and any other solution as shown in Equation (42), and d, the mean value of di
calculated by Equation (43):

di = min
i, i,k

 M∑
m=1

∣∣∣ f m
i − f m

k

∣∣∣ (42)

d =

|P|∑
i=1

di
|P|

(43)

Therefore, SP is obtained by Equation (44):

SP =

√√√
1

|P| − 1

|P|∑
i=1

(di − d)
2

(44)

SP is used to evaluate the spacing between the different solutions. If the distance between each
solution is the same, then the SP value will be zero. Thus, a value of zero or near zero indicates a good
distribution of solutions on the Pareto front. The spread index was proposed by Ref. [17]:

∆ =
d f + dl +

∑|P|
i=1(di − d)

d f + dl + (|P| − 1) × d
(45)

d f and dl are the Euclidean distances between the extreme solutions and the obtained Pareto
solutions. A ∆ value close to 0 means that the solutions are well dispersed along the Pareto front.

3. Case Study

The model is implemented on a real water distribution network in the south of France. According
to the data of the year 2016, the water system delivers 700,000 m3 of drinking water for about 6300 users
with a network length of 82 km. We consider the actual asset management actions implemented by the
water utility as a baseline solution. It can be resumed by a leak detection of the entire network once
(ldet = 82 km) that allows detecting 14 leaks on average. Annual renewal rates are: rp = 0.71%, rc = 2.5%
and rm = 10%. Thanks to these actions, WER = 76.90% with a total cost equals to 551,493 €, shared
between 70% in CAPEX and 30% in OPEX. We aim at improving WER by conducting alternative asset
management actions at lower costs than commonly used strategies. Before searching compromise
solutions, ANN is fitted thanks to the SISPEA database. SISPEA is a mandatory French database that
gathers 26 KPIs from more than 12,000 water utilities between 2006 and 2016. Data were split into two
samples, 70% of the data is split to fit the Ann model, and the remaining 30% is used for validation.

3.1. Artificial Neural Network Fitting

The calibration of the ANN requires the definition of a set of parameters that improve its accuracy.
As discussed in Ref. [16], many simulations are carried out in order to determine the most appropriate
values for the number of hidden layers, the number of neurons per layer, and the type of activation
number. The selected ANN is built by three hidden layers with 144, 36, and 9 neurons at each layer,
respectively. The chosen activation function is the function relu for all neurons. The estimation of
required variables for water losses estimation for the year (N + 1) at the local scale (see Equation (7))
is generated based on expert opinion and Monte Carlo analysis. Table 5 compares the observed and
predicted values of WER for the period between 2010 and 2016.
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Table 5. Comparison between observed and predicted WER between 2010 and 2016.

Year Observed Predicted-ANN (%) Estimation Error (%)

2010 65.9 65.7 −0.30%
2011 63.2 62.4 −1.27%
2012 61.4 60.7 −1.14%
2013 75 75.1 0.13%
2014 75.1 75.1 0.00%
2015 76.9 76.8 −0.13%
2016 76.6 76.6 0.00%

According to Table 5, ANN seems to predict the WER with a high accuracy; the estimation error
oscillates between −1.27% and +0.13%.

3.2. Parameters of the NSGA II

The implementation of NSGA II requires the definition of the type of tournament to consider
and to set the population size of potential solutions. According to performance indicators resumed in
Table 5, we compare between the tournament selection method with tournament size k = 2, random
selection, and roulette wheel selection. The mean values and standard deviation are calculated on
10 tests for each selection method; results are resumed in Table 6. The population size is fixed at 200,
and the number of generations is set at 25.

Table 6. Performance comparison of three selection methods in terms of distribution and spread.

Selection Method Performance Metrics Space Index Spread Index

Random
Mean 0.127 0.313

Std 0.025 0.091

Roulette Wheel
Mean 0.113 0.259

Std 0.023 0.074

Tournament
Mean 0.115 0.286

Std 0.035 0.130

Tournament selection and roulette wheel selection seem more efficient than random selection in
terms of both distribution and spread.

The method with the best results is roulette wheel selection. Both the average and the standard
deviation of the two performance metrics are the lowest. Note that the standard deviation for
tournament selection is greater than for random selection.

3.3. Population Evolution

The objective of the model is to get closer to the true and unknown Pareto front. Over the
generations, the population should move closer to the Pareto front. The starting population is
generated randomly between the limits set for the 4-tuple values of the decision variables as presented
in Table 7.

Table 7. Definition of decision variable constraints.

Decision Variables Lower Bound Upper Bound

ldet 0 12 × Lnet
rp 0 5%
rc 0 5%
rm 0 10%
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Figure 7 shows the evolution of potential solutions composing the population (size P = 200) using
the roulette wheel selection after 25 generations. The optimal front is quickly reached; the population
improves significantly in the first generations, and then very slowly over the last five generations, the
front stabilizes for the last generations. The obtained front confirms the relevance of using the roulette
wheel selection.
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3.4. Problem Resolution

Performed tests guide the choice of the type of selection, crossover and mutation operators. To
solve the considered problem (see Equations (22) and (23)), the NSGA II is implemented with an
initial population generated randomly with 1000 individuals. The crossover probability is set to 90%
to generate the offspring using the flat crossover. The polynomial mutation is used with an index
polynomial mutation of 1 and a mutation probability of 25%. The new population is selected from
roulette wheel selection. The number of performed generations is 25.

Figure 8 illustrates the Pareto front obtained for the considered objectives. The blue dots forming
the front in the middle correspond to the average value of the water efficiency rate predicted by the
ANN model. The red dots forming the upper and lower fronts define the limits of the 95% confidence
interval. Each point of the front represents the 4-tuple of the constrained decision variables of the
problem: the rate of pipes renewal, the rate of connections renewal, meters renewal, and length proven
by leak detection. Table 8 details some of the solutions composing the Pareto front.

Table 8. Trade-off solutions with regard to considered constraints and objective.

rp rc rm Lnet (km) Total Cost (€) CAPEX (€) OPEX (€) WER (%)

4 × 10−5 8.1 × 10−5 4.1 × 10−3 86.5 223,302 2837 220,465 74.5
4.6 × 10−5 8.2 × 10−4 7.3 × 10−3 162.6 309,838 3935 305,903 79.0
5.4 × 10−5 9.5 × 10−4 8.4 × 10−3 260.2 413,868 4536 409,332 81.6
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The comparison of the baseline solution (actual practice) to the proposed solutions indicates
that actual practice does not offer a compromise between cost and performance. Its costs more than
all solutions listed in Table 8 with a value of WER = 76.9%. Another interesting analysis concerns
the repartition of expenditures between CAPEX and OPEX. Water utility privileges investment by
increasing CAPEX (70 %) where our model advises to increase OPEX to 99% of total expenditures
(according to Table 8).

Results show a significant influence of the leak detection and reparation actions on the WER. This
is an intuitive result but the main advantage of the proposed model is its capacity to predict the effects
of actions on the WER. The length of the water system under consideration is about 86 km. The values
of length proven by leak detection per year contained in Table 8 correspond to approximately one, two
and three times the total length of the network. The total cost is shared into two parts, CAPEX and
OPEX. OPEX are largely due to the leak detection and asset reparations while CAPEX value is low due
to low investments. In the short term period, the model shows that the main way to improve WER
when the value of the efficiency is already high is the investigation for leaks. Indeed, leak detection
allows improving more efficiently the water efficiency rate for an acceptable cost, compared to renewal
actions. Renewal actions start to have an impact when performance values and asset condition are low.

4. Discussion

Predictions of WER (outputs) obtained for management actions (inputs) seem to be coherent with
practice. In fact, Table 8 shows a positive correlation between WER and total cost, which confirms
that it is required to spend more money to enhance performance. There seems to exist a threshold
effect between expenditures and performance, even if we double the budget (from 2.23 k€ to 4.13 k€)
performance increases only by 7%. This result is important because it indicates that even if the budget
is available, it has to be spent in a certain manner and shared adequately between investment and
maintenance actions. Another point of interest concerns the share of OPEX in the total expenditures.
OPEX represents 99% of the total costs, which implies that if we aim at improving WER in the short term,
it is recommended to spend more money for maintenance actions than investment. The advantage
of the proposed approach is to drive the decision by indicating the type of maintenance actions to
implement. For the studied case, Table 8 indicates that the leak detection and reparation of leaks seem
to be efficient. The values of upper limits for decision variables were defined as the following: The limit
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of leak detection rate corresponds to a total inspection of the entire network each month (12 per year),
renewal rate of pipes and connections is limited to 5% (5 times the actual rate) per year considering an
average lifespan for asset of 50 years (ambitious), and the renewal rate of meters is limited to 10% (two
times the actual rate) which corresponds to a lifespan for meters of 10 years on average.

The definition of NSGA II parameters requires expertise and should be driven by tests. Results
show the relevance of comparing different operators of selection and crossover. For the current study,
roulette wheel seems more pertinent than other methods. The size of the population and the number
of generations are also an important parameter to fit. The followed procedure aims at driving the
implementation of the approach by: (i) defining the first suitable operators for a fixed-size population
(P = 200); (ii) test the range of values for the number of generations (5 to 25); and (iii) increase the size
of population for a given number of generations from 200 to 1000. Even if we cannot generalize the
obtained results, it seems that this procedure leads to improve the shape of the Pareto front and to make
it less discontinuous and more uniform. It can be interpreted as an improvement of the consistency of
the front as shown in Figure 8.

The variety of solutions offered by the Pareto front constitutes a set of potential actions to
implement depending on the context, constraints, and objectives to reach. This constitutes a valuable
mitigation tool for decision makers and stakeholders.

Another advantage provided by the prospecting model is its capacity to be coupled with NSGA II
in order to guide the search for the most relevant solutions. Even if results are really encouraging,
some aspects have to be investigated. The dynamics of the model are not actually addressed: how
is it possible to improve the planning of actions from year to year by updating input data? Another
important aspect concerns the effect of asset management actions in the long term; it appears that
maintenance actions significantly improve the value of WER with a low total cost. This can be
considered as relevant in the short term, but it is not supposed to encourage the non-investment actions.
A risk can be faced by the water utility due to an under-investment, which is the deterioration of the
asset and the delivered service. One possible improvement is to constrain the rate of asset renewal
when the solutions are searched for in order to avoid an important asset aging due to disinvestment.

5. Conclusions

The actual research is considered an encouraging improvement of our model based on ANN for
predicting KPI’s. The proposed improvement confirms that it is possible to predict and optimize KPIs
for water utilities by coupling ANN and NSGA II in the context of the lack of local data. Many aspects
should be checked in relation to the characteristics and parameters of ANN like the number of hidden
layers and the number of neurons and activation functions. For NSGA II, the set of population and
type of selection, crossover, and mutation have to be fixed before implementing the prediction model.
All these aspects can render the model difficult to implement by the water utility because it requires
specific skills. The actual model should be improved to gain simplicity for easy implementation by
water utilities.

The absence of local data is encountered by the use of a national mandatory database and Monte
Carlo simulations; this can be useful in the short term. We demonstrate to the water utility managers
the usefulness of using data for prediction; this should encourage the water utility manager to improve
their IS and converge to a smart water system in order to catch real-time data for supporting the
decision making. The interpretation of results should take into account the context of the water utility.
The preference of implementing maintenance actions versus renewal actions can be relevant when the
value of WER is high. That means that the condition of the asset is good and does not require renewal.
This can be acceptable in certain conditions but not adequate when the asset has deteriorated. For
example, if assets are in a good condition and the water system is young, it is not necessary to check
the network by leak detection. The context and condition of the network have to be considered when
the boundaries of decision variables are set. Their range of variation may consider as low boundaries
thresholds different from 0 to avoid the aging of assets in the long term.
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The variation of WER and cost shown by the Pareto front seem realistic and offers a variety of
potential solutions to the decision maker which is valuable.

Further research will explore the reproducibility of the developed approach for other KPIs by
defining the set of input variables and how the ANN model and NSGA II can help to predict them.
For example, the SISPEA database contains 25 additional KPIs that merit to be predicted in the same
way as WER. We intend to explore the possibility to adapt the current model and make a general
methodology for predicting water utility KPIs.
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