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Abstract: Due to the deficiency of fresh water resources and the deterioration of groundwater quality
worldwide, groundwater remedial technologies are especially crucial for preventing groundwater
pollution and protecting the precious groundwater resource. Among the remedial alternatives,
bioelectrochemical systems have unique advantages on both economic and technological aspects.
However, it is rare to see a deep study focused on the information mining and visualization of the
publications in this field, and research that can reveal and visualize the development trajectory and
trends is scarce. Therefore, this study summarizes the published information in this field from the Web
of Science Core Collection of the last two decades (1999–2018) and uses Citespace to quantitatively
visualize the relationship of authors, published countries, organizations, funding sources, and journals
and detect the research front by analyzing keywords and burst terms. The results indicate that the
studies focused on bioelectrochemical systems for groundwater remediation have had a significant
increase during the last two decades, especially in China, Germany and Italy. The national research
institutes and universities of the USA and the countries mentioned above dominate the research.
Environmental Science & Technology, Applied and Environmental Microbiology, and Water Research are the
most published journals in this field. The network maps of the keywords and burst terms suggest that
reductive microbial diversity, electron transfer, microbial fuel cell, etc., are the research hotspots in
recent years, and studies focused on microbial enrichment culture, energy supply/recovery, combined
pollution remediation, etc., should be enhanced in future.
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1. Introduction

Groundwater, representing c. 97% of the fresh water resources of the earth (excluding those locked,
such as the ice in the polar regions) [1] is vital to the sustainable development of the society and
economy all over the world, especially for the residents in the arid and semi-arid regions who consider
groundwater as their major domestic water source [2–5]. However, great concern has been raised about
the deterioration of groundwater quality related to rapid industrialization and civilization in the last
decades [2,6–9], and groundwater pollution events caused by human activities (the application of
fertilizer and manure [10–13], the discharge of industrial effluents [14–18], and the leakage of landfill
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sites [19,20] have been reported round the world. Thus, the invention and implementation of groundwater
remedial technologies is a hotspot issue for environmental experts nowadays [21–24], and numerous
technologies involving physical, chemical, physical–chemical, biological and biochemical aspects have
been invented and applied [25,26], e.g., the pump and treat method (contaminated groundwater is
pumped by abstracted wells and further treated) [27–30], permeable reactive barriers (a subsurface
barrier is constructed by reactive materials, and the polluted groundwater is remediated during flowing
through the barrier) [31–35], soil vapor extraction (a vacuum is applied to the vadose zone to induce
the controlled flow of air and remove volatile and some semi-volatile organic contaminants) [36–38],
and monitored natural attenuation (based on efficient monitoring, pollutants are degraded to acceptable
levels by natural physical, chemical and biochemical reactions) [39–41].

With continued innovation and advances in groundwater remedial technologies, some researchers
have focused on novel technologies that are more efficient, sustainable and cost-saving [42–45]. Among
these, bioelectrochemical systems (BESs) have remarkably emerged in the last two decades [25,46–53]. BESs
can be defined as microbial electrochemical systems in which electrochemically active microorganisms act
as catalyzers for anode and/or cathode reactions [25,42]—specifically, the electro-active microorganisms,
the electrodes, and the possible electron donor/acceptors (groundwater pollutants) consist of an electrical
circuit through which the electron is transferred by the electro-active microorganisms while the pollutants
are oxidized/reduced [25,54–56], which means that both oxidation and reductions can occur at the anode
and the cathode, respectively [25,49,57]. According to the above fundamental of microbial electrochemistry,
multiple systems/devices have been invented by the applied researchers and engineers from a concept
to a practice, namely the microbial fuel cell (MFC, a system/device with microbes that can generate
electricity while using hydrocarbons as the carbon source) [58–60], the microbial electrolysis cell (MEC,
a micro-chemical system/device that needs power source to operate/enhance the bioelectrochemical
process) [42,61], the microbial desalination cell (MDC, a system/device that desalinates water using electricity
generated by the exoelectrogenic microorganisms from the degradation of organic matter) [62–64], and
the biogeobattery (an underground system that electro-active microorganisms combined with conductive
minerals crossing the water table transports electrons from the anodic oxidation domains at depth (under
the water table) to the cathodic reduction domains near the surface) [65–67], and which are studied
for groundwater remediation of variable pollutants, such as nitrate [49,57,68,69], perchlorate [59,70,71],
arsenic [72–74], hexavalent chromium [75], vanadium [75–77], uranium [78–81], cadmium [25,82] and
aromatic compounds [58,83,84].

Compared with conventional remedial technologies, BESs have unique advantages on efficiency,
flexibility and cost-saving [51,85–87]. For instance, phenanthrene and benzene reduction experiments
conducted by Adelaja et al. [58] demonstrated that the in-situ degradation efficiency of petroleum
hydrocarbons using an MFC could exceed 90% at a hydraulic retention time of 10 days, and the
system showed the flexibility to adapt to shock substrate concentrations loading. Morris and Jin [88]
designed a two-cell MFC with an extended proton bridge for the physical separation of the anode and
cathode chambers to simulate groundwater hydrocarbon remediation, and the results indicated that
the extended proton bridge, acting as a non-exhaustive source of terminal electron acceptor, could be
a less expensive alternative to conventional groundwater bioremediation which uses costly oxygen
releasing compounds for its electron acceptor supply. However, in the knowledge of the authors,
most of the studies of BESs for groundwater remediation have been at the lab-experiment scale at
the present stage, and they have mainly focused on the invention and performance testing of the
systems/devices for the reduction of various pollutants in synthetic groundwater [25,42]. Research
analyzing the development and evolution of this topic is rare, and no previous research has conducted
comprehensive analysis in this field that can systematically reveal the aspects, including the co-authors,
the most published countries, organizations, funding sources, journals, keywords/burst terms and
visualize these results, which can offer insights into the changing and development trend of BESs
research, and it is of great significant to the researchers for a further understanding of the orientation
of BESs for future study and application.
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In the context of current needs, a bibliometric analysis of BESs for groundwater remediation was
conducted in this study to investigate and visualize the relationship of authors, published courtiers,
organizations, funding sources, and journals, and to detect the development trends of this topic with
network maps of keywords and burst terms. The results of this study are helpful for obtaining more
accurate information of the trajectory and research front in this field, and they serve as indicators for
research advancement.

2. Data Acquisition and Methods

2.1. Data Description

The original data analyzed in this study were downloaded from the database of Web of Sciences
Core Collection (Sciences Citation Index expended (SCI-expended) and Social Sciences Citation Index
(SSCI)), considering the most important and frequently used scientific databases in all fields [89,90], and
the searching timespan was set as the last two decades (from 1999 to 2018). To collect all publications
related to BESs for groundwater remediation, the search formula was set as TS (searching topics) =

(groundwater OR aquifer) AND TS = (bioelectrochem* OR bio-electrochem* OR BES OR bioelectro* OR
microbial electro* OR biolo* electro* OR bioelect* OR microbial fuel cell OR biogeobattery). The results
were restricted for all document types in English. Finally, 1729 publications met the criteria, the full
record and cited references were exported for further analysis.

2.2. Scientometrics Analysis Method

The scientometrics analysis in this study was conducted by CiteSpace V, a bibliometric visualization
and analysis software developed by Dr. Chaomei Chen of Drexel University based on Java [91].
Citespace can analyze the basic information of documents in a time-phased manner. The publications
and citation of the literature were statistically analyzed, and the literature information in the retrieval
period of a certain field was displayed in the form of a network map according to different cutting and
splicing methods, reflecting the basis or front of the research field. In recent years, Citespace has been
widely used in the fields of informatics, life sciences, technical sciences, and management. [89,91,92].

Considering the cited literature in a certain research field as the intellectual base, the citing
literature represented the relative research front, and, thus, the overall research situation in this field can
be generalized from a research front to an intellectual base. The research front can further be reflected
by a set of keyword/term that evolved and mutated over time (generally a sudden increase in frequency
of occurrence). Therefore, the core idea of Citespace is to identify this development and mutation
trend from literature information and to explore and analyze research fronts in a certain research field
according to mutation detection and cluster analysis [91,93]. In the specific operation, the intellectual
base could visualize, for example, the number of publications and citations of different countries,
research institutions, journals, and authors. The mutation detection and quotation of keyword/term
can also be carried out on the research front, and a cluster analysis of the keyword/term explored the
hot issues at the forefront of the research in this field.

In the network maps produced by Citespace, the color from blue to red indicates the time slice
from the begin to the end, and each node in the figure represents a certain type (author, institution,
country, term, keyword, source, category, reference, cited author, cited journal, article, grant and claim),
with the number of frequency/accumulated citations illustrating by colorful tree rings and the colorful
lines between the nodes represent the year of first co-occurrence/co-citations. Moreover, pivotal nodes
in the network maps were recognized with high betweenness centrality and are highlighted with
a purple ring. The betweenness centrality (BCvi) is defined as follows [90]:

BCvi =
∑

p,i,q

ti
pq

Tpq
(1)
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where Tpq is the number of shortest paths from vp to vq and ti
pq is the number of shortest paths from

vp to vq that pass though vi. At the document level, the betweenness centrality is a valid metric to
measure the importance of each document in a co-citation map.

3. Results

3.1. Characteristics of the Publications of BESs for Groundwater Remediation

Figure 1 illustrates variable document types of the yearly and total publications related to BESs
for groundwater remediation from 1999 to 2018, and a rapid development trend was revealed by the
number of yearly publication that continuously increased from 34 in 1999 to 151 in 2018. Articles were
the dominant type of publication, accounting for about 94% of the total publications, followed by
papers, reviews and other types of publication (book chapter, editorial material, meeting abstract and
retracted publications), which made up the other 6%. The cumulative publications showed a straight
increasing trend—in particular, the cumulative publications from 2009 to 2018 were approximately
threefold of that from 1999 to 2008, suggesting more scholars were focused on this topic in the most
recent decade.
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Figure 1. Quantitative characteristics of the publications of bioelectrochemical systems (BESs) for
groundwater remediation during 1999–2018.

3.2. Published Countries, Organizations and Funding Sources Analysis

The searching results indicate that over 40 countries have published research achievements on
this topic, while the top 10 countries of yearly publications are as follows: USA, China, Germany,
Canada, England, Italy, Japan, France, Spain and Switzerland. These 10 counties have dominated the
research on this topic, as their publications occupy over 95% of the total publications. The yearly and
cumulative publications of all the countries mentioned above show a fluctuating increase over time
(Figure 2). For instance, USA published 21 articles in 1999 and 44 in 2018, while the number of its
maximum yearly publications was 54 in 2011. USA has contributed most of the publications on this
topic among the world; in 2000, its publications accounted for 76% (highest in the period of 1999–2018)
of the total publications of the top 10 countries. However, with the development of research in other
countries, the publication proportion of USA among the top 10 countries has constantly decreased
over time (70% in 1999 and 25% in 2018), and the annual growth rates of the publications of China,
Germany and Italy were 52%, 32%, and 31%, respectively (2009–2018).
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Figure 2. Characteristics of the top 10 publishing countries of BESs for groundwater remediation
during 1999–2018.

Figure 3 depicts the characteristics of the publications and the co-citation of the productive organizations.
The institutes with large number of publications were mainly the national research institutes and universities
such as University of Massachusetts, University of California Berkeley, Pacific Northwest National Laboratory,
which produce constantly and had the largest cumulative publications in the time slice. It should be noted
that the number of publications of some institutes showed explosive growth—these are highlighted by the
purple rings, indicating the research development of these institutes in this field, such as Oak Ridge National
Laboratory, US Geology Survey and Chinese Academy of Sciences.
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Figure 3. The network map of the productive organizations of BESs for groundwater remediation
during 1999–2018. The colorful line bar in the top represents the total time slice from 1999 to 2018 (each
color represents on year, similarly hereinafter), each productive organization is represented by a tree
ring node (such as US Geol. Survey at the bottom of the figure), and the size of the node is proportional
to the number of publications. The lines between the nodes represent co-publication, and the color
of the tree rings and lines correspond to the line bar. The table on the right summarizes the top 10
productive organizations with their number of publications and the betweenness centrality.
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The funding sources were important for investigating potential research purposes and to deduce
if the research was predominated by researchers or the funding organizations. The results obtained
by Citespace V indicate that 70 funding sources were recorded with a total citation number of 458
(the network map is shown as Figure 4), most of which were national science fund and research councils
such as National Natural Science Foundation of China, National Science Foundation (USA), and Natural
Environment Research Council (UK). No commercial funding was detected, suggesting that the research
of BESs for groundwater remediation was mainly led by the scientists in this field based on academic
interests. According to the nationality, the funding sources can roughly be classified belonging to USA,
China, and other countries. The number of funding sources of USA and China account for about 50%
of the total, and which is in agreement with the results of the publishing countries mentioned above.
National Natural Science Foundation of China was the most cited funding source, with a total citation
number of 131—which is about four times of the second one (Fundamental Research Funds for the Central
Universities, China).
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3.3. Published Journals and Authors Analysis

The investigation of the publishing journals and authors was an efficient approach to explore
the research field. According to the citation report by Web of Science, there are 352 journals of 48
research areas (environmental sciences ecology, engineering, water resources, biotechnology applied
microbiology and microbiology, etc.) that have published related achievements in this field during
1999–2018, and the top 10 frequently publishing and cited journals (summarized in Table 1) account for
36% (622/1729) of the total publications and 47% (27022/58056) of the total citations, most of which are
the top journals of quartile in the category with high impact factors, such as Environmental Sciences &
Technology, Applied and Environmental Microbiology, and Water Research, thus indicating the research of
BESs for groundwater remediation has attracted much attention of the experts in a broad research field.
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Table 1. Statistical results of the top 10 publishing and cited journals of BESs for groundwater
remediation during 1999–2018.

No. Journal Total
Publications

Sum of
Times Cited

Journal IF (2018)/Quartile
in Category

1 ENVIRON. SCI. TECHNOL. 163 8004 7.149/Q1
2 APPL. ENVIRON. MICROB. 85 5650 4.077/Q1
3 WATER RES. 71 3143 7.913/Q1
4 J. CONTAM. HYDROL. 53 2051 2.65/Q2
5 BIORESOUR. TECHNOL. 52 1115 6.669/Q1
6 GEOCHIM. COSMOCHIM. ACTA 45 2273 4.258/Q1
7 GEOMICROBIOL. J. 44 1421 1.609/Q3
8 CHEMOSPHERE 38 774 5.108/Q1
9 J. HAZARD. MATER. 38 1519 7.65/Q1

10 FEMS MICROBIOL. ECOL. 33 1072 4.098/Q2

The productive authors and their publications in this field were investigated by Citespace V with
the analysis results of the 1729 publications and their references relating to BESs for groundwater
remediation. The authors with five or more publications and fifty or more cited are shown in Figure 5.
As mentioned above, the characteristics of authors are illustrated by tree rings, of which the size
represents the amount of publications/citation of one author and the color of the tree ring and the lines
represent the year of publication/citation or co-citation. It was clearly revealed by the network map that
authors tend to form research groups and develop cooperation and research groups usually consist of
two or more core authors. For instance, the group of Lovley D.R., Williams K.H. and Long P.E. et al.
produced the largest amount of publications (96) in this field, followed by the group of Criddle C.S.,
Wu W.M., and Hazen T.C. et al., the group of Aulenta F., Majone M. and Papini M.P. et al., the group of
Feng C.P., Zhang B.G., and Liu Y. et al., and the group of Lloyd J.R., Morris K. and Boothman C. et al.,
which produced 62, 57, 48, and 44 publications, respectively. It should be noticed that there were
couples of research groups that have concentrated on publishing in recent years (2015–2018), and these
colored by purple rings in the figure, indicating new researchers and potential development in this
field, such as the group of Capodaglio A.G. and Cecconet D., as well as the group of Wang H.Y. and
Yang K. The research topics of the groups mentioned above are summarized in Table 2.
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Table 2. Typical researcher groups of BESs for groundwater remediation during 1999–2018.

Group No. Authors Research Topics in this Field

1 Lovley D.R., Williams K.H. and
Long P.E. et al.

Dissimilatory Fe(III) and Mn(IV) reduction [94];
Uranium(VI) bioreduction [80,81,95,96]; Anaerobic

benzene degradation [97];

2 Criddle C.S., Wu W.M. and Hazen
T.C. et al.

Microbial fuel cells [98]; Uranium(VI) bioremediation
[99–102]; Carbon tetrachloride bioremediation [103];

3 Aulenta F., Majone M. and Papini
M.P. et al. Microbial dechlorination [21,45,104–114];

4 Feng C.P., Zhang B.G., and Liu Y.
et al.

Biofilm electrode reactor denitrification [115,116];
Vanadium (V) bioremediation with microbial fuel cell

[75,76,117]; Nitrate removal with microbial fuel cell
[118,119]; Pyridine and methyl orange removal with

microbial fuel cell [120,121];

5 Lloyd J.R., Morris K. and
Boothman C. et al.

Metal-reducing bacteria [72]; Bioremediation of uranium
[79,80,122]; Detection and bioremediation of technetium

[12–125];

6 Cecconet D. and Capodaglio A.G.
Groundwater denitrification [47,126,127]; Energy

consumption [49]; Metals and perchlorate removal [25];
Microbial fuel cell [49,128,129];

7 Wang H.Y. and Yang K. Autohydrogenotrophic denitrification [130,131];
Bioelectrochemical denitrification [54,132,133];

According to the results mentioned above, the research groups on BESs for groundwater remediation
can be divided into two classes according to the research themes: (1) The research originating from
microorganisms in groundwater/aquifer sediments that can obtain energy for growth by electron
transport [96], as well as further related research including sulfate/dissimilatory Fe(III) reducing
bacteria [94,99,134–137]; the bioremediation of radioactive contaminants such as uranium, strontium,
and technetium [80,123,125,138]; extracellular electron transfer [139,140]; microbial biocathodes [141,142];
microbial community and geochemical conditions [113,143]. The representative researchers are clustered
into groups as shown in Table 2 and are numbered 1, 2, 3 and 5. (2) The research originating from
the microorganisms that can generate electrical energy during growth [144], as well as further related
research focused on the design and application of microbial electric systems/devices for groundwater
remediation, including microbial fuel cells [43,76,128,145,146] and microbial electrolysis cells [48,57], and
the typical research groups are numbered with 4, 6 and 7 in Table 2.

The most cited authors and publications are illustrated by Figure 5b,c, and the top 10% of most
cited items in each time slice were used to merge the network. According to the network summary,
557 authors and their publications were analyzed, and the cited frequency of one author ranged from 2
to 566, with an average value of 16. Lovley D.R., Anderson R.T., Muyzer G., Coates J.D., Fredrickson
J.K., Chapelle F.H., Holmes D.E., Roden E.E., Finneran K.T. and Altschul S.F. are the top 10 cited authors
in this field whose publications have been cited more than 100 times and have accumulated 1962 times
as total. There are 29 authors of whose publications cited frequencies are larger than 50.

Table 3 shows the most cited publications in this field during 1999–2018, most of which were
published during 2000–2005 and mainly focused on in-situ bioremediation of uranium-contaminated
aquifer or microbial communities in the contaminated-aquifer. For instance, pilot-tests of groundwater
U(VI) reduction was conducted by Anderson et al. [78], Wu et al. [102] and Vrionis et al. [147] in
field sites using organic matters (acetate and ethanol) as electron donors to stimulate the growth of
metal-reducing microorganisms (Geobacter species), Rooney-Varga et al. [148] found significant increase
in Geobacteraceae within the zone of benzene degradation sediments, Reguera et al. [140] found that
electrons transfer from the cell surface of Geobacter sulfurreducens to the surface of Fe(III) oxides while
the pili of cell served as biological nanowires, and Lovley et al. [94] systematically summarized the
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environmental significant of Fe(III)-and Mn(IV)-reducing microorganisms. It should be noticed that
the cited frequency in Table 3 is the number that being cited by the publications within the scope
of BESs for groundwater remediation (different from the cited number in the citation report of Web
Of Science), and the emphasis of the research mentioned above—such as the bacterial community
structure during in-situ bioremediation, the geochemical heterogeneity in the bioremediation field site,
and the electrons transfer via microbial nanowires during Fe(III) reduction—are sort of the unity of
microbiology, biochemistry, and hydrology, and could be considered as the infancy of the research of
BESs for groundwater remediation.

Table 3. Summary of the top 10 cited publications of BESs for groundwater remediation
during 1999–2018.

Cited
Frequency Author Title Published

Year Published Journal

102 Anderson R.T. et al.

Stimulating the in situ activity of
geobacter species to remove

uranium from the groundwater of
a uranium-contaminated aquifer.

2003 APPL. ENVIRON.
MICROB.

61 Holmes D.E. et al.

Enrichment of members of the
family geobacteraceae associated
with stimulation of dissimilatory

metal reduction in
uranium-contaminated aquifer

sediments.

2002 APPL. ENVIRON.
MICROB.

49 Istok J.D. et al.
In situ bioreduction of technetium

and uranium in a
nitrate-contaminated aquifer.

2004 ENVIRON. SCI.
TECHNOL.

45 Rooney-Varga J.N.
et al.

Microbial communities associated
with anaerobic benzene

degradation in a
petroleum-contaminated aquifer.

1999 APPL. ENVIRON.
MICROB.

44 Wu W.M. et al.

Pilot-scale in situ bioremedation
of uranium in a highly

contaminated aquifer. 2.
reduction of U(VI) and

geochemical control of U(VI)
bioavailability.

2006 ENVIRON. SCI.
TECHNOL.

43 North N.N. et al.

Change in bacterial community
structure during in situ

biostimulation of subsurface
sediment co-contaminated with

uranium and nitrate.

2004 APPL. ENVIRON.
MICROB.

41 Vrionis H.A. et al.
Microbiological and geochemical

heterogeneity in an in situ
uranium bioremediation field site.

2005 APPL. ENVIRON.
MICROB.

40 Lovley D.R. et al. Dissimilatory Fe(III) and Mn(IV)
reduction. 2004 ADV. MICROB.

PHYSIOL.

40 Caporaso J.P. et al.
QIIME allows analysis of

high-throughput community
sequencing data.

2010 NAT. METHODS

37 Reguera G. et al. Extracellular electron transfer via
microbial nanowires. 2005 NATURE
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3.4. Keywords and Burst Term Detection Analysis

Keywords, generally representing the research areas and topics, are of great significance to the
publications, and keyword analysis is an efficient approach to detect the development and the research
frontier of a certain research field [90]. Here, the whole time slice in this study was cut into four pieces (every
five years), and the top 10% cited items of each sub-time slice awee analyzed and merged into the network
map by Citespace V. A total of 687 keywords were detected by Citespace V, 74.4% of which were repetitive
among the four time slices. The combination of these repetitive keywords indicates that the main research in
this field has been focused on the bioremediation/biodegradation of multiple contaminants, such as organic
compounds (BTEX, PAHs, tetrachloroethene, etc.), metallic compounds (U(VI), Cr(VI), V(V), etc.), and
non-metallic inorganic compounds (nitrate, sulfate, perchlorate, etc.) in groundwater/aquifer or sediments;
the research related to microbial diversity, reducing bacteria, electron acceptor/donors, microbial fuel cell,
etc., has been highlighted. As shown in Figure 6, the network map developed with the amount of high cited
keywords, and co-occurrence increased over time. The most cited keywords appeared to constantly increase
among the four sub-time slices. For instance, the cited frequency of “groundwater” and “bioremediation”
were 70, 99, 159, 221 and 28, 59, 74, 77 during 1999–2003, 2004–2008, 2009–2013, and 2014–2018 time
slices, respectively, indicating that research in this field has attracted more attention over time. In contrast,
the number of the total keywords detected by Citespace V in each sub-time slice showed a decrease trend
over time (217, 195, 149 and 126, respectively), and a possible reason is that the research topics in this field
were scattered in the preliminary period, with continually a deepening study the research concentrating
and focusing on relatively fewer topics. Moreover, after excluding the repetitive keywords, the changing of
the research topics is revealed by the remained keywords among different time slices and which can be
generally classified into three catalogs: (1) Reactive materials/contaminants; (2) reactions/processes; and (3)
experimental apparatus/microorganisms. The typical non-repetitive keywords are summarized in Table 4.
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Table 4. Typical non-repetitive keywords of the publications related to BESs for groundwater remediation
among different time slices.

Time Slice/Keywords
Catalogs

Reactive
Materials/Contaminants Reactions/Processes Experimental

Apparatus/Microorganism

1999–2003

phenol electron accepting process biofilm reactor
monoaromatic biomineralization

biofilterhydrocarbon anaerobic benzene oxidation
petroleum hydrocarbon / /

2004–2008
hydrous ferric oxide in situ hybridization pseudomonas putida

benzylsuccinate synthase dissimilatory sulfite reductase hollow fiber membrane

2009–2013 activated carbon in situ biostimulation /

2014–2018
methane electricity generation biofilm electrode reactor

hydrogen peroxide fermentation biocathode
perchlorate / /

The non-repetitive keywords provide by Table 4 indicate that, besides the main research topics
mentioned above, studies that were focused on biodegradation of petroleum hydrocarbon were
conducted by researchers during 1999–2003, and some researchers used a biofilm reactor/biofilter for
groundwater remediation experiments. For instance, the laboratory microcosm experiments performed
by Harrison et al. [149] indicated that natural attenuation of diluted phenol contaminated groundwater
was feasible in both anaerobic and aerobic conditions, and Gómez et al. [150] used a submerged biological
filter to purify nitrate-contaminated groundwater. During 2004–2008, studies focused on groundwater
toluene biodegradation were conducted using the benzylsuccinate synthase gene as specific catabolic
markers [143,151], biological sulfate reduction column experiments were conducted with dissimilatory
sulfite reductase gene as biomarker for the sulfate-reducing bacteria [152], and an experiment of
laboratory-scale columns with hollow fiber membranes was performed to investigate a bioremediation
technology for perchloroethylene-contaminated aquifers [153]. During 2009–2013, Foo and Hameed [154]
summarized the studies of the activated carbon adsorption process for pesticide detoxification and
mentioned that the combined electrochemical reactor and adsorber was conducted by former researchers
for groundwater remediation. For instance, Feleke and Sakakibara [155] performed an experimental
apparatus of an electrochemical reactor coupled with an activated carbon adsorber for the removal of
nitrate and an inhibitory pesticide in groundwater. Additionally, an experiment of active carbon reactors
for nitrate and arsenic bioremediation was conducted by Upadhyaya et al. [74]. During 2014–2018,
a notable change revealed that the keywords related to “electrical” appeared at an intensively increasing
tendency, a fusion of multiple subjects such as microbiology, electrochemistry, and hydrology could be
determined by the publications, and the research that focused on BESs (such as microbial fuel cell and
microbial electrolysis cell) for groundwater nitrate/metallic compounds remediation developed rapidly
in this time slice. For instance, experiments of groundwater vanadium (V) remediation were performed
using a bioelectrical reactor with electricity generated from a microbial fuel cell, and further experiments
were designed to investigate the effects of various organic carbon sources on simultaneous vanadium
(V) bioreduction [76,117]. An experiment of microbial electrolysis cell for groundwater autotrophic
denitrification was conducted by assessing the conditions of nitrate load, hydraulic retention time
and process configuration, and the system proved able to almost completely remove nitrate in all the
conditions tested [57]. A study of a denitrifying biocathode installed into the simulated aquifer showed
that this system was feasible for the nitrate removal of the saturated aquifer, and the specific nitrate
reduction rate was inversely proportional to the sand/medium ratios of the aquifer [156].

As discussed above, keywords analysis is an effective method to determine the overall structure and
research topics in a specific research field. However, a high repetition of the general keywords would
probably result in the neglecting of the research hotspots. Citespace uses Kleinberg’s burst-detection
algorithm to identify emergent research-front concepts [91], and similar concepts/terms are further
coalesced into clusters that represent the related research field. The size of a cluster is proportional
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to the amount of the terms included, and the clusters are numbered from the largest to the smallest,
with an identify number (ID, hereinafter) starting from 0. As shown in Figure 7, the burst terms in
this field were classified into dozens of clusters, and clusters 0–9 made up the majority of the overall
publications and citations in this field. Cluster 5–7 showed extensive citations at the beginning of the
time slice (the purple and dark blue lines in Figure 7), with cluster ID natural attenuation, other priority
radionuclide, and novel Fe, respectively, indicating the research related to the in-situ remediation of
radioactive contaminants with dissimilatory Fe(III) reduction bacteria was the early research emphasis in
this field. Then, the research hotspots transferred to reductive dechlorination and sulfate reducing bacteria,
with clusters ID 2 and 1. During 2004–2010, research focused on microbial fuel cells developed rapidly
(Cluster ID 4 in Figure 7), as revealed by the dense green lines representing the citation. Furthermore,
the research focused on BESs has shown an intensive increase since 2010, as revealed by the largest
cluster with ID 0, indicating more attention has been attracted in recent years.
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4. Discussion and Perspectives

With the development of research concepts, methods, technology and reality needs, the research
topics of BESs for groundwater remediation have changed in the last two decades. This was partly
revealed by the keywords and burst terms analysis mentioned above, as well as the development trend
of which can further be considered to follow two routes roughly.

The first one was mainly focused on the research of microbial reduction mechanisms, beginning
with the research of the microbial reduction of certain pollutants such as uranium and benzene [96,97],
with a particular focus on dissimilatory Fe(III)-reducing microorganisms that can obtain energy for
growth by electron transport to U(VI) [96]. This finding opened the door to a new bio-remediation
method. Subsequently, the research of extracellular electron transfer by the microorganisms developed
continually, from the outer-membrane cytochromes to the pili that served as biological nanowires [140],
and this study was further combined with the research of electrical self-potential [65]. Thus, studies
focused on “biogeobattery” raised in number [66,67], and the latest studies have conducted field
investigations on the bioremediation of uranium-contaminated groundwater and have focused on
microbial diversity [80,81]. In brief, the studies following this route were mainly interdisciplinary
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(crossing of microbiology, electrochemistry, genetics, etc.) and had an emphasis on the microbial
electrochemical/biochemical reactions during the groundwater bioremediation process, rather than the
design and invention of bioelectrochemical systems/devices.

The second route can be considered to have begun with the concept of the microbial fuel cell (MFC,
that microorganisms can generate electricity with hydrocarbons as carbon source for growth [144]). Thus,
this technology is particularly suitable for the treatment of wastewater with a relatively abundant amount
of available carbon, such as the domestic effluent [157–159], and bioelectrochemical systems/devices
were initially designed for this purpose. Along with the deepening of research, the research topics
that originated from the MFC developed and concentrated on multiple subjects, e.g., the power
production [60], anode performance [98], operating conditions [160], the MFC process model [129],
microbial electrolysis [61], and microbial desalination [23,62,86]. The treated pollutants changed from
hydrocarbons in the early study period to various contaminants such as ammonia [161], nitrate [43,145],
sulfate [162], perchlorate [59] and vanadium [76,117]. Recent studies have further optimized BESs for
better performances by using different electrode such as stainless steel [53], carbon paper [163], and
graphite [84,128], and these BESs have been improved from single chamber to dual chamber with cationic
exchange membrane [57,164].

Previous studies have demonstrated that BESs are particularly suitable for the removal of various
contaminants in groundwater, owing to their advantages on efficiency, flexibility, and cost-saving;
however, most of the BESs for groundwater remediation studies, at the present stage, were conducted
as lab-experiment and pilot tests. Additionally, in-situ remediation projects have been scarce, and
there are several challenges that should be considered for the further study and application of BESs for
groundwater remediation.

The complexity of hydrogeological conditions in reality is a dominating factor that influences
remedial performance. Natural groundwater is normally neutral with little or no organic matter [57],
while the experiments of BESs have shown a relatively fluctuant pH around the electrodes, with the
pH of the catholyte maintaining a level between 9 and 9.5 [146], occasionally even raising to 11.7 at the
cathode zone [115]. Thus, pH adjustment is necessary to sustain and enhance the biological activity
in BESs [165]. However, this strategy is difficult to achieve in real conditions, owing to the strong
buffering capacity of groundwater [166]. Besides, the supplements of the substrates (carbon source)
like wastewater should be cautioned to avoid introducing other contaminants into groundwater [167].
Moreover, BESs experiments have indicated that the reduction rate of pollutants (such as nitrate) is
highly related to aquifer composition [156,168]. Thus, aquifer heterogeneity would significantly affect
the BESs operation for real groundwater remediation, and further study should be conducted to allow
the presence of optimal conditions for bioelecrochemical reactions (such as pH and carbon source
control) and to invent BESs for specific hydrogeological conditions (considering the stratum structure,
water table, aquifer media, etc.).

The screening of groundwater remedial technology is complicated, owing to its multiple criteria
involving technique, economy and policy [26]. Being an in-situ technology, BESs have unique
advantages on cost-saving rather than the energy-intensive ex-situ alternatives such as pump and
treat [51]. However, the lack of pilot scale studies and in-situ remediation projects makes it difficult to
accurately evaluate the actual cost of conducting a real BESs remedial project; increasing the distance
between the anode and cathode (as in the remedial field) would cause a decrease of the MFC cell
potential and reduction efficiency [88], which would result in a direct impact on the cost. Besides,
mots of BESs studies at present have been conducted from days to months [47,56,59,132], while the
long term operational stability of BESs for groundwater remediation is still questionable. Thereby,
scaling up the BESs to an applicable size and conducting long term BESs remedial studies should be
implemented in future.

The combined pollution with contaminants of different chemical natures in groundwater is
an emerging issue [42,169]. Thus, BESs for groundwater combined pollution remediation are highly
expected. However, the microbial reduction experimental study conducted by Xie et al. [170] indicated
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that the presence of nitrate slowed the reduction of perchlorate at the inoculated cathode, increasing
concentration of nitrate would resulted in a noticeable inhibitory effect on perchlorate reduction; similar
results were found by Feleke and Sakakibara [155], such that increasing pesticide loading would inhibit
the reduction of nitrate in a bio-electrochemical reactor experiment. Considering variable groundwater
pollution issues related to industrial (heavy metals [171,172], petrol hydrocarbons [173,174], etc.),
agricultural (pesticide [154,175,176], nitrate [57,139,156], etc.) and human activities (nitrogen [3,146,177],
antibiotics [31], etc.), inhibition effects due to the combination of different pollutants should be taken
into consideration for further study. Moreover, there are factors directly affecting the performance of
BESs such as microbial diversity and competition as well as energy consumption and recovery that
researchers have to face and which demand an increase of unremitting efforts in the future.

5. Conclusions

The research focused on BESs for groundwater remediation developed rapidly during 1999–2018,
with yearly publication continuously increasing from 34 to 151. USA predominated the research in
this field at the early stage, but its amount of publications increased slowly in recent years, in contrast
the annual growth rates of the publications of China, Germany and Italy, which were 52%, 32% and
31% in the last decade, respectively. The national research funds/councils have been the dominant
funding sources of the research in this field. The top 10 journals including Environmental Science &
Technology, Applied and Environmental Microbiology, and Water Research have accounted for 36% of the
total publications and 47% of the total citations. The main research in this field have been focused on
the bioremediation/biodegradation of multiple contaminants such as organic compounds (BTEX, PAHs,
tetrachloroethene, etc.), metallic compounds (U(VI), Cr(VI), V(V), etc.) and non-metallic inorganic
compounds (nitrate, sulfate, perchlorate, etc.) in groundwater/aquifer or sediments, and the research
related to the microbial diversity, reducing bacteria, electron acceptor/donor and microbial fuel cell,
etc., have been highlighted.
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