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Abstract: The dynamics of NAPL dissolution into saturated porous media are typically modeled
by the inclusion of a reaction term in the advection-dispersion-reaction equation (ADRE) with
the reaction rate defined by a Sherwood-Gilland empirical model. This stipulates, among other
things, that the dissolution rate is proportional to a power of the NAPL volume fraction, and also
to the difference between the local average aqueous concentration of the NAPL species and its
thermodynamic saturation concentration. Solute source models of these sorts are ad hoc and
empirically calibrated but have come to see widespread use in contaminant hydrogeology. In parallel,
a number of authors have employed the method of volume averaging to derive upscaled transport
equations describing the same dissolution and transport phenomena. However, these solutions
typically yield forms of equations that are seemingly incompatible with Sherwood-Gilland source
models. In this paper, we revisit the compatibility of the two approaches using a radically simplified
alternative volume averaging analysis. We begin from a classic micro-scale formulation of the NAPL
dissolution problem but develop some new simplification approaches (including a physics-preserving
transformation of the domain and a new geometric lemma) which allow us to avoid solving traditional
closure boundary value problems. We arrive at a general, volume-averaged governing equation that
does not reduce to the ADRE with a Sherwood-Gilland source but find that the two approaches do
align under straightforward advection-dominated conditions.

Keywords: NAPL; volume averaging; upscaling; mass transfer

1. Introduction

We consider the modeling of dissolution of residual non-aqueous phase liquids (NAPL)—that is,
liquids that are essentially immiscible in water and which are trapped by capillary forces in porous
media—into pore water and the subsequent transport of solute originating in the NAPL. Transport can
be modeled without difficulty by means of the advection-dispersion-reaction equation (ADRE):

∂c
∂t

+ v · ∇c−∇ · Deff∇c = Q, (1)

where v is the pore water velocity, Deff is an effective Fickian dispersion coefficient capturing the effects
of local-scale hydrodynamic dispersion and diffusion, and Q is a source term. (See the nomenclature
in Appendix A for units and definitions of all symbols.) However, it is necessary to have a model of Q
that captures the physics of NAPL dissolution. To this end, a number of similar empirical models of
Q have been proposed [1–6] which are of the form Q = K (csat − c), where csat is the thermodynamic
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saturation aqueous concentration of the NAPL chemical species and K is a mass transfer coefficient.
These models, known as Sherwood-Gilland models [7], most generally express K as

K = α
D

d2
m

η
β
nReγ, (2)

where α, β and γ are fitting parameters, D is the Fickian diffusivity, dm is a characteristic length of
the porous media, ηn is the bulk volume fraction of NAPL, and Re is the Reynolds number. Certain
empirical studies combine terms and do not calibrate all of α, β and γ, but with the exception of [6],
all contain terms η

β
n , or equivalently Sβ

n (with NAPL saturation expressed as a fraction of pore volume
rather than bulk volume), with calibrated values of 0.6 to 1.24 for β ([8], see Table 2) The theory
underlying the form of such models is out of scope for this paper but is discussed in more detail
in References [1,8]. The importance of the Sherwood-Gilland approach lies in the relation of Q to local
concentration in the water phase and a small number of measurable system parameters.

By contrast with the Sherwood-Gilland empirical approach, the upscaled dynamics of residual
NAPL dissolution have also been considered using volume averaging theory [9]. While there is
not room for a full account here, volume averaging operates by defining a superficial volume
average operator

〈·〉 = 1
V

∫
V(x)
· dV, (3)

where V is a simply-connected region of volume V centered at x. From the superficial average,
phase-intrinsic volume average operators are defined for each phase i according to 〈·〉 = ηi 〈·〉i, where
i stands in for any of the three phases in the system: water (w), NAPL (n), and solid (s) and ηi(x) is
the volume fraction of V(x) occupied by the i phase. Inside V(x), the surface between phases i and
j is denoted by Γij and an infinitesimal element of that surface is denoted by dAwn. The unit vector
normal to Γij, pointing into phase j, is denoted by nij. Although all averaged quantities are functions of
location, x, and time, t, these parameters are generally suppressed. Employing these concepts, we may
state a volume averaging theorem [9–11] for c (and analogously for other scalar quantities),

〈∇c〉 = ∇ 〈c〉+ ∑
j 6=w

1
V

∫
Γwj

cnwjdAwj, (4)

and for v (and analogously for other vector-valued quantities),

〈∇ · v〉 = ∇ · 〈v〉+ ∑
j 6=w

1
V

∫
Γwj

v · nwjdAwj. (5)

The essence of the volume averaging technique is that spatially-nonuniform dependent variables
are partitioned into volume averages and small-scale fluctuations and the governing PDE for the
un-averaged dynamics is rewritten in terms of both the volume average quantities and spatial integrals
of the fluctuations using (4) and (5). Finally, an equation in terms of the volume averaged terms
alone is developed by application of physical and mathematical knowledge to rewrite the fluctuation
integrals in terms of the volume averaged quantities [12]. Commonly, the closure is accomplished
by specifying boundary value problems (BVPs) for the fluctuations in which the volume average
quantities participate as forcing functions, as in Reference [9]. If one is only interested in the form of
the volume averaged PDEs, these IBVPs do not need to be solved explicitly. If quantitative results are
required, then analytical [13] or numerical [14,15] solution of the IBVP in a characteristic cell may be
indicated, using for example, Lattice-Boltzmann methods [16].

The volume averaging approach has been applied to the dissolution of residual NAPL, most
notably in a pair of papers by Quintard and Whitaker [13,17], each employing a different micro-scale
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formulation but both arriving at the same upscaled (i.e., volume averaged) equation, which is
apparently incompatible with (1):

ηw
∂ 〈c〉w

∂t
+
[
ηw 〈v〉w − u

]
· ∇ 〈c〉w −∇ ·

(
D∗

w · ∇ 〈c〉
w)+∇ηw ·D∇ 〈c〉w

= ∇ ·
[
dw
(
〈c〉w − csat

)]
− κ

(
〈c〉w − csat

)
. (6)

Equation (6) contains two quantities, D∗
w and dw, that are functions of the formal solutions to two

distinct closure problems, along with u and κ which are forcing quantities in those respective closure
problems and which are themselves formally defined in terms of micro-scale surface integrals that
must be expressed in terms of larger-scale quantities to fully close the problem. See Reference [13]
for full details on the underlying assumptions and the volume averaging procedure. An identical
treatment of the water-NAPL mass transfer equations appears in the four-phase (also including
biofilm) analysis of Reference [18], with a minor simplification appearing in Reference [19], which
embeds an apparent assumption that dw is spatially-uniform. An alternative analysis which makes
different closure assumptions [20] also arrives at an equation with two sources that seemingly cannot
be re-expressed in Sherwood-Gilland form.

In Reference [17], the authors show that an ADRE with Sherwood-Gilland source term can be
derived by imposing four scale restrictions that they dub “dominant convective transport.” However,
some of these scale restrictions involve the quantities D∗

w and dw, which do not have a straightforward
interpretation, and so it is difficult to know when or if they are satisfied. In a similar study on
biofilm growth (where the “NAPL” grows according to Monod kinetics, rather than shrinks by
dissolution) [21], the authors obtained a closed, classic ADRE and in a follow-up study [22], the authors
showed that either ADRE or non-classical volume average behavior occurred, depending on the
coupling assumptions employed.

Informed by these works, in this note we reconsider the compatibility of volume averaged
micro-scale physics and the ADRE with a Sherwood-Gilland source. We begin from the microscopic
formulation employed by Reference [13]. However, we perform different simplifying analysis,
obviating the need for formal solution of closure boundary value problems relating fluctuations to
volume averaged quantities, yielding a slightly different volume averaged governing equation in terms
of independent variables ηn and 〈c〉w, still ostensibly with multiple sources, which is incompatible with
(1). We then show how using any Sherwood-Gilland model as a second governing equation relating ηn

and 〈c〉w causes one of the source terms to be negligible under advection dominated conditions much
more straightforward than those in [17], allowing emergence of the expected form of upscaled ADRE:

∂ 〈c〉w

∂t
+ 〈v〉w · ∇ 〈c〉w −∇ · Deff∇ 〈c〉w ∝ η

β
n
(
csat − 〈c〉w

)
. (7)

2. Formulation

2.1. Governing Equations

We are attempting to model a three-phase system, a characteristic portion of which is illustrated
in Figure 1, each phase of which occupies a respective volume fraction of averaging domain V(x)
ηw(x, t), ηn(x, t), and ηs, which satisfy

ηw + ηn + ηs = 1. (8)

We assume that the Darcy flux, q, for the system as a whole is fixed and satisfies ∇ · q = 0. Then,
it follows from the chain rule and the fact that 〈v〉w = q/ηw, that

∇ · 〈v〉w = − q
η2

w
· ∇ηw. (9)
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The ADE applies in the water phase:

∂c
∂t

+∇ · (cv) = ∇ · (D∇c) . (10)

The solid and NAPL phases are homogeneous and do not need internal mass balance equations.
However, the NAPL phase shrinks over time, yielding space to the water phase. This mass balance
can be expressed by:

ρn
∂ηn

∂t
=

1
V

∫
Γwn

D∇c · nwndAwn. (11)

We work extensively with this term and so make the definition

Q ≡ −ρn
∂ηn

∂t
, (12)

where Q represents the upscaled source per unit time from the NAPL phase into the water phase.

Figure 1. Schematic diagram of blobs of residual NAPL in pores defined by solid media otherwise
saturated with water, with averaging volume superimposed.

2.2. Coupling Conditions

We assume no-slip boundary conditions, local equilibrium at the surface of the NAPL and no flux
into the solid. Mathematically, these boundary conditions are expressed:

v = 0 xεΓwn, (13)

v = 0 xεΓws, (14)

c = csat xεΓwn, (15)

∇c · nwn = 0 xεΓws. (16)
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The solid volume fraction does not change with time, so the volume fractions can be coupled
according to the following relationship:

∂ηw

∂t
= −∂ηn

∂t
. (17)

3. Simplified Volume Averaging Analysis

We begin by applying the superficial averaging operator 〈·〉 to (10), yielding

∂ 〈c〉
∂t

+ 〈∇ · (cv)〉 = 〈∇ · (D∇c)〉 . (18)

We manipulate each of the three terms separately to write them all in terms of intrinsic volume
averages, simplifying each. We then assemble them and simplify further.

3.1. Accumulation Term

There is next to no analysis required here. The accumulation term can be expressed in terms of
intrinsic volume averages directly

∂ 〈c〉
∂t

= ηw
∂ 〈c〉w

∂t
+

∂ηw

∂t
〈c〉w . (19)

3.2. Advection Term

From volume averaging theorem (5):

〈∇ · (cv)〉 = ∇ · 〈(cv)〉+ 1
V

∫
Γwn

cv · nwndAwn +
1
V

∫
Γws

cv · nwsdAws, (20)

from which it follows from no-slip conditions (13) and (14), that 〈∇ · (cv)〉 = ∇ · 〈cv〉 = ∇ · ηw 〈cv〉w.
Further simplification follows from writing c and v in terms of their volume average and a perturbation:
c = 〈c〉w + c̃, and v = 〈v〉w + ṽ. Then, we may write 〈cv〉w = 〈c〉w 〈v〉w + 〈c̃ṽ〉w. We have

〈∇ · (cv)〉 = ∇ ·
(
ηw 〈c〉w 〈v〉w

)
+∇ ·

(
ηw 〈c̃ṽ〉w

)
= ∇ηw · 〈c〉w 〈v〉w + ηw∇ 〈c〉w · 〈v〉w + ηw 〈c〉w∇ · 〈v〉w + ηw∇ · 〈c̃ṽ〉w +∇ηw · 〈c̃ṽ〉w

. (21)

Note that we can manipulate this by applying (9), so that

ηw 〈c〉w∇ · 〈v〉w = ηw 〈c〉w
(
− q

η2
w
· ∇ηw

)
= −∇ηw 〈c〉w · 〈v〉w , (22)

which can be back-substituted into (21), canceling and leading to the conclusion

〈∇ · (cv)〉 = ηw∇ 〈c〉w · 〈v〉w + ηw∇ · 〈c̃ṽ〉w +∇ηw · 〈c̃ṽ〉w . (23)

For our purposes, we are primarily interested in the form of the source terms. It may thus be
reasonable to employ a mean field approximation and discard the small double fluctuation term 〈c̃ṽ〉,
however we retain it presently, later to be incorporated into an effective dispersion.
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3.3. Diffusion Term

Again applying volume averaging theorem (5), we see that

〈∇ · (D∇c)〉 = ∇ · 〈D∇c〉+ D

V

∫
Γwn

∇c · nwndAwn +
D

V

∫
Γws

∇c · nwsdAws, (24)

or, by application of the no-flux boundary conditions, that

〈∇ · (D∇c)〉 = ∇ ·D 〈∇c〉+ D

V

∫
Γwn

∇c · nwndAwn, (25)

where we observe by direct inspection that the second term is a volumetric NAPL sink, representing
diffusion of solute from the water phase into the NAPL. We thus replace it with the symbol −Q,
as defined in (12), emphasizing this role. By another application of an averaging theorem (4),
it follows that

∇ ·D 〈∇c〉 = D∇ · ∇ 〈c〉+D∇ ·

 1
V

∫
Γws

cnwsdAws

+D∇ ·

 1
V

∫
Γwn

cnwndAwn

 , (26)

We now strongly diverge from the approach in Reference [13]. We eliminate the middle term on
the RHS by noting that the average of nws at the elements of Γws intersecting any plane is 0, and that
V can be partitioned into planar slices, each orthogonal to ∇ 〈c〉, on which the expected value of c
is constant. Assuming ergodicity, we conclude that the portion in square brackets is 0, independent
of location, meaning that its divergence is also zero. To simplify the third term, we apply a result
developed in Appendix B ( 1

V

∫
Γwn

nwndAwn = −∇ηw). Observing that c = csat everywhere on Γwn,
we see that:

∇ ·D 〈∇c〉 = ηwD∇2 〈c〉w + 2D∇ηw · ∇ 〈c〉w +D∇2ηw
[
〈c〉w − csat

]
. (27)

Thus,

〈∇ · (D∇c)〉 = ηwD∇2 〈c〉w + 2D∇ηw · ∇ 〈c〉w +D∇2ηw
[
〈c〉w − csat

]
−Q. (28)

3.4. Assembly and Simplification of Governing Equation

Inserting (19), (23), and (28) into (18), and placing the variables in each of the terms in a consistent
order yields:

ηw
∂ 〈c〉w

∂t
+

∂ηw

∂t
〈c〉w + ηw 〈v〉w · ∇ 〈c〉w + ηw∇ · 〈c̃ṽ〉w +∇ηw · 〈c̃ṽ〉w = −D∇2ηwcsat −Q. (29)

We here diverge again from the customary volume averaging approach by immediately making
the closure approximation 〈c̃ṽ〉w = −k∇ 〈c〉w. Customarily, this relationship would emerge from
solution of a closure problem, as in Reference [9]. However, this particular dispersive flux relationship
is “common practice” [23] (p. 174) textbook material (see also Reference [24], p. 244) and does not
affect the form of the NAPL source term, which is the focus of the analysis in this note. Thus, we take
the liberty of skipping its derivation.

ηw
∂ 〈c〉w

∂t
+

∂ηw

∂t
〈c〉w + ηw 〈v〉w · ∇ 〈c〉w − kηw∇2 〈c〉w − k∇ηw · ∇ 〈c〉w

= ηwD∇2 〈c〉w + 2D∇ηw · ∇ 〈c〉w +D∇2ηw
[
〈c〉w − csat

]
−Q. (30)
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This can be rearranged with its LHS containing only standard transport terms, and its RHS
“source” terms relating to the dissolution of the NAPL:

ηw
∂ 〈c〉w

∂t
+ ηw 〈v〉w · ∇ 〈c〉w − ηw (D + k)∇2 〈c〉w

= (2D + k)∇ηw · ∇ 〈c〉w +D∇2ηw
[
〈c〉w − csat

]
−Q− ∂ηw

∂t
〈c〉w . (31)

We simplify this equation by noting that Q = ρn
∂ηw
∂t , and since the water phase solute

concentration is dilute, 〈c〉w � ρn. It follows immediately that
∣∣∣ ∂ηw

∂t 〈c〉
w
∣∣∣� |Q|:

ηw
∂ 〈c〉w

∂t
+ ηw 〈v〉w · ∇ 〈c〉w − ηw (D + k)∇2 〈c〉w

= (2D + k)∇ηw · ∇ 〈c〉w +D∇2ηw
[
〈c〉w − csat

]
−Q.

(32)

The LHS of this equation resembles the desired advection-dispersion equation (multiplied through
by ηw). A necessary condition for this to reduce to an ADRE with Sherwood-Gilland source (which
depends on only the concentration difference

[
〈c〉w − csat

]
) to apply, the equation must simplify so that

the mixed gradient term (proportional to ∇ηw · ∇ 〈c〉w) on the RHS is eliminated. Doing so requires
special assumptions. We consider one such case below.

3.5. Special Case: Advection Domination

In light of the failure to find an ADRE with Sherwood-Gilland source under general conditions, we
follow Reference [17] in considering strongly advective conditions, which we here define as conditions
in which

∥∥〈v〉w∥∥ � (2D + k) /L. As ηw is less than unity, has a system minimum value above
zero, and is a volume averaged quantity, ‖∇ηw‖ < L−1. Thus, under sufficiently strongly advective
conditions,

∥∥ηw 〈v〉w
∥∥ � ‖(2D + k)∇ηw‖, allowing neglect of the ∇ 〈c〉w term on the RHS of (32),

as its coefficient is dominated by the one on the LHS. In such a case, one may simplify:

∂ 〈c〉w

∂t
+ 〈v〉w · ∇ 〈c〉w − (D + k)∇2 〈c〉w =

1
ηw

[
D∇2ηn

[
csat − 〈c〉w

]
−Q

]
. (33)

In order to close the system, we need a second equation to relate 〈c〉w and ηn. Note also that we
are aiming to upscale the dissolution dynamics, and we only have a microscopic equation for Q, which
is expressed in terms of the local concentration c, rather than the needed, upscaled 〈c〉w. To solve both
problems, we require an ansatz relating Q to 〈c〉w and ηw, for which we consider the Sherwood-Gilland
relation. We stress, lest there be any confusion that we “get out what we put in,” we are not deriving
the Sherwood-Gilland formulation from first principles in this section, only considering whether it is
consistent with the microscopic formulation presented in Section 2. In the context of our analysis, this
means that substitution into (33) ought to transform it to be similar to (7). For our analysis, we combine
certain quantities defining the mass-transfer coefficient K in (2) into a single parameter, ω, and write

Q = −ωη
β
nD
[
csat − 〈c〉w

]
. (34)

From dimensional considerations, it is clear that ω has units of L−2 and we observe that it plays
the role in the above equation of the squared reciprocal of a characteristic length (“boundary layer”)
for Fickian diffusion. Substituting (12), the definition for Q, into (34) yields:

∂ηn

∂t
= −η

β
n

ωD

ρn

[
csat − 〈c〉w

]
. (35)
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This is a second, independent equation in terms of our dependent variables 〈c〉w and ηw. To arrive
at (7), it then suffices to establish that η

β
n ω � ∇2ηn. For β = 1, a characteristic value in the middle

of the range of proposed values of β (recall that these ranged from 0.6 to 1.24), (35) can be solved
explicitly using the usual strategy for first-order non-homogeneous equations to generate

ηn(x, t) = ηn(x, 0) exp

−
t∫

0

ωD

ρn

[
〈c〉w (x, τ)− csat

]
dτ

 . (36)

By differentiating (36), we observe that

∇2ηn = ηnω

[
ω
(

D
ρn

)2 (∫ t
0 ∇ 〈c〉

w (x, τ)dτ ·
∫ t

0 ∇ 〈c〉
w (x, τ)dτ

)
+
(

D
ρn

) ∫ t
0 ∇

2 〈c〉w (x, τ)dτ

]
. (37)

Recalling that L is the length scale of the averaging volume, we see that

∇2ηn < ηnω

(
1
L2

)[
ω (D t)2

(
csat

ρn

)2
+ (D t)

(
csat

ρn

)]
(38)

< ηnω

[
(ωD t)2

(
csat

ρn

)2
+ (ωD t)

(
csat

ρn

)]
, (39)

where the last inequality follows because the length scale of pore scale diffusion is small relative to
the length scale of volume averaging. Because NAPL are sparingly soluble, it follows that csat

ρn
� 1.

We may understand ωD t as an expected number of boundary layer length scales traversed by a solute
particle due to diffusion since source emplacement. As long as (ωD t)

(
csat
ρn

)
� 1, it follows that

ηnω � ∇2ηn and thus that

∂ 〈c〉w

∂t
+ 〈v〉w · ∇ 〈c〉w − (D + k)∇2 〈c〉w =

ωηnD

ηw

(
csat − 〈c〉w

)
. (40)

Under these specific conditions, to the extent that ηw can be treated as approximately constant
(for instance, if everywhere ηw � ηn), we do recover the ADRE with Sherwood-Gilland source term.

4. Conclusions

In this note, we consider the dissolution of residual NAPL in saturated porous media by
means of a nonstandard volume averaging analysis. Our approach applies a variety of strategies
(including direct application of boundary conditions, a physics-preserving domain simplification,
elimination of coefficient-dominated terms, a geometric lemma, and some other physically-grounded
approximations) to simplify the phase boundary jump discontinuity terms that arise under superficial
volume averaging and perform analysis using only the volume averaged equation. This is in contrast
with the traditional volume averaging approach which entails developing a separate equation for
concentration fluctuations which contains volume averaged terms such as “sources,” and formally
closing the system by solving one or more boundary value problems to determine the functional form
of the dependence of the fluctuations on the volume averaged quantities and then substituting these
back into the volume averaged equation. The analysis here is radically simplified.

The particular problem we consider is whether Sherwood-Gilland empirical models are consistent
with the micro-scale physics. Existing volume averaging analyses have led to equations that look much
unlike the ADRE with a Sherwood-Gilland-type source, so this was a topic worth considering explicitly.
The only attempt to recover a Sherwood-Gilland formula that we are aware of in the previous literature
is due to Reference [17]: the form is recovered by applying four separate scale constraints that are
defined in terms of the formal solutions to fluctuation boundary value problems formulated as part of
the volume averaging process. Unfortunately, it is difficult to predict a priori whether these constraints
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are satisfied. Above, we derive the volume-averaged transport equation using the simplified volume
averaging approach and find it is not an ADRE with a Sherwood-Gilland source term. We subsequently
consider a physical restriction of advection-dominated behavior, but unlike Reference [17], it only
requires a single restriction on the strength of advective transport relative to dispersive transport.
We explicitly corroborate usage of the Sherwood-Gilland source model with the ADRE under such
conditions when β = 1.

Funding: This research received no external funding; SKH holds the Helen Unger Career Development Chair in
Desert Hydrogeology.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Nomenclature

Here, we summarize the algebraic symbols and special operators introduced in this note. Phase
subscripts or superscripts i and j are placeholders for any of the three phases in the system: n for
NAPL, s for solid, and w for water. Bold is used to denote vector and matrix quantities (with the
indicated dimensions applying to each component), with ordinary-weight Roman text denoting scalars.
Dimensions are encoded in accordance with the SI standard: M for mass, L for length, and T for time,
with a one indicating a dimensionless quantity.

Symbol Dimensions Description

〈·〉 Superficial volume average operator

〈·〉i Intrinsic volume average operator for i phase

Γij Locus of interface between phases i and j within V

V(x) Spatial region with centroid at x over which volume averaging occurs

α [1] Fitted constant in empirical model of mass transfer coefficient K

β [1] Fitted exponent in empirical model of mass transfer coefficient K

γ [1] Fitted exponent in empirical model of mass transfer coefficient K

ηi [1] Fraction of V occupied by i phase

κ [T−1] Mass transfer coefficient in (6), as derived in [13]

ρn [ML−3] Density of NAPL

ω [L−2] Mass transfer coefficient

c [ML−3] Chemical concentration in the water phase

csat [ML−3] Thermodynamic saturation chemical concentration in the water phase

dm [L] Characteristic length of porous media

dw [LT−1] Velocity-like closure variable in (6), as derived in [13]

Deff [L2T−1] Effective Fickian dispersion coefficient

D∗
w [L2T−1] Dispersion-like closure variable in (6), as derived in [13]

dAij [L2] Infinitesimal surface element on Γij

dV [L3] Infinitesimal volume element

D [L2T−1] Fickian diffusion constant

Ii(x) [1] Indicator function for location x belonging to the i phase

k [L2T−1] Closure variable representing dispersive flux

K [T−1] Mass transfer coefficient from NAPL to water phase

L [L] Length scale of averaging volume; V = O(L3)

nij [1] Normal vector on interface Γij directed from i phase into j phase

q [LT−1] Darcy velocity near NAPL source zone
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Symbol Dimensions Description

Q
[
ML−3T−1] Strength of NAPL-to-water mass source

Re [1] Reynolds number

Sn [1] NAPL saturation (= ηn/(ηn + ηw))

t [T] Time

u [LT−1] Velocity-like term in (6), as derived in [13]

v [LT−1] Pore water velocity

V [L3] Physical volume of V

x [L] Spatial position vector

Appendix B. Derivation of a Geometric Lemma

This is a simplification of a “geometric lemma” presented by Whitaker on p. 17 of [9].
The derivation follows from use of a conceptual simplification of the domain—eliminating all
NAPL-solid interfaces by imagining an infinitesimally thin water layer between the NAPL and
the solid—that we show does not alter the flow or transport in the system or the volume averaging
mathematics. Physically, because of the no-slip boundary conditions, there is no flow in the new
notional, infinitesimally-thin water layers. Because any solute in these layers is at csat, no net
NAPL-water mass transfer takes place there. And because the “new” water has infinitesimal
volume, it represents a negligible source of mass into the existing pore water phase at the former
NAPL-water-solid three-way interfaces. Mathematically, this simplification eliminates the interface
Γns, therefore eliminating terms of the form 1

V

∫
Γws

f nwsdAws, for arbitrary f , when the appropriate
volume averaging theorem is applied. Instead, new (collocated) interfaces Γ∗nw and Γ∗ws come into
being. However, 1

V

∫
Γ∗ns

f nnwdAnw + 1
V

∫
Γ∗ws

f nwsdAws = 0 for any f , because Γ∗nw and Γ∗ws are the
same surface, and the two integrals have opposite-directed normal vectors. Thus, the mathematics of
volume averaging are unchanged.

Having established that we are always justified in assuming no NAPL-solid interface,
the geometric lemma follows from application of volume averaging theorem (4) to an indicator
function, Iw, representing the presence of the water phase:

〈∇Iw〉 = ∇ 〈Iw〉+
1
V

∫
Γwn

nwndAwn +
1
V

∫
Γws

nwsdAws, (A1)

noticing that everywhere (except for jump discontinuities) Iw is a constant, so 〈∇Iw〉 = 0 and
〈Iw〉 = ηw. Thus,

∇ηw = − 1
V

∫
Γwn

nwndAwn −
1
V

∫
Γws

nwsdAws. (A2)

We may apply identical analysis to the solid phase:

∇ηs = −
1
V

∫
Γsn

nsndAsn −
1
V

∫
Γsw

nswdAsw, (A3)

but notice that because porosity is constant, ∇ηs = 0. Furthermore, because we have notionally
eliminated the NAPL-solid interface by imagining an infinitesimal layer of saturated, immobile water
phase between them,

1
V

∫
Γsw

nswdAsw = 0. (A4)
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Noting that 1
V

∫
Γws

nwsdAws = − 1
V

∫
Γsw

nswdAsw = 0, it follows immediately from (A2) that

1
V

∫
Γwn

nwndAwn = −∇ηw. (A5)

References

1. Miller, C.; Poirer-McNeill, M.; Mayer, A.S. Dissolution of Trapped Nonaqueous Phase Liquids: Mass Transfer
Characteristics. Water Resour. Res. 1990, 26, 2783–2796. [CrossRef]

2. Imhoff, P.T.; Jaffe, P.R.; Pinder, G.F. An experimental study of complete dissolution of a nonaqueous phase
liquid in saturated porous media. Water Resour. Res. 1993, 30, 307–320. [CrossRef]

3. Powers, S.E.; Abriola, L.M.; Weber, W.J. An experimental investigation of nonaqueous phase liquid
dissolution in saturated subsurface systems: Transient mass transfer rates. Water Resour. Res. 1994,
30, 321–332. [CrossRef]

4. Saba, T.; Illangasekare, T.H. Effect of groundwater flow dimensionality on mass transfer from entrapped
nonaqueous phase liquid contaminants. Water Resour. Res. 2000, 36, 971–979. [CrossRef]

5. Nambi, I.M.; Powers, S.E. Mass transfer correlations for nonaqueous phase liquid dissolution from regions
with high initial saturations. Water Resour. Res. 2003, 39. [CrossRef]

6. Hossain, S.Z.; Mumford, K.G.; Rutter, A. Laboratory study of mass transfer from diluted bitumen trapped in
gravel. Environ. Sci. Process. Impacts 2017, 19, 1583–1593. [CrossRef]

7. Sherwood, T.K.; Gilliland, E.R. Diffusion of Vapors through Gas Films. Ind. Eng. Chem. 1934, 26, 1093–1096.
[CrossRef]

8. Kokkinaki, A.; O’Carroll, D.M.; Werth, C.J.; Sleep, B.E. An evaluation of Sherwood-Gilland models for NAPL
dissolution and their relationship to soil properties. J. Contam. Hydrol. 2013, 155, 87–98. [CrossRef]

9. Whitaker, S. The Method of Volume Averaging; Springer: Berlin/Heidelberg, Germany, 1999; p. 221.
10. Whitaker, S. Diffusion and Dispersion in Porous Media. AIChE J. 1967, 13, 420–427. [CrossRef]
11. Slattery, J.C. Flow of Viscoelastic Fluids Through Porous Media. AIChE J. 1967, 13, 1066–1071. [CrossRef]
12. Wood, B.D. The role of scaling laws in upscaling. Adv. Water Resour. 2009, 32, 723–736. [CrossRef]
13. Quintard, M.; Whitaker, S. Convection, dispersion, and interfacial transport of contaminants: Homogeneous

porous media. Adv. Water Resour. 1994, 17, 221–239. [CrossRef]
14. Porta, G.M.; Riva, M.; Guadagnini, A. Upscaling solute transport in porous media in the presence of an

irreversible bimolecular reaction. Adv. Water Resour. 2012, 35, 151–162. [CrossRef]
15. Porta, G.M.; Ceriotti, G.; Thovert, J.F. Comparative assessment of continuum-scale models of bimolecular

reactive transport in porous media under pre-asymptotic conditions. J. Contam. Hydrol. 2016, 185–186, 1–13.
[CrossRef]

16. Ma, Y.; Mohebbi, R.; Rashidi, M.M.; Manca, O.; Yang, Z. Numerical investigation of MHD effects on nanofluid
heat transfer in a baffled U-shaped enclosure using lattice Boltzmann method. J. Therm. Anal. Calorim. 2019,
135, 3197–3213. [CrossRef]

17. Quintard, M.; Whitaker, S. Dissolution of an Immobile Phase during Flow in Porous Media. Ind. Eng.
Chem. Res. 1999, 38, 833–844. [CrossRef]

18. Bahar, T.; Golfier, F.; Oltéan, C.; Benioug, M. An Upscaled Model for Bio-Enhanced NAPL Dissolution in
Porous Media. Transp. Porous Media 2016, 113, 653–693. [CrossRef]

19. Bahar, T.; Golfier, F.; Oltéan, C.; Lefevre, E.; Lorgeoux, C. Comparison of theory and experiment for NAPL
dissolution in porous media. J. Contam. Hydrol. 2018, 211, 49–64. [CrossRef]

20. Kechagia, P.E.; Tsimpanogiannis, I.N.; Yortsos, Y.C.; Lichtner, P.C. On the upscaling of reaction-transport
processes in porous media with fast or finite kinetics. Chem. Eng. Sci. 2002, 57, 2565–2577. [CrossRef]

21. Golfier, F.; Wood, B.D.; Orgogozo, L.; Quintard, M.; Buès, M. Biofilms in porous media: Development of
macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions.
Adv. Water Resour. 2009, 32, 463–485. [CrossRef]

http://dx.doi.org/10.1029/WR026i011p02783
http://dx.doi.org/10.1029/93WR02675
http://dx.doi.org/10.1029/93WR02923
http://dx.doi.org/10.1029/1999WR900322
http://dx.doi.org/10.1029/2001WR000667
http://dx.doi.org/10.1039/C7EM00457E
http://dx.doi.org/10.1021/ie50298a016
http://dx.doi.org/10.1016/j.jconhyd.2013.09.007
http://dx.doi.org/10.1002/aic.690130308
http://dx.doi.org/10.1002/aic.690130606
http://dx.doi.org/10.1016/j.advwatres.2008.08.015
http://dx.doi.org/10.1016/0309-1708(94)90002-7
http://dx.doi.org/10.1016/j.advwatres.2011.09.004
http://dx.doi.org/10.1016/j.jconhyd.2015.12.003
http://dx.doi.org/10.1007/s10973-018-7518-y
http://dx.doi.org/10.1021/ie980212t
http://dx.doi.org/10.1007/s11242-016-0718-7
http://dx.doi.org/10.1016/j.jconhyd.2018.03.004
http://dx.doi.org/10.1016/S0009-2509(02)00124-0
http://dx.doi.org/10.1016/j.advwatres.2008.11.012


Water 2019, 11, 1525 12 of 12

22. Orgogozo, L.; Golfier, F.; Buès, M.; Quintard, M. Upscaling of transport processes in porous media with
biofilms in non-equilibrium conditions. Adv. Water Resour. 2010, 33, 585–600. [CrossRef]

23. Rubin, Y. Applied Stochastic Hydrogeology; Oxford University Press: New York, NY, USA, 2003; p. 391.
24. Gelhar, L.W. Stochastic Subsurface Hydrology; Prentice-Hall: Englewood Cliffs, NJ, USA, 1993; p. 390.

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.advwatres.2010.03.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Formulation
	Governing Equations
	Coupling Conditions

	Simplified Volume Averaging Analysis
	Accumulation Term
	Advection Term
	Diffusion Term
	Assembly and Simplification of Governing Equation
	Special Case: Advection Domination

	Conclusions
	Nomenclature
	Derivation of a Geometric Lemma
	References

