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Abstract: Multidimensional simulators of channel and river flow are widely used in industry and
academia, raising the question about whether the classical one-dimensional theory of open-channel
flow remains relevant in hydraulic engineering. Channel contractions that induce transcritical
flow are interesting scenarios to test the classical 1D theory against multidimensional simulations,
because supercritical flow in channels of variable width leads to multidimensional flow structures.
Transcritical flows are important in practice, because the ensuing hydraulic jumps and regions
of supercritical flow may damage hydraulic structures that otherwise operate under tranquil
conditions. We compare well-resolved simulations of the 2D shallow-water Equations (SWE) with
1D energy-momentum calculations for flow past symmetric channel contractions. We analyze
the accuracy of the classical energy-momentum gradually-varied flow theory to predict the onset
of regime transitions and the location of hydraulic jumps. We test the relative performance of
the 1D theory for different constriction geometries, and identify the flow mechanisms behind the
discrepancies between the 1D and 2D predictions. The grid resolution used in the 2D SWE plays an
important role in these predictions, because coarse-grid 2D simulations yield essentially quasi-1D
results. Considering its simplicity and negligible computational cost compared with the 2D SWE
simulations, the classical 1D theory performs remarkably well for a wide range of flow conditions
and contraction geometries. In contrast, we observe large deviations between the 1D and 2D models
in flow past abrupt contractions with a large width ratio, as expected. Only modified versions of the
1D theory, taking into account intense local head losses and the propagation of spatial flow structures
downstream from the contraction, can succeed at describing these flow scenarios.

Keywords: hydraulic engineering; open channel flow; transcritical flow; computational hydraulics

1. Introduction

The concepts of specific energy and momentum, developed by Bakhmeteff more than a century
ago to describe the hydraulics of open channel flow [1,2], have been at the core of the engineering
practice and curriculum in recent years [3,4]. Coupled with the equations of motion, and supplemented
with models of flow resistance and assumptions of hydrostatic pressure and uniform flow across the
channel width that render the problem one-dimensional, the energy-momentum theory provides an
elegant and effective approach to the design of hydraulic structures and to the study of environmental
flows [5,6]. Sophisticated multidimensional hydrodynamic models for free surface flow have recently
become available and are widely used in industry and academia [7,8]. The possibility of conducting
detailed multidimensional simulations raises the question about whether the classical theory of open
channel flow remains relevant in engineering practice, or if it has rather become a back-of-the-envelope
exercise aimed at developing hydraulic intuition.
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Channel transitions, including expansions, contractions, channel bends or bridge piers,
are incorporated into the classical theory as local features, and the associated head losses are
either neglected or modeled through local energy loss terms [3,4]. Perhaps the most interesting
scenarios of flow in channel transitions are those that induce changes in the flow regime—transcritical
flows [9,10]—because the presence of supercritical flow regions and hydraulic jumps may have
potentially damaging effects on hydraulic infrastructure that otherwise operates under tranquil flow
conditions [3]. From the perspective of hydraulic design, complicating factors include the onset of
spatial (two-dimensional) flow structures that dominate supercritical regions, and the possibility of
near-critical scenarios leading to asymmetric flow patterns and undular hydraulic jumps [11–14].

There is a vast literature, dating back to Ippen and co-workers [15–17], on understanding the
mechanics of high-velocity flow in open channels of variable width, with an emphasis on the design of
hydraulic structures operating under supercritical conditions (e.g., the design of supercritical channel
junctions [18,19] and channel expansions [20]). Recent topics in high-velocity channel flow include the
possibility of multiple steady states induced by the complex shock wave interaction in supercritical
flow through contractions [21], and the emergence of hysteresis in open channel flow [22,23].

The subcritical-supercritical-subcritical transition that may occur at a gradual or sudden
contraction in horizontal or mildly sloped channels has been thoroughly studied since Khafagi’s
seminal work on Venturi flumes [24]. For approaching supercritical flow at the channel throat, the key
experimental objective has been to understand the structure of the energy dissipation mechanisms
in the downstream expansion region [25,26], characterizing the flow morphology and location of
hydraulic jumps in the stilling basin through the approach Froude number, expansion geometry
and tailwater depth [26–28]. In relatively abrupt transitions, where separated flow occurs at the
enlargement of the channel width, different jump morphologies have been identified depending on
the momentum content of the supercritical and subcritical regions [26,28]. One of the main practical
issues from a design point of view arises from the tendency for asymmetric flow patterns to ensue [26].

The two-dimensional depth-averaged shallow-water Equations (2D SWE) have emerged as
a robust and efficient tool for the simulation of surface flow on both natural and man-made
environments [7,8,29]. Flow simulators based on the SWE have been benchmarked against analytical
solutions [30,31], small scale laboratory experiments [30,32–37], and well documented field-scale
cases [38–40]. Channel transition problems have extensively been simulated using the 2D SWE,
with particular emphasis on the effect of channel contractions on the propagation and reflection
of surface waves [30], the comparison between simulations and experiments [32,41–43], and the
generation of oblique standing waves induced by the channel geometry under supercritical flow
conditions [32,37,44].

A limitation of depth-averaged models in describing free surface flow past a sharp channel
contraction/expansion is the assumption of negligible vertical accelerations, which has been
identified as a source of error in flows in non-prismatic channels [45] and over curved beds [46–48].
Extended hydrodynamic theories of open channel flow, based on Boussinesq-type second order
models that account for curvilinear streamlines and non-hydrostatic pressures [49], have been
successfully applied to steady [45,48] and unsteady problems [50], including the analysis and design
of Venturi flumes [45,51]. Most current 2D flow simulators, however, are based on the standard SWE
and adopt the simplifying assumption of hydrostatic pressure.

In this study we compare well resolved steady-state 2D shallow-water simulations with 1D
energy-momentum calculations for transcritical flow past symmetric channel contractions (Figure 1).
Our main objective is to quantify the impact of 2D flow structures on the validity of the classical
theory—as defined by its agreement with the multidimensional shallow-water theory—for transcritical
flows induced by spatial variations in channel width. In particular, we focus on the impact of flow
detachment and oblique standing waves on the validity of the 1D theory for laboratory flumes and
kilometer-scale channels (Figure 1). We compare 1D and 2D predictions of the onset of regime change
at the contraction, and of the location of the hydraulic jump downstream. We test those predictions
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against laboratory-scale flume experiments, and identify the sources of model discrepancy for long
channels where slope and friction losses determine the available energy at the contraction.

The paper begins with a brief description of the 1D and 2D modeling approaches (Section 2).
We describe two validation/verification cases, whose main objective is to test whether the water
surface profiles computed using the 1D and 2D models match for simple subcritical flows in channels
of variable width. We validate the models using experimental observations of supercritical and
transcritical flow in laboratory-scale flumes (Section 3). We then move to transcritical flow in long
channels with slope and significant bed friction (Section 4), where the discrepancies between 1D and
2D models become more apparent. We compare their predictions of the location of the hydraulic
jump downstream of a relatively sharp contraction in a kilometer-scale channel, and find that the 1D
theory is more conservative from a design perspective: it slightly overpredicts the distance between
the downstream edge of the contraction and the jump, hence predicting an earlier regime transition at
the contraction as the tailwater depth decreases. We perform a grid refinement study to investigate
the impact of grid resolution on capturing the strong 2D features appearing downstream of the
channel throat (Section 4.2). Our refinement study suggests that coarse grid 2D simulations lead
to quasi-1D water surface results, which essentially coincide with the predictions of the 1D theory.
Based on this observation, we emphasize that only well resolved 2D models can capture the 2D
features that are responsible for the deviations between the 1D and 2D approaches. Finally, we study
the impact of contraction geometry on the flow patterns and relative performance of the 1D theory
(Section 4.2), and discuss the main flow mechanisms behind the discrepancy between 1D and 2D
predictions (Section 5).
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Figure 1. We study free surface flow in long channels, where tranquil flow under mild slope
conditions is altered by a symmetric contraction. Depending on channel geometry and flow parameters,
the contraction may induce a transition from subcritical to supercritical regime at the narrowest
throat, and then back to subcritical flow downstream of it. Transcritical flow is revealed by distinctive
two-dimensional flow patterns, both in terms of water surface morphology and spatial structure of
the velocity field. Typical flow features associated with transcritical flow past a contraction include
oblique standing waves and flow separation that disturb the flow over long distances, promoting flow
focusing, the appearance of stagnation regions and the loss of flow symmetry.

2. Materials and Methods

2.1. Steady-State Water Surface Profiles for Gradually Varied Open Channel Flow

Assuming uniform velocity across the channel width, hydrostatic pressure and steady-state
flow conditions, we model gradually varied flow in channels of constant slope and discharge, Q,
using Bresse’s extension to nonprismatic geometries of the 1D momentum equation [52]:
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dh
dx

=

sin θ − S f +
Q2

gA3
∂A
∂x

cos θ − Q2b
gA3

, (1)

where h is the width-averaged water depth, x denotes distance along the bottom of the channel, θ is the
bottom slope angle, g is the gravity acceleration, and b is the top channel width. We consider channels
of rectangular cross section, so that A = bh and the partial derivative in (1) reduces to ∂A/∂x = h∂b/∂x.
The friction slope, S f , is modeled using Manning’s formula:

√
S f =

nQ (b + 2h)2/3

(bh)5/3 , (2)

where n [s·m−1/3] is the Manning friction coefficient. We drop units for n hereafter.
Numerical integration of Equations (1) and (2), upstream or downstream of a control section or
boundary condition, provides the basic building block of water surface profiles in the classical
theory of open channel flow—the backwater curves [3,5,6]. Flow control section refers to locations
along the channel where critical flow is established, separating segments operating in subcritical
regime—with downstream hydraulic control—from those in supercritical regime—with upstream
hydraulic control [53]. The concept of critical flow—corresponding to minimum specific energy for a
given discharge—is a central one in open channel hydraulics [10,53,54]. In the classical interpretation,
critical sections correspond to singularities of the backwater Equation (1):

cos θ − Q2b
gA3 = 0. (3)

For small channel slopes and rectangular cross sections, where cos θ ≈ 1 and A = bh, the local
critical depth hc satisfies the well know relationship Fr = 1, where Fr is the Froude number,
defined as Fr2 = Q2/(gb2h3

c ). General procedures to identify control sections for non-rectangular
channels with spatially-varying width have been proposed in [52].

2.2. Solution of the 2D Depth-Integrated Shallow-Water Equations (SWE)

We use the freely available Iber code [8,55], which solves the depth-averaged shallow-water
equations using a finite volume scheme that is well suited for unstructured meshes, handling irregular
topographies, friction losses and wet-dry fronts consistently [55]. The mass and momentum balance
equations are written as a system of conservation laws with source terms:

∂h
∂t

+
∂hUx

∂x
+

∂hUy

∂y
= 0, (4)

∂hUx

∂t
+

∂

∂x

(
hU2

x + g
h2

2

)
+

∂

∂y
(
hUxUy

)
= −gh

∂zb
∂x
−

τb,x

ρ
, (5)

∂hUy

∂t
+

∂

∂x
(
hUxUy

)
+

∂

∂y

(
hU2

y + g
h2

2

)
= −gh

∂zb
∂y
−

τb,y

ρ
. (6)

In the above equations, h is the water depth, Ux and Uy are the depth-averaged velocities, ρ is the
water density and zb is the channel-bottom height. We consider channels of constant slope along their
longitudinal axis, S, so that ∂zb/∂x = −S and ∂zb/∂y = 0. Note that we neglect molecular and eddy
viscosities, wind surface tractions and Coriolis forces. For consistency with the 1D friction slope in (2),
the bed friction source terms are of the Manning form:

τb,x = ρgh
n2Ux|U|2

h4/3 , τby = ρgh
n2Uy|U|2

h4/3 . (7)
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To minimize numerical dissipation, we use a second-order scheme based on the Monotonic
Upwind Scheme for Conservation Laws (MUSCL) scheme [29,56]. High-resolution finite volume
methods [57–59], and in particular their higher order extensions [60,61] are well suited to capture the
complex 2D flow patterns that appear in supercritical shallow-water flows. In the present study we
consider a non-horizontal bottom and bed friction losses, so that it is important to use a well balanced
scheme that guarantees the balance between the flux gradient and the source terms under steady
conditions [62,63].

2.3. Model Verification Using Subcritical Flow: Simple Backwater Curves in Expanding/Contracting Channels

To test the hydraulic consistency of the 1D and 2D models, we present two verification cases. In the
first one, we compare the water surface profiles for steady-state flow in expanding/contracting channels
(Figure 2). We simulate flow in channels of different lengths whose widths vary between b1 = 50 m
and b2 = 40 m (contracting channel, Figure 2a), and between b1 = 30 m and b2 = 40 m (expanding
channel, Figure 2b). The discharge is Q = 500 m3/s, the constant channel slope is S = 0.002, and the
Manning coefficient is n = 0.04. We consider channels of increasing length, L = 1000, 2000 and 4000 m.

The construction of water surface profiles using the 1D energy-momentum theory begins with the
identification of the overall hydraulic controls, which are determined by channel geometry, flow rate
and bed friction properties. Our channel operates under mild slope conditions for the considered slope

and total discharge: the normal depth, h0, is larger than the critical depth, hc =
(

Q2

gb2

)1/3
. The normal

depth characterizes uniform flow in semi-infinite channels, so that the friction slope equals the channel
slope, S f (h0) = S = tan θ, where S f is Manning’s friction slope, defined in Equation (2). Under mild
slope conditions, hydraulic control is established from the downstream boundary, where we assume
free overfall conditions—we impose the critical depth, h = hc. The 1D backwater profile is recovered
by backwards integration of (1)–(2), with final condition h = hc (Figure 2).

For the 2D shallow-water simulations we set boundary conditions that are consistent with
subcritical flow: we impose the total discharge, Q at the inlet section (flow from left to right), and critical
flow conditions at the outlet. For comparison with the 1D solution, we report the water depth along
the center of the channel, which matches the backwater profile (Figure 2). Note that the water surface
profile is non-monotonic in the case of contracting channels (Figure 2a). In the case of 1D backwater
curves, this nontrivial effect is captured through the ∂A/∂x term in Equation (1).

As a second verification test, we consider subcritical flow past a mild contraction in a long channel
(Figure 3). The channel geometry is schematically represented in Figure 3a: a long channel with a total
length of 6 km and width b1 = 40 m presents a symmetric contraction, characterized by the width and
length of its narrowest segment, b2 = 26.5 m and Lb = 10 m, respectively, and by the length of the
symmetric contracting/expanding segments, Le. We consider two values of this length, Le = 100 m
(Figure 3c) and Le = 50 m (Figure 3d). An important geometrical parameter is the downstream
distance to the free overfall boundary condition, Ld. We set Ld = 4000 m, which essentially guarantees
normal-depth conditions at the downstream end of the contraction. We set the distance from the
upstream inlet boundary to the channel contraction as Lu = 2000 m. The channel slope is S = 0.002,
and the we consider steady-state flow with a discharge Q = 500 m3/s, so that the channel operates
under mild slope conditions. For this flow scenario, the approaching specific energy at the downstream
end of the contraction is sufficient for subcritical flow to overcome the contraction without a regime
change, so that we can directly integrate the 1D backwater profile from the final condition h = hc

(Figure 3b). While some 2D effects are already present in this simple exercise, a zoom-in view of
the predicted water surface profiles in the contraction area shows a good match between 1D and 2D
models (Figure 3c,d).

We found that the best match between the 1D and 2D profiles required the use of a slightly
smaller effective Manning coefficient for the 1D simulations. Hence, we set, n = 0.04 in the 2D model,
and n = 0.0389 in the 1D model. The need for this effective friction coefficient to achieve consistency
between the 1D and 2D models could be attributed to the spatial discretization, and to the effect of



Water 2019, 11, 1476 6 of 25

friction along the side channel walls. The latter is embedded in the 1D theory, but needs to be explicitly
discretized along the boundary edges of the finite volume grid in the 2D SWE. We maintain the use of
this effective Manning coefficient of n = 0.0389 in all 1D profiles hereafter, while we set n = 0.04 in the
2D simulations.

b1= 50 m
b2= 40 m

b1= 30 m
b2= 40 m

Figure 2. Model verification for subcritical flow in converging (a) and expanding (b) channels.
The channel slope is S = 0.002, the total discharge is Q = 500 m3/s and Manning’s friction coefficient
is n = 0.04. The boundary conditions in the 2D model are consistent with mild slope and subcritical
flow: known total discharge, Q, at the upstream left boundary, and critical flow at the downstream right
boundary. For the 1D theory we simply integrate (1)–(2) backwards with final condition h(L) = hc.
We observe a very good agreement between the 1D and 2D theories.

2.4. Construction of Water Surface Profiles for Transcritical Flow past a Contraction

We briefly discuss the energy–momentum method used to construct the water profiles for
transcritical flow (Figure 4). As in the verification cases of Section 2.3, we consider slopes,
discharges and friction parameters for which the channel operates under mild slope conditions:
the overall hydraulic control is exerted from downstream to upstream sections, and undisturbed flow
is subcritical. Geometrically, we consider long channels where the total discharge is known, and with
free overfall conditions at the outlet (as in the examples in Figure 3). For hydraulically long channels,
where the contraction is sufficiently far form the outlet, the water surface reaches the contraction
with uniform depth, h0. For finite, hydraulically short channels, the specific energy and depth at
the downstream end of the contraction are determined by upstream integration of (1)–(2), with final
condition h = hc (Figure 4). The resulting backwater curve approaches h0 asymptotically from the
critical depth—it is an M2 profile.

If the specific energy, as determined by the M2 backwater profile, is sufficient to overcome the
contraction, the flow remains subcritical along the channel, and we may continue integrating the M2
curve upstream (e.g., the second verification problem in Section 2.3). In the absence of head losses at
the channel contraction, subcritical flow requires the approaching energy to be larger than the critical
energy at the narrowest section of the channel. Otherwise, the specific energy is insufficient to maintain
subcritical conditions, indicating that the channel contraction induces a transition to supercritical flow.
Since we consider friction losses inside the contraction, as well as the effect of a variable cross section,
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a direct comparison of specific energies is not a valid test for regime change. Instead, transcritical flow
is revealed by the M2 profile crossing a singular point—falling below the local critical depth—as we
integrate upstream along the contraction.

Le = 50mLe = 100m

Figure 3. Comparison between 2D shallow-water simulations and 1D backwater curves for subcritical
flow past a symmetric contraction in a long channel. (a) Schematic plot of the channel geometry,
and full-channel water surface profile computed using the 1D theory. (b) Sample water surface profile
along the center of the channel, for Lu = 2000 m and Ld = 4000 m, and Le = 100 m. (c) Comparison of
water surface profiles predicted by the 1D and 2D models around the contraction, when the length
of the expansion zone is Le = 100 m. (d) Comparison for Le = 50 m. The 1D prediction is more
conservative: it yields a lower water depth at the narrowest section, therefore suggesting an earlier
onset of critical flow conditions at the contraction.

To reconstruct the water profile in transcritical scenarios, we begin by identifying the control
section inside the channel contraction; that is, the upstream-most section where critical depth is
observed. In the present case, the control section corresponds to the downstream edge of the narrowest
segment of the contraction (Figure 4). Hydraulic control dictates that we must integrate (1)–(2) forward,
with initial condition h = hc, ending at a hydraulic jump to the approaching M2 profile. We distinguish
between the case in which the jump remains in the expansion zone (Figure 4a), and the lower-energy
case in which the jump is expelled out of the channel constriction (Figure 4b). In either case the location
of the hydraulic jump is identified as the intersection between the specific momentum functions of the
M3 and M2 curves. The physical length and complex internal structure of the jump are neglected [64],
so for a rectangular channel the location is at the unique point where the depth of the approaching M2
profile, hM2 equals the conjugate of the upstream depth, hu,conj. We use the hydraulic jump formula for
rectangular channels:

hu,conj =
hu

2

(√
1 + 8Fr2

u − 1
)

, (8)
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where Fru is the Froude number computed with the upstream depth hu. Upstream from the critical section
the hydraulic control reverts to being exercised from downstream sections. Hence, the water profile
is constructed through backwards integration of (1)–(2), with final condition h = hc. Upstream from
the initial edge of the constriction we may observe either M1 or M2 profiles, depending on whether the
normal depth is asymptotically approached from above or from below.

locus of conjugate 
depths 

locus of 
conjugate depths 

Figure 4. Construction of water surface profiles for transcritical flow past a channel contraction using
the 1D energy-momentum theory. Blue arrows indicate hydraulic control under mild slope conditions,
and direction of integration of Equations (1) and (2). (a) A sample case where the hydraulic jump is
contained within the expansion zone. The distance from the center of the constriction to downstream
boundary condition is Ld = 250 m, the length of the segment with maximum contraction is Lb = 10 m,
the length of the contracting/expanding zones is Le = 50 m, and the channel widths b1 and b2 are
40 m and 15 m, respectively, according to the schematic in Figure 3a. The discharge is Q = 500 m3/s,
and Manning’s coefficient is n = 0.0389. (b) A sample case where the hydraulic jump is expelled
outside of the expansion zone. In this case Ld = 100 m and Le = 20 m.

3. Results: Model Validation Using Supercritical and Transcritical Flow in Laboratory-Scale Flumes

3.1. Supercritical Flow Past a Channel Contraction

In this section we consider the experimental set-up proposed by Ippen and Dawson [16],
which has been used as a benchmark for models of high-velocity open channel flow over the past
few decades [32,41,42,44]. The flume geometry and basic flow features (illustrated by the steady-state
water depth predicted by the 2D SWE) are shown in Figure 5a. The total channel length is 4 m, with a
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1.45 m contraction of 6◦. The discharge is Q = 0.041 m3/s, and the water depth at the inlet is 0.03 m,
which yields a Froude number Fr ≈ 4 at the inlet. The flow remains supercritical at the outlet section.

In Figure 5b we show the comparison between the recent experimental observations of [44] and
our 1D and 2D model predictions. For the 1D computations we construct the 1D water profile by
integrating Equations (1) and (2) forward from the inlet section, with initial condition h = 0.03 m.
For the 2D SWE, we impose supercritical inlet boundary conditions based on the known depth and
total discharge, Q = 0.041 m3/s, and supercritical flow at the outlet. Bottom friction plays an important
role in this supercritical flow scenario. In Figure 5 we used a Manning coefficient n = 0.013 for the 2D
model, and n = 0.01135 for the 1D solutions. For larger values of n the 1D theory predicts a transition
to subcritical flow near the outlet.

We compare the profiles of water depth along the channel centerline (Figure 5b). The 2D
shallow water theory predicts a complex pattern of oblique standing waves, while the 1D theory
yields gradually varied supercritical flow throughout. The experimental observations reveal a water
surface that is smoother than our 2D simulations, a feature that seems to be better described by 3D
simulations [44]. Qualitatively, both the 1D and 2D models capture the overall water surface profile
along the centerline.

The behavior of the water surface in this supercritical flow scenario is quite sensitive to bottom
friction. Figure 6 shows the 1D and 2D predictions using several values of the Manning coefficient
(n = 0.011, 0.01, 0.0075 and 0.005). Note that the experiments were conducted in a Plexiglass flume [44],
for which n ∼ 0.01 seems appropriate. Small values of the friction coefficient lead to a nearly constant
water depths downstream of the contraction, which are significantly smaller than the observed ones.

0.
61

𝑚𝑚

0.55 𝑚𝑚 1.45 𝑚𝑚

0.115 0.03h (m)

2 𝑚𝑚

0.
31

𝑚𝑚

Figure 5. Model validation: supercritical flow in a channel contraction. (a) Schematic description
of the flume geometry, according to the experiments of Ippen and Dawson [16], recently revisited
by [44]. We show the steady-state water depth for a flow discharge Q = 0.041 m3/s, inlet water
depth h = 0.03 m, and Manning friction coefficient n = 0.013. (b) Comparison between experimental
observations of the water surface profile along the channel centerline [44], and model predictions.

3.2. Gradually Varied Transcritical Flow in a Parshall Flume

To validate the 1D and 2D models in nontrivial cases of gradually varied flow, we consider
the experiments of [43], conducted in a Parshall flume model. The problem geometry and basic
flow features (illustrated by the steady-state water depth predicted by the 2D SWE) are shown in
Figure 7a. The flow discharge is Q = 0.0145 m3/s, and we set a small Manning coefficient, n = 0.005,
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consistent with smooth experimental surfaces. This experimental dataset has been previously used to
validate 2D shallow-water models [43] and one-dimensional, higher order theories of free surface flow
that incorporate non-hydrostatic pressure effects [45]. For sufficiently refined grids, a characteristic
pattern of cross-waves emerges in the supercritical region downstream of the throat (Figure 7a).
The flume is short enough so that the hydraulic jump is repelled outside of the domain and the flow
remains supercritical at the outlet.

For the 1D computations, the control section appears at the upstream edge of the break in
slope, x = 0.381 m. We construct the 1D water profile by integrating Equations (1) and (2) forward
and backward from the control section, with initial condition h = hc ∓ ε, where ε denotes a small
perturbation introduced to avoid the singularity at the critical depth. The critical depth at the narrowest
throat section is hc(b1 = 0.1524) = 0.0974 m. For the 2D SWE, we impose subcritical inlet boundary
conditions based on the known total discharge, Q, and supercritical discharge at the outlet. We find
good overall agreement between the 1D and 2D predictions of water surface profile, as well as between
models and experimental observations (Figure 7b). Models and experiments deviate more significantly
inside the throat section and upstream from it, which we attribute to the assumption of hydrostatic
pressure [45].

0.03 0.105 h (m) 

Figure 6. Model validation: supercritical flow in a channel contraction: impact of bottom friction.
We repeat the analysis of Figure 5 using several values of the Manning coefficient, and show the maps
of water depth (2D simulations) and 1D profiles for n = 0.011 (panel a), n = 0.01 (panel b), n = 0.0075
(panel c) and n = 0.005 (panel d).

To test whether the discrepancy between simulations and experiments is indeed due to model
assumptions rather than to grid refinement, we compare the water surface profiles along the center of
the channel for various refinement levels in the 2D SWE models (Figure 8). The differences among
simulation results are smaller than those between simulations and experiments, which suggests that
the latter are due to the simplifications inherent to the depth-averaged shallow water theory.
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0.3
04

8 !
 

0.1
52

4 !
 

0.3
04

8 !
 

0.381 ! 0.4826 ! 0.889 ! 

0.0856 ! 

0.1524 ! 

0.14 0.097 0.024 

Figure 7. Model validation: transcritical flow in a Parshall flume. (a) Schematic description of
the flume geometry, according to the experiments of [43], and steady-state water depth for a flow
discharge Q = 0.0145 m3/s. (b) Comparison between experimental observations of water surface
profile [43] and model predictions.

a

b

c

d

e

f

g

h (m) 0.15 0.025 

Figure 8. Impact of grid refinement on the comparison between the 2D shallow water equations and
experimental observations of flow past a Parshall flume. We show the maps of water depth (panels a–f)
and a comparison between water depth profiles along the axis of the flume (panel g) for several grid
sizes, ∆x.
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3.3. Gradually Varied Transcritical Flow in a Khafagi Flume

As a second validation case for gradually varied transcritical flows, we test model predictions
against laboratory data for the classical experiments of Khafagi [24], which have been previously used
to evaluate one-dimensional theories of free surface flow [45,51,52,54]. The problem geometry and
basic flow features (illustrated by the steady-state water depth predicted by the 2D SWE) are shown in
Figure 9. The Khafagi Venturi flume is horizontal, with a smooth converging section, a short contracted
throat, and a linear diffuser with relatively small expansion rate (1/8). For this validation we consider
a flume that is short enough for the hydraulic jump to be repelled out of the domain, so that flow
is supercritical at the outlet and the 1D equation of gradually varied flow is applied throughout
the domain. The control section appears at the upstream end of the linear expansion, x = 0.35 m,
and we construct the 1D water profile by integrating Equations (1) and (2) forward and backward from
that section. For the 2D SWE we impose subcritical flow at the inlet (known total discharge Q) and
critical/supercritical flow at the outlet.

We compare data and model predictions for two discharges (Q = 22 L/s and Q = 10 L/s),
and find good overall agreement between models and experiments (Figure 10). The largest discrepancy
appears in the upstream subcritical region for the Q = 22 L/s discharge, where both 1D and 2D
models predict larger water depths, which is consistent with previous calculations [52]. This deviation
could be attributed to non-hydrostatic pressure effects, as 1D theories that include them show a better
agreement with experimental data [45]. As in the Parshall flume model, we find very good agreement
between 1D and 2D models.

0.23 0.089 0.02 

0.3
 !

 

0.1
2 !

 

0.3
 !

 
0.3 ! 0.72 ! 

0.05 ! 

Figure 9. Model validation: transcritical flow in a Khafagi flume. Schematic description of the flume
geometry, according to the experiments of [24], and steady-state water depth for a flow discharge
Q = 22 L/s.

3.4. Predicting the Hydraulic Jump Position in the Khafagi’s Venturi Flume Experiments

In this section we consider a longer channel and use Khafagi’s full dataset [24]. We aim at
validating the ability of the 1D classical theory and 2D SWE to capture the location of the hydraulic jump
depending on the imposed tailwater depth at the downstream outlet section (Figure 11). We extend
the domain to −0.5 m ≤ x ≤ 2.34 m and, while friction losses seem small in this short channel,
we set a Manning coefficient of n = 0.009 to match the position of the hydraulic jump for the lower
tailwater levels. Hydraulic jumps in horizontal channels are known to be unstable with respect to
their longitudinal position [54], so we use bed friction both as a stabilization mechanism and as fitting
parameter. Note that we use the same value of n = 0.009 for all discharges and tailwater depths.
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) 
Figure 10. Model validation: transcritical flow in a Khafagi flume. Comparison between experimental
observations of water surface profile [24] and model predictions, for discharges of Q = 22 L/s
(a) and Q = 10 L/s (b). We consider a channel that is short enough for the hydraulic jump to be
repelled out of the simulated domain.

0.13 0.04 ℎ (m)	

Figure 11. Transition to subcritical flow in Khafagi’s experiments [24]. We illustrate the comparison
between model predictions and experimental results using the discharge Q = 10 L/s. Hydraulic jumps
are described as shocks by the models, and as smooth water surface variations in the experimental
data, due to the complex internal structure of the roller in the jump region. We use solid lines for
profiles along the channel axis in 2D simulations, broken lines for the 1D theory, and circles for the
experimental measurements. Line colors correspond to different imposed tailwater levels.

We interpret Khafagi’s water surface data as including the surface roller zone above the main flow
zone in hydraulic jumps. Neither the 1D classical theory nor the 2D SWE incorporate the dissipation
mechanisms needed to capture the internal structure of the surface roller, so that the jump length
and the details of the water profile across the jump are only approximate in the models. In fact,
both depth-integrated models describe hydraulic jumps as shocks, with a simple diffusive internal
structure in the case of the SWE. Some authors have proposed extended descriptions of the hydraulic
jump that incorporate the separation zone and full water profile, in the spirit of [65], but such discussion
falls beyond the scope of our study.

We compare the water surface profiles predicted by the models with the experimental observations,
and find good overall agreement (Figure 12). We show the comparison for the four discharge
values considered by Khafagi: Q = 10 L/s, (Figure 12a), Q = 14 L/s, (Figure 12b), Q = 17.5 L/s,
(Figure 12c), Q = 22 L/s, (Figure 12d). For each Q, the transition from free overfall to fully subcritical
conditions is characterized by a sequence of increasing tailwater depths: hd = 0.0880, 0.0940, 0.1120,
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and 0.1305 m (for Q = 10 L/s); hd = 0.1130, 0.1155, 0.1350, 0.1450, and 0.1698 m (for Q = 14 L/s);
hd = 0.1230, 0.1320, 0.1530, 0.1678, and 0.2010 m (for Q = 17.5 L/s); hd = 0.1420, 0.1560, 0.1700, 0.1790,
and 0.1970 m (for Q = 22 L/s).

The jump location predicted by the models is remarkably accurate, given the uncertainty due
to the representation of hydraulic jumps as shock fronts. The discrepancy between models and
experiments increases with flow discharge, which may be attributed to a more complex internal
structure of hydraulic jumps as the Froude number increases. The overall conclusion drawn from
the experimental validation exercise is that the 1D and 2D models predict very similar water surface
profiles and jump positions for transcritical flow past short, horizontal channels with relatively smooth
contractions and without significant flow separation. The deviations between models and experiments
may lie in the limitations of the depth-averaged theories, in particular the non-hydrostatic nature of
the pressure, and the impact of streamline curvature [45,46,51,54].

Figure 12. Predicting the transition to subcritical flow in Khafagi’s flume experiments: comparison
between models and experiments for four discharges Q = 10, 14, 17.5 and 22 L/s (panels a–d,
respectively). We use solid lines for profiles along the channel axis in 2D simulations, broken lines
for the 1D theory, and circles for the experimental measurements. Line colors correspond to different
imposed tailwater levels.
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4. Results: Transcritical Flow in Long Channels

4.1. Predicting the Onset of Transcritical Flow and Jump Position in a Long Channel with a Linear Contraction

An important practical question is whether the simplified 1D theory can be used to predict the
transition from fully subcritical flow to mixed-regime flow, where a repelled hydraulic jump appears
downstream of the contracted section. A correct description of such transition requires a model that
can capture the influence of downstream energy conditions, through an imposed tailwater level or the
effect of a backwater curve, on the specific energy and momentum transfer induced by the contraction.

We quantitatively compare the predictions of the 1D and 2D models in the case of a long
channel, where the available specific energy at the contraction is controlled by the tailwater depth
at the outlet, and by a relatively short backwater curve that develops upstream (Figures 13 and 14).
We use the basic channel geometry shown in Figure 3a, with approach flow width b1 = 40 m and a
symmetric, linear contraction that reduces the width to a minimum value b2 over a distance Le = 20 m.
This minimum width remains constant over a throat section of length Lb = 10 m. The Manning
coefficient is n = 0.04 and the geometric slope is S0 = 0.002. The distance to the outlet is short enough
(Ld = 125 m) so that the boundary condition is essentially maintained as the tailwater depth of the
jump. We solve steady-state flow for several values of the discharge, Q, throat width, b2, and imposed
tailwater depth, hd. For each parameter combination, we determine the location of the hydraulic
jump, xj, using the 1D theory and the 2D shallow-water Equations (Figure 13). For the shallow-water
simulations, we report the position of the jump based on the water depth profile along the axis of
the channel.

9.8 

0.98 

ℎ (
m)

	

xj	 hd	

Figure 13. Predicting the jump location downstream of a channel contraction: problem set-up.
We consider a long channel with slope S0 = 0.002, length of 2000 m and width b1 = 40. A symmetric,
contraction reduces the width to a value b2 over a distance Le = 20 m. We solve steady-state
flow for several values of the discharge Q, minimum width b2 and imposed downstream water
depth, hd, and compare the predicted location of the jump, xj, using the 1D theory and the 2D
shallow-water Equations (along the channel axis).
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We consider three flow discharges, Q = 500, 350 and 200 m3/s, and three width ratios, b1/b2 = 2, 4, 5,
and plot the predicted jump locations, xj, against the imposed tailwater depth, hd (Figure 14). Note that
the jump is repelled out of the expansion zone when xj > Le, and the flow becomes fully subcritical
when xj = 0. The maximum value of xj corresponds to free overfall conditions, for which the imposed
depth at the outlet equals the critical depth for each value of the discharge. The 1D theory overpredicts
the distance to the hydraulic jump for large tailwater depths, as well as the threshold tailwater depth
for which flow becomes subcritical (xj = 0, Figure 14). It is interesting that the situation reverses for
small tailwater depths, for which the jump is repelled outside of the expansion zone, at the lower
discharge (Q = 200 m3/s, Figure 14c). The discrepancy between 1D and 2D predictions can be
explained in part by the fact that we report distance along the channel axis in the 2D simulations.

To test a more realistic outlet boundary condition, we compare the 1D and 2D model predictions
for a milder contraction, b2 = 26.5 m, same length of the converging/expanding sections, Le = 20 m,
discharge Q = 500 m3/s, and several values of the distance to the outlet, Ld, where we imposed free
overfall conditions. For this long channel, friction losses are large enough so that the available specific
energy at the contraction is controlled by a backwater curve starting from the critical depth at the
outlet. We induce the onset of transcritical flow at the throat section by reducing the distance to the
outlet, Ld (Figure 15). Both 1D and 2D models predict near-critical flow conditions for hydraulically
long channels, Ld = 4000, 500 m, and the onset of repelled hydraulic jumps (R-jumps) [26,28] for
the shorter distances, Ld = 250, 125 m (Figure 15d). The development of the backwater profile leads
to a flow pattern downstream of the contraction that is more complex than in the case of a short
channel with imposed tailwater depth. The relatively abrupt expansion induces flow separation at
the downstream edge of the throat, which may prevent the 2D SWE from reaching a true steady
state flow solution due to a vortex shedding instability (Figure 15a). A comparison of the water
surface profiles predicted by the 1D and 2D models (the latter along the channel axis) suggests
that spatial flow structures delay the transition in 2D simulations, relative to the strict 1D theory,
where a sharp hydraulic jump appears as soon as the available energy is insufficient to overcome
the channel contraction (Figure 15d). For distances to the outlet that are short enough for R-jumps
to appear in the 2D model (Figure 15d), the 1D theory performs reasonably well at predicting the
location of the jump, but not the gradually varied water surface profile leading to the toe of the jump
(Figure 15d, Ld = 250 m). If the specific energy is further reduced, larger Froude number conditions
lead to flow patterns dominated by oblique shocks that render the 1D analysis invalid in the expansion
zone (Figure 15, panels c and d, Ld = 250 m).

Figure 14. Comparison between 1D (solid lines) and 2D (circles) predictions of the jump location
downstream of a channel contraction: summary of results. We plot the jump position, xj, as a function
of imposed downstream water depth, hd, for three flow discharges, Q = 500, 350 and 200 m3/s
(panels a, b and c, respectively), and several width ratios, b1/b2 = 2, 4, 5. The jump is repelled out of
the expansion zone when xj > Le, and the flow becomes fully subcritical when xj = 0.
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Figure 15. Onset of transcritical flow in the 1D and 2D models. By reducing the distance to the outlet, Ld,
we control the available energy at the downstream end of the contraction. For sufficiently small available
energy, the flow is forced to undergo a regime change at the contraction. The basic model parameters
are the same as those in Figures 3, 16 and 17: b1 = 40 m, b2 = 26.5 m, Le = 20 m, Q = 500 m3/s,
and n = 0.04. The distance to the outlet is Ld = 500 m (panel a), Ld = 250 m (panel b), and Ld = 125 m
(panel c). The 1D theory predicts an earlier onset of transcritical conditions (panel d). In fact, it predicts
that even the hydraulically-long case, Ld = 4000 m is transcritical, while the 2D simulations predict
near-critical conditions up to Ld = 250 m.

4.2. The Role of Grid Refinement on Capturing 2D Flow Features

Hydrodynamic simulations in long river sections and channels often rely on the available
topography data, whose spatial resolution is typically 1–5 m. Even if higher-resolution bathymetry
were available, affordable grids in kilometer-long channels may be limited to meter-scale resolutions,
which implies ≈10–20 grid cells across the channel width. We study the impact of grid resolution on
the simulated flow patterns, and on the differences between 1D and 2D predictions, by performing a
refinement study on two transcritical scenarios (Figures 16 and 17). Some of the model parameters
are common to both cases: b1 = 40 m, b2 = 15 m, Q = 500 m3/s, and n = 0.04, with the channel
geometry of Figure 3a. By changing the length of the contraction/expansion segment, Le, and the
distance to outlet, Ld, we explore the two scenarios described in Figure 4: one with the hydraulic jump
contained inside the expansion zone (Le = 100 m, Ld = 250 m, Figure 16), and another one with the
jump expelled outside of the expansion zone (Le = 50 m, Ld = 125 m, Figure 17).
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Figure 16. Impact of grid refinement on 2D shallow-water simulations of transcritical flow. We show
maps of water depth computed using different grid sizes in the contraction region, ∆x = 5, 1.5, 1, 0.15 m
(panels a–d respectively). The length of the expansion zone is Le = 100 m and the distance to the
outlet is Ld = 250 m. The coarse grid solution is quasi-1D, showing an excellent match with the water
profile computed using the classical 1D theory (panel e). As the grid is refined, and the simulations
capture the complex 2D flow features, the 1D and 2D predictions deviate significantly. In particular,
the sharp hydraulic jump of the 1D theory is replaced by an intricate sequence of oblique standing
waves (panel d).

We consider four refinement levels: a very coarse mesh, with a typical grid size ∆x = 5 m in the
channel contraction, which implies three grid cells across the narrowest section (Figures 16a and 17a);
a very fine mesh, with a typical grid size ∆x = 0.15 m in the channel contraction, which implies
100 grid cells across the narrowest section and over 400 K control volumes in total (Figures 16d
and 17d); and two intermediate refinement levels, with typical grid sizes ∆x = 1.5 m and ∆x = 1 m in
the channel contraction (Figures 16b,c and 17b,c).

The water depth profiles along the axis of the channel (for the 2D models) agree with the water
surface constructed using the 1D theory (Figures 16a–e and 17a–e). This is because corse-grid
2D simulations do not capture the spatial flow effects induced by the contraction, rendering the
simulations quasi-1D ones. As the grid is refined, a complex structure dominated by oblique
standing waves emerges in the fine-grid 2D simulations, which strongly deviate from the 1D theory
(Figures 16d–e and 17d–e). Despite its limitations, it is remarkable that the simple 1D theory captures
the water surface profile upstream from the critical section at the contraction, and even the overall
features of the gradually varied supercritical flow region in the expansion zone. All 2D simulations
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hereafter have been performed using a highly refined mesh (typical grid size ∆x = 0.15 m in the
channel contraction).

h (m
) 

7.4 

0.7 

Figure 17. Impact of grid refinement on 2D shallow-water simulations of transcritical flow. We show
maps of water depth computed using different grid sizes in the contraction region, ∆x = 5, 1.5, 1, 0.15 m
(panels a–d respectively). The length of the expansion zone is Le = 50 m and the distance to the outlet
is Ld = 125 m. The coarse grid solution agrees with the water profile computed using the classical
1D theory (panel e). As the grid is refined, and the simulations capture the complex 2D flow features,
the 1D and 2D predictions deviate significantly. In particular, the sharp hydraulic jump of the 1D
theory is replaced by an intricate sequence of oblique standing waves (panel d).

4.3. Influence of the Contraction Geometry on the Discrepancy between 1D and 2D Models

We explore the role of the contraction geometry on the spatial flow patterns and on the agreement
between 1D and 2D models (Figure 18). For a smooth contraction, with Le = 100 m, the 1D
theory captures the gradually varied flow in the expansion zone remarkably well (Figure 18d).
This supercritical flow region is also well described in the Le = 50 m case, in spite of the complex shock
interaction that ensues downstream of the expansion. Two-dimensional effects dominate the flow for
the sharpest contraction (Le = 10 m, Figure 18a): while the location of the hydraulic jump seems to be
correctly predicted by the 1D theory, the overall structure of the water surface downstream from the
expansion zone is lost in the 1D model. Notably, the 2D model predicts the onset of oblique waves
within the narrow, constant-width central segment of the contraction for Le = 10 m and Le = 20 m
(Figure 18a,b). This fundamental deviation from the 1D analysis leads to a large discrepancy between
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the 1D and 2D models in the gradually varied supercritical flow region, although the location of the
hydraulic jump seems to be correctly predicted by the 1D theory.

The abruptness of the expansion and contraction segments affects the Froude number in the
expansion zone and downstream from it (Figure 18e–h), illustrating the strong flow-focusing effect of
an abrupt change in channel width. Only the smoother geometry, Le = 100 m, avoids the appearance
of a large region of separated flow in the expansion zone, (Figure 18h), which partially explains the
more satisfactory performance of the 1D model.

Water depth (m) 
7.4 0.7 

Froude number 
3 0 1 
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e

f

g

h

Figure 18. Role of the contraction geometry on the emergence of spatial flow patterns. We show
maps of water depth (panels a–d) and Froude number (panels e–h), for the same flow conditions
of Figures 3, 16 and 17, with Ld = 125 m, and several values of the length of the expansion
zone, Le = 10, 20, 50, and 100 m. For a smooth transition, Le = 100 m, the 1D theory captures the
gradually varied water surface profile remarkably well. Two-dimensional effects dominate the flow for
the sharpest contraction (Le = 10 m, panels a and e): while the location of the hydraulic jump seems to
be correctly predicted by the 1D theory, the overall structure of the water surface downstream from the
expansion zone. The abruptness of the expansion and contraction segments affects the Froude number
in the expansion zone and downstream from it, illustrating the strong flow-focusing effect of an abrupt
change in channel width.

The violation of the assumption of uniform flow across the channel becomes particularly clear for
large width ratios, b1/b2 (Figure 19). We increase the Froude number downstream of the contraction by
keeping the flow conditions of Figures 3, 16 and 17, and considering an abrupt contraction, Le = 1 m,
while reducing the width of the narrowest segment (b1 = 25, 20, 15, and 10 m). The resulting Froude
numbers downstream of the constriction range from near unity to over 3 (Figure 19e–h), due to the
water pile-up upstream from it (Figure 19a–d). Both the complexity of the 2D patterns, and the local
head losses, increase with b1/b2, as does the deviation with respect to the 1D theory (Figure 19i).
These extreme cases of abrupt transition and large values of the width ratio illustrate the limitations of
the 1D theory, as both the predictions of the water surface profile upstream and downstream from the
contraction become incorrect (Figure 19i). It is apparent that multidimensional simulations would be
required in the design of hydraulic structures with such geometrical constraints.
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Figure 19. Flow patterns at abrupt contractions and large width ratios, b1/b2. We show maps of water
depth (panels a–d) and Froude number (panels e–h) for different width ratios, leading to increasing
effective Froude numbers in the supercritical flow region. We increase the Froude number downstream
of the contraction by keeping the basic flow conditions of Figures 3, 16 and 17, in particular b1 = 40 m,
and considering an abrupt contraction, Le = 1 m, while reducing the width of the narrowest segment, b2.
The width ratios are b1/b2 = 4 (panels a and e), 2.67 (panels b and f), 2 (panels c and g), and 1.6 (panels
d and h). We compare the 1D and 2D predictions of the water surface profile (panel i). We use dots
for profiles along the channel axis in 2D simulations, and solid lines for the 1D theory. Line colors
correspond to the different width ratios.

5. Discussion and Conclusions

Abrupt channel expansions and contractions lead to head losses that are typically modeled as
localized energy losses [3,6]. Expansion losses can be significant due to flow focusing and viscous
dissipation in the separated zones. While a number of expressions have been proposed to account for
these losses in the context of the 1D theory [4], this type of flow patterns are a paradigmatic example
of situations where well resolved multidimensional models are preferred.

The onset of oblique standing waves is a ubiquitous feature of supercritical open channel
flow [3,15–17]. The appearance of oblique shocks fundamentally alters the momentum transfer mechanisms
in the channel expansion zone, so that the underlying assumption of uniform flow used by the 1D
theory no longer applies. For sharp enough contractions, another source of discrepancy between 1D
and 2D predictions in the studied geometries is the emergence of oblique shocks in the constant-width
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narrow segment of the contraction. The 1D model assumes that the critical section is located at the
downstream end of this central segment, so the structure of the water profile in the gradually-varying
supercritical region is not captured correctly. The maps of Froude numbers in Figure 19, for example,
show that the spatial effect of the oblique shocks also propagates downstream from the contraction,
invalidating the assumption of uniform flow across the channel width made by the 1D theory.

Two-dimensional flow patterns, in particular flow detachment and oblique standing waves,
control the energy and momentum transfer mechanism in open channel flow past abrupt contractions
with a large width ratio. Only modified versions of the 1D theory, taking into account intense local head
losses and the propagation of spatial flow structures downstream from the contraction, can succeed at
describing these flow scenarios. Multidimensional calculations would be required in the design of
hydraulic structures with such geometrical constraints.

In this paper we compare well resolved 2D shallow-water simulations with 1D energy-momentum
calculations for transcritical flow past symmetric channel contractions. We analyze the accuracy of
the classical energy-momentum gradually varied flow computations to predict the onset of regime
transitions and the location of hydraulic jumps. We validated our 1D and 2D models using available
data from laboratory-scale Venturi-type flumes, and test the relative performance of the simplified 1D
theory for different constriction geometries, identifying the flow mechanisms behind the discrepancies
between the 1D and 2D theories.

Our main conclusions can be summarized as:

• For transcritical flow past short, horizontal channels with relatively smooth contractions and
negligible flow separation (e.g., for the experimental cases considered in the validation section),
the deviations between models and experiments seem larger than among models. The discrepancy
between models and experimental data is consistent with the well known limitations of the
depth-averaged shallow-water model, in particular the impact of non-hydrostatic pressures and
streamline curvature on the flow. The standard 1D theory shares this limitation.

• Considering its simplicity and negligible computational cost, the classical 1D theory performs
remarkably well for a wide range of flow conditions and relatively smooth channel contractions.
In particular, the 1D model yields a good prediction of the transition to supercritical flow at the
contraction. Perhaps more importantly, the 1D model is more conservative, in the sense that it
predicts an earlier onset of critical flow at the contraction as the tailwater depth decreases.

• The grid resolution used in the 2D SWE simulations plays an important role in capturing the
spatial flow patterns, so that coarse grid 2D simulations provide essentially the same information
as 1D ones. The implication of this observation is that the discrepancies among various 2D models
with different spatial grid resolution may be as large as those between the 2D models and a
classical 1D energy-momentum calculation. The impact of grid resolution on the agreement
between 1D and 2D models is relevant in practice, as field-scale hydrodynamic models in fluvial
dynamics rely on the available topography, whose spatial resolution is often limited to the
meter scale.
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