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Abstract: The quantile mapping method is a bias correction method that leads to a good performance
in terms of precipitation. Selecting an appropriate probability distribution model is essential for the
successful implementation of quantile mapping. Probability distribution models with two shape
parameters have proved that they are fit for precipitation modeling because of their flexibility. Hence,
the application of a two-shape parameter distribution will improve the performance of the quantile
mapping method in the bias correction of precipitation data. In this study, the applicability and
appropriateness of two-shape parameter distribution models are examined in quantile mapping,
for a bias correction of simulated precipitation data from a climate model under a climate change
scenario. Additionally, the impacts of distribution selection on the frequency analysis of future
extreme precipitation from climate are investigated. Generalized Lindley, Burr XII, and Kappa
distributions are used, and their fits and appropriateness are compared to those of conventional
distributions in a case study. Applications of two-shape parameter distributions do lead to better
performances in reproducing the statistical characteristics of observed precipitation, compared to
those of conventional distributions. The Kappa distribution is considered the best distribution model,
as it can reproduce reliable spatial dependences of the quantile corresponding to a 100-year return
period, unlike the gamma distribution.

Keywords: bias correction; quantile mapping; climate model; precipitation; frequency analysis

1. Introduction

Outputs of climate models and remote-sensing data are used for modeling the hydrological
process. When these data sets are applied to an analysis using hydrological modeling, biases in these
data sets should be corrected and reduced, particularly to the precipitation application [1,2]. Biases are
systematic errors produced from the climate models and estimation algorithms used in remote
sensing [3–5]. For example, a bias may appear because of various causes, such as imperfect model
parameterization, inadequate reference data length and quality, and insufficient spatial resolution.
Therefore, bias correction techniques have been developed to overcome these limitations.
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Eden et al. [6] attempted to identify any sources of climate model error, and reported that
precipitation data corrected by a statistical correction method can be a good predictor for the observed
data set at a global scale. Teng et al. [7] assessed the performances of several bias correction methods
for precipitation data, and evaluated their impact on a runoff model. They reported that the quantile
mapping (QM) and two-state gamma distribution mapping methods provide good performance.
The QM method shows better performance than a simpler bias correction for the mean and variation
in the precipitation data [8–10]. Themeßl et al. [11] reported that QM leads to the best performance
for precipitation, particularly to large amounts of quantiles. While the QM method provides a
good performance for the bias correction of stationary data, it leads to less reliable results for
nonstationary data, such as simulation data under a climate change scenario. To address this drawback,
Cannon et al. [12] suggested the quantile delta mapping (QDM) method which explicitly preserves
relative changes in all of the quantiles of the distribution. They claimed that the QDM method is
superior to the traditional QM method and the detrended quantile mapping (DQM) method, which
considers trends in the mean.

The QM method assumes that the distribution of simulated or estimated data preserves the
distribution of any observed data. In QM, simulated data corresponding to a given probability is
replaced by an observed quantile corresponding to the same probability. The probability distribution
models of observed and simulated data are essential for QM. Hence, selecting an appropriate probability
distribution model is critical for successfully implementing the QM method. Gamma distribution
(GAM) has been widely used for the probability distribution of precipitation [13–15]. Because of its
generality and simplicity, GAM is also commonly employed in the QM of precipitation.

Other probability distribution models, such as the exponential (EXP), Weibull, mixture of EXP, and
mixture of GAM and Gumbel (GUM) distributions have been suggested for probability distributions
of precipitation [16–18]. Many studies have reported that the fits of other distributions are preferred
to those of GAM for the probability distribution of precipitation. Papalexiou and Koutsoyiannis [19]
examined the potential of using maximum entropy with the Boltzmann–Gibbs–Shannon entropy
definition for a probability distribution of rainfall worldwide. The generalized GAM and Burr Type
XII (BUR) distributions performed very well. Ye et al. [20] examined distributional alternatives for
the wet-day series of daily precipitation at point and catchment scales in the United States. Both the
Pearson Type-III (P3) (also known as three-parameter GAM), and kappa (KAP) distributions performed
very well, particularly for point rainfall. They claimed that KAP is the best distribution of wet-day
precipitation at a point scale. The generalized GAM, BUR, and KAP distributions have two shape
parameters. Because of their two-shape parameters, these distribution models can describe various
distribution types. For instance, KAP can describe generalized extreme value (GEV), generalized
pareto, and generalized logistics (GLO) distributions. The great flexibility of two-shape parameter
distributions improves the fit of distribution for simulated and observed precipitation data in the
QM method. This improvement can enhance the capacity of the QM method for correcting biases.
Hence, two-shape parameter distributions should be employed in the QM method in simulating
precipitation data.

The current study aims to investigate the fits and appropriateness of two-shape parameter
distribution models in QM for the bias correction of precipitation data. For the investigation, we
use simulated precipitation data from a climate model under a climate change scenario in South
Korea. The employed distribution fits are assessed using the L-moment ratio diagram and Bayesian
Information Criterion (BIC). Basic statistics and the Expert Team on Climate Change Detection,
Monitoring and Indices (ETCCDI) are used as criteria for an evaluation of their appropriateness in
the QM of employed precipitation data. Their fits and appropriateness are compared to those of
the conventional distribution models. Additionally, a frequency analysis of the annual maximum
precipitation from corrected precipitation data is conducted for assessing the impacts of the used
distributions on hydrological applications. Results of the current study can improve the performance
of the QM method for the bias correction of precipitation data. In addition, these can provide insight
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regarding the uncertainty produced by distribution selection in QM on the frequency analysis of
extreme precipitation.

The main interest of climate change studies is to assess the future change in the variable of interest
under the selected climate change scenario. Because precipitation is the variable of interest in this study,
the impact of the distribution selection in the bias correction method on future precipitation should
be investigated. In the current study, the impacts of distribution selection on extreme precipitation
frequency analysis are investigated.

2. Materials and Methods

2.1. Quantile Mapping Based Bias Correction Method

Even if a climate model enhances the realism of simulated regional climatic characteristics, some
significant biases probably remain, particularly regarding precipitation [21–23]. Therefore, the outputs
of climate models such as global (GCM) and regional (RCM) climate models have to be corrected [24].
Performances and the applicability of various bias correction techniques have been explored for
correcting bias in the output of a climate model [25,26]. Because of the different characteristics of
meteorological variables, bias correction methods provide different performances depending upon the
variables of interest [27,28]. In a bias correction of precipitation data, the quantile mapping (QM), the
detrended quantile mapping (DQM), and the quantile delta mapping (QDM) methods have been widely
employed because they can correct biases considering high order moment [12]. Additionally, these
methods were designed to preserve long-term changes in quantiles projected by climate models [12,29].
Thus, the QM-based bias correction method is employed in this study.

QM corrects bias in the simulated data from an RCM by mapping quantiles at the same cumulative
probability from the simulated data and the observed data sets. The equation of QM is as follows:

Qm(t) = Fo
−1[Fs[Qs(t)]] (1)

where Qm(t) and Qs(t) are tth bias corrected data and simulated data from the RCM during the
reference period (also known as the historical period), Fs and Fo

−1 are the cumulative distribution
function (CDF) of the raw data from the RCM and the inverse CDF of the observed data, respectively.

It is impossible to obtain the probability distribution of the variable of interest for a future period.
In the analysis of climate change projection, future simulation data is forced based on a climate change
scenario. In QM, the probability distribution of the observed data for a future period is assumed to
be the same. Because of the assumption of the same distribution of the observed data for the present
and future periods, the long-term trend simulated by a climate model can be biased in QM. Cannon,
Sobie, and Murdock [12] proposed the QDM method that is designed to correct the bias in climate
projections, preserving the advantage of QM and the long-term trend in the output of the climate
model. They reported that QDM minimized the GCM trend and bias, whereas QM possibly expands
the climate change signals of any precipitation extremes simulated by the GCM. QDM is expressed
as follows:

δ f (t) =
Qs. f (t)

Fs.r−1[Fs. f [Qs. f (t)]]
(2)

Qm(t) = Fo
−1[Fs. f [Qs. f (t)]] × δ f (t) (3)

where δ f (t) and Qs. f (t) are a relative change in the tth quantiles between the reference and the
simulation data and the tth quantile of simulated data during a predefined future period, respectively.
Fs. f and Fs.r

−1 are a CDF of the simulation data during a predefined future period, and an inverse CDF
of the simulated data during the reference period, respectively.

A procedure of QDM can be divided into two steps in sequence: (1) Calculating the absolute
or relative changes δc(t) in Equation (2) in the quantiles between the reference and future periods
and (2) obtaining bias-corrected future projections Qm(t) in Equation (3) by multiplying the relative
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changes by the historical bias-corrected value. The algorithm composed of the two steps shows that
not only can the bias in the data of the future projections period be corrected, but also the absolute or
relative changes in quantiles can be conserved at the same time. More details regarding the concepts
and algorithm of QDM can be found in Cannon, Sobie, and Murdock [12]. For the reference period,
QDM is identical to QM because it is assumed that there is no change during the period. In the current
study, QDM is employed as the bias correction method for the precipitation data.

2.2. Probability Distribution Models for Precipitation Data

The selecting of an appropriate probability distribution model is critical to successfully employing
QDM in bias correction. Thus, these distribution model fits on the simulated and observed data
sets should be evaluated, and their appropriateness should be assessed for bias. In this study, eight
probability distribution models are tested for the candidate distribution in QDM.

2.2.1. Conventional Probability Distribution Models

The exponential (EXP) is used to model non-negative and positively-skewed data. The EXP has
one scale parameter. Because of its simplicity, the EXP has been employed in many fields [30–32].
Because precipitation is non-negative and positively skewed data, the EXP has often been used for
modeling the amount of a precipitation event [33,34]. The Gamma distribution method (GAM) has
been widely used to model precipitation data [35–37]. In addition, GAM has often been employed
in a QM-based method for a bias correction of simulated precipitation data [38,39]. GAM has two
parameters: One scale and one shape parameter. Generalized extreme value (GEV) has been proposed
for modeling extreme events [40,41]. The GEV has three parameters: One location, one scale, and one
shape parameter. Gumbel (GUM) distribution is a sub-family of the GEV. When the shape parameter is
equal to zero, the GEV distribution becomes GUM. The GEV and GUM have been broadly employed
in extreme precipitation analysis [42–45].

2.2.2. Probability Distribution Models with a Two-Shape Parameter

Conventional distribution models have one or no shape parameter. Because precipitation data are
largely affected by local characteristics such as terrain shape and geographical location, conventional
distribution models sometimes result in a poor fit. Hence, a two-shape parameter probability
distribution model can be an alternative for candidate distribution in modeling precipitation data,
in which conventional distribution models provide an inadequate fit [46–48]. Generalized Lindley
distribution (GLD) is an extension of a specific form of an EXP and GAM mixture distribution [49].
Hence, GLD can cover the EXP, GAM and Weibull distributions. Because the EXP and GAM
distributions are often employed to model precipitation data, the GLD may show a good performance
in modeling precipitation data. The GLD has two shape parameters. Burr Type XII (BUR) and kappa
(KAP) distributions have been employed for modeling heterogeneous data [50–52]. BUR has three
parameters: One scale and two shape parameters. The KAP distribution has four parameters: One
location, one scale, and two shape parameters. Because these distribution models have two shape
parameters, they have several sub-family distributions. For example, generalized pareto, generalized
logistic and exponential distributions are a special form of KAP. CDF forms of the eight employed
distributions are presented in Table 1.

Note that Γ() and γ( ) are a gamma function and a lower incomplete gamma function, respectably.
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Table 1. The employed probability distribution models.

Model Cumulative Distribution Function

Gumbel F(x;µ,α) = exp
{
− exp

[
−

(x−µ)
α

]}
Generalized extreme value F(x;µ,α, β) = exp

[
−

(
1− β(x−µ)α

)(1/β)
]

Gamma F(x;α, β) =
γ(k, x

α )
Γ(β)

Exponential F(x;λ) = 1− e−λx

Kappa F(x;µ,α, β, h) =
[
1− h

{
1− β(x− µ)/α

}1/β
]1/h

Burr XII F(x;α, c, k) = 1− 1

(1+( x
a )

c
)

k

Generalized Lindley F(x;λ,α) =
[
1− 1+λ+λx

1+λ exp(−λx)
]α

2.3. Case Study of Simulation Data Under a Climate Change Scenario in South Korea

2.3.1. Simulation Data for Climate Change Scenarios

For the projection of future climate change, GCMs have been commonly used because these
models do not require boundary conditions in a continuous simulation. However, GCMs have
limitations in resolution for showing the effect of local-to-regional-scale forcings (e.g., complex terrain,
indented coastline and East Asia’s monsoonal climate) [53–55]. Because of these limitations, the
Intergovernmental Panel on Climate Change (IPCC) also advises research regarding climate change
assessment and projection in which RCM outputs are used as reference climate scenarios [56,57].
To overcome these limitations, through additional study and various international collaborative
research, RCMs that include more detailed information at spatial and temporal scales have been
provided, such as the those of the North American Regional Climate Change Assessment Program
(NARCCAP), Modelling the Impact of Climate Extremes (MICE), and the COordinated Regional
Downscaling EXperiment (CORDEX) [58–62].

In South Korea, various RCMs, driven by Atmosphere-Ocean-coupled Hadley center Global
Environmental Model version 2 (HadGEM2-AO) (Met Office, Exeter, UK.), have been performed
through the CORDEX-East Asia (EA) projects and the participation of the Fifth Assessment Report
(AR5) of the IPCC. The National Institute of Meteorological Sciences produced simulation data of the
Hadley Centre Global Environmental Model Version 3-Regional Atmosphere (HadGEM3-RA) with
12.5-km resolution under the AR5 scenario as a national standard climate change scenario. More
detailed descriptions of simulated data using HadGEM2-AO and HadGEM3-RA can be found in the
Global Atmosphere Watch of the Korea Meteorological Administration (KMA) at www.climage.go.kr;
the simulation data can be downloaded from cordex-ea.climate.go.kr.

In this study, daily precipitation of future climate simulated by HadGEM3-RA in COREDX-EA
is projected based on the Representative Concentration Pathway (RCP) 4.5 scenario. The simulation
data from HadGEM3-RA have been widely employed in climate studies for East Asia, including
South Korea [63,64]. Kim et al. [65] reported that HadGEM3-RA can suitably simulate the statistical
characteristics of extreme rainfall quantiles in South Korea. The domain of HadGEM3-RA includes
Korea and some parts of China and Japan. HadGEM3-RA has 200 (west–east) × 180 (north–south) grid
points. The reference period of model is from 1979 to 2005 and the future scenario is from 2011 to 2100.

2.3.2. Observed Data

In this study, 60 weather stations equipped with an Automated Synoptic Observing System (ASOS)
network and managed by the KMA are selected. The stations are spread across South Korea, and
the spatial resolution of inter-station spacing is approximately 1670 km2. Figure 1 and Table 2 show
the geophysical location and information of the stations employed in this study. The meteorological
data set was recorded from 1961 to 2017, and the recording lengths of each station differ. Thus, to

www.climage.go.kr
cordex-ea.climate.go.kr
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synchronize the recording period of the simulation data from the RCM, a daily precipitation data set
observed from 1979 to 2005 is employed for bias correction in this study.
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Figure 1. Locations of employed weather stations and the grid points of simulated data.

Table 2. Information of the used stations.

No. Name Latitude Longitude No. Name Latitude Longitude

1 Daegwallyeong 128.72 37.68 31 Yeongdeok 129.41 36.53
2 Jecheon 128.19 37.16 32 Pohang 129.38 36.03
3 Chungju 127.95 36.97 33 Namhae 127.93 34.82
4 Wonju 127.95 37.34 34 Tongyeong 128.44 34.85
5 Yangpyeong 127.49 37.49 35 Geumsan 127.48 36.11
6 Icheon 127.48 37.26 36 Chupungnyeong127.99 36.22
7 Inje 128.17 38.06 37 Boeun 127.73 36.49
8 Chuncheon 127.74 37.90 38 Daejeon 127.37 36.37
9 Hongcheon 127.88 37.68 39 Cheongju 127.44 36.64

10 Seoul 126.97 37.57 40 Buyeo 126.92 36.27
11 Suwon 126.99 37.27 41 Cheonan 127.12 36.78
12 Incheon 126.63 37.48 42 Seosan 126.50 36.77
13 Ganghwa 126.45 37.71 43 Gunsan 126.76 36.00
14 Sokcho 128.57 38.25 44 Boryeong 126.56 36.33
15 Gangneung 128.89 37.75 45 Jeonju 127.16 35.82
16 Andong 128.71 36.57 46 Jeongeup 126.87 35.56
17 Yeongju 128.52 36.87 47 Buan 126.72 35.73
18 Mungyeong 128.15 36.63 48 Imsil 127.29 35.61
19 Uiseong 128.69 36.36 49 Namwon 127.33 35.41
20 Gumi 128.32 36.13 50 Wando 126.70 34.40
21 Daegu 128.62 35.89 51 Suncheon 127.37 35.02
22 Yeongcheon 128.95 35.98 52 Goheung 127.28 34.62
23 Geochang 127.91 35.67 53 Yoesu 127.74 34.74
24 Hapcheon 128.17 35.57 54 Gwangju 126.89 35.17
25 Sancheong 127.88 35.41 55 Jangheung 126.92 34.69
26 Jinju 128.04 35.16 56 Haenam 126.57 34.55
27 Miryang 128.74 35.49 57 Mokpo 126.38 34.82
28 Ulsan 129.32 35.56 58 Jeju 126.53 33.51
29 Ulleungdo 130.90 37.48 59 Seogwipo 126.57 33.25
30 Uljin 129.41 36.99 60 Seongsan 126.88 33.39
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2.3.3. Case Study Methodology

To assess the applicability of probability distribution models using a two-shape parameter, any fits
of the employed probability distribution models for the observed and simulated precipitation data, and
the appropriateness of the probability distribution models for the bias correction of the precipitation
data, are evaluated. The maximum likelihood method is used to fit EXP, GAM, GEV, GUM, BUR, and
GLD [49,66,67]. KAP is fit using the L-moment method [68]. The distributional characteristics of the
observed and simulated data are investigated using an L-moment ratio diagram. The L-moment ratio
diagram has been broadly used to investigate the distributional characteristics of the data and the fits
of this probability distribution [69,70].

BIC are employed for assessments of the fits of employed probability distributions. BIC is provided
as follows:

BIC = −2LL + log(n)k (4)

where LL, n, and k are the log-likelihood, number of data and number of parameters, respectively.
Because of the penalty term log(n)k for the number of parameters in the distribution model, this
criterion considers parsimony. The numbers of the parameters in the two-shape parameter distribution
models are larger than those of the conventional distribution models. BIC is a good evaluation
measure of goodness-of-fit for the employed distribution models in the current study, particularly
the distributions with two-shape parameters. As BIC decreases, the fit of the given distribution to
the sample data increases. BIC is a more severe criterion than the Akaike information criterion in the
current study, because the number of data points is greater than 2000.

The indices of the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDI),
which are climate extremes indices, are employed in the current study. ETCCDI was proposed for
representing the characteristics of extreme events of precipitation and temperature in the same manner,
such that their analyses fit seamlessly into the global picture [71]. The ETCCDI indices are widely used
to evaluate and describe model projections of the future using specific physically-based thresholds [29].

All used ETCCDI indices are described in Table 3. As shown in Table 3, mean, standard deviation,
coefficient of skewness and PRCPTOT represent the data statistical characteristics. SDII, Rx1day,
Rx5day, R95pTOT, and R95pTOT represent those characteristics of extreme precipitation events.
Therefore, the appropriateness of the tested distribution models can be evaluated through a comparison
of the ETCCDI indices for the observed and bias-corrected data.

Table 3. The indices used to represent characteristics of precipitation.

Acronym Description Unit

Mean Mean daily precipitation mm
SD Standard deviation of daily precipitation mm
CS Coefficient of skewness of daily precipitation -

PRCPTOT Annual total precipitation in wet days (daily precipitation ≥ 1 mm) mm
SDII Annual precipitation divided by the number of wet days mm/day

Rx1day Annual maximum 1-day precipitation mm
Rx5day Annual maximum 5-day precipitation mm

R95pTOT Annual total rainfall when daily precipitation > 95 percentile mm
R99pTOT Annual total rainfall when daily precipitation > 99 percentile mm

The annual maximum precipitations are extracted from the bias-corrected data. The future period
is divided into three sub-periods: S1 (2011–2040), S2 (2041–2070), and S3 (2071–2100). Quantiles
corresponding to a 100-year return period are calculated for all stations and the results of the quantile
estimation are spatially distributed. GUM is used for the frequency analysis of extreme precipitation in
this study because GUM was recommended by the government for modeling extreme precipitation in
South Korea [72].
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3. Results

To examine the statistical characteristic of data, L-moment ratio diagrams are employed.
The L-moment ratio diagram is well known as a useful graphical method for investigating the
distribution characteristics of data sets [73–75]. Figure 2 shows L-moment ratios for the observed data
(OBS) of 60 stations in South Korea as red dots and the simulation data (REF) as black dots for the
reference period. These data sets, with a few exceptions of REF, fall above the theoretical curve of P3
(shown in blue) and below both the theoretical curves of Generalized Pareto (GPA, shown in yellow)
and Generalized Normal Distribution (GNO, shown in green). OBS and REF are included in the
theoretical area of KAP, but not in the theoretical area of BUR. Some OBS and REF dots are distributed
within a similar L-skewness and L-kurtosis range. However, the OBSs overall have a larger L-skewness
and L-kurtosis than those of the REF. Although some stations in REF follow a P3 distribution (also
known as a three-parameter GAM), many stations of REF may follow P3, GNO or GPA. For OBS, there
is no dominant distribution model; they may also follow one of the P3, GNO and GPA models.Water 2019, 11, x FOR PEER REVIEW 9 of 22 
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Figure 2. L-moment ratio diagram for observed and simulated precipitation data. REF indicates
simulation data for the reference period.

Figure 3 presents BIC boxplots of employed distribution models for OBS and REF. The boxes
display the interquartile range (IQR), and the whiskers extend to 1.5 × IQR. The horizontal red lines
inside the boxes depict the median of the data. Data beyond the whiskers (1.5 × IQR) are indicated by
a plus sign (+). The size of each box represents the variability of BIC for the 60 stations employed in
this study. The pattern of these results is quite similar, as shown in Figure 3a,b. All BIC medians for
REF are lower than those of OBS. The lowest value of BIC median is that of KAP, the second lowest
is that of GEV, and the largest is that of GUM. The BIC results for all distributions show that KAP is
the best fit for OBS and REF. Table 4 presents the numbers of the distributions providing the smallest
BIC for OBS and REF. KAP is selected at all employed stations as the best distribution based on BIC.
The second-best distributions are BUR and GEV for OBS and REF, respectively. The distributions that
have greater than three parameters lead to a good fit based on BIC even if BIC has the penalty term for
the number of parameters. Based on BIC, KAP leads to a better fit than the two-parameter distributions
such as GAM, GUM and GLD. The fit of KAP for OBS and REF is superior to other distributions
models for precipitation in South Korea.
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Table 4. Results for the numbers of the distributions giving the smallest BIC among the employed
probability distribution models for observed and simulated precipitation (reference period) data in
South Korea.

Distributions
Observed Data Simulated Data

1st 2nd 3rd 1st 2nd 3rd

GEV - 9 (15%) 38 (63%) - 60 (100%) -
GUM - - - - - -
GAM - - 13 (22%) - - 1 (2%)
EXP - - - - - -
KAP 60 (100%) - - 60 (100%) - -
BUR - 51 (85%) 9 (15%) - - 59 (98%)
GLD - - - - - -

Figure 4 presents basic statistics such as the mean, standard deviation (SD) and coefficient of
skewness (CS) for the observed, simulated and bias-corrected data with the employed distributions.
There are large differences between the basic statistics of OBS and REF. As shown in Figure 4a, the
mean of KAP, EXP and GAM are similar to the mean of OBS. GEV and GLD are greater than OBS, and
BUR is less than OBS. A shown in Figure 4b, the medians of the SDs of the bias-corrected data using
KAP and GLD are close to the median of the SDs of OBS. GEV and BUR are different from OBS. Results
for CSs are similar to the results for the SDs, but the presented CSs have a larger variability than those
of the SDs. KAP leads to the best performance among the employed distributions for CSs. Because the
CS can represent the behavior of extreme data, the bias-corrected data using KAP may show a good
performance for extreme precipitation. Hence, KAP is the best distribution for reproducing the basic
statistics of the observed data.

The PRCTOT and SDII indices among the ETCCDI indices are presented in Figure 5. For PRCPTOT,
the boxes of GUM, GAM, EXP and KAP are similar to that of OBS. The distribution of PRCPTOT
for KAP is the closest to that of OBS. The SDIIs of the bias-corrected data differ depending on the
employed distribution models. Based on the SDII results, GAM and KAP provide good performance
for bias correction. The distribution of SDII for KAP is more similar to that of the observed data than
one of GAM. Rx1day, Rx5day, R995pTOT and R99pTOT for observed, simulated and bias-corrected
data by employed distributions are shown in Figure 6. These indices represent the characteristics of
extreme events in a given data set. The data bias-corrected using GUM, EXP and KAP provide a similar
distribution to that of the observed data. GEV and BUR provide poor performances for reproducing
extreme events. KAP leads to the best performance for the bias correction of precipitation based on the
results of the ETCCDI indices.
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Quantiles of OBS, REF and the bias-corrected data at six stations are shown in Figures 7 and 8.
The quantiles are grouped into two parts: (1) Quantiles less than the 80th percentile and (2) quantiles
equal to and greater than the 80th percentile to investigate correction performances on non-heavy
and heavy precipitation events. Quantiles of OBS is bigger than quantiles of REF at the same
non-exceedance probability, and the differences between the quantiles of OBS and REF increase
when the non-exceedance probability increases. GEV, GAM and KAP lead to good performances for
correcting bias in non-heavy precipitation events. For a bias correction of heavy precipitation, GAM
and KAP show good performance. BUR does not work well in the bias correction of precipitation in
South Korea. Overall, KAP leads to the best performance in the bias correction of precipitation.
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Figure 9 presents a spatial distribution of quantiles corresponding to a 100-year return period for
GAM and KAP. The quantiles from the two distributions increase over time. The quantiles from GAM
are larger than those of KAP. Large differences are observed in the northeast and southwest regions.
In the northeast region, GAM leads to much larger quantiles than those of KAP, while KAP leads
to larger quantiles than those of GAM in the southwest region. To examine the detailed difference
between GAM and KAP, the differences are shown spatially in Figure 10. The differences are calculated
by subtracting the quantiles of GAM from the quantiles of the KAP. The aforementioned results are
obviously shown in Figure 10. The difference patterns are similar for all periods. The ranges of the
differences are from −150 to 200 mm. For most regions, the differences are very small (from −30 to
50 mm). GAM quantiles for some stations are much larger than the quantiles at the nearest station.
These large differences are rarely observed in KAP quantiles. This result means that the application of
KAP successfully preserves spatial dependence among stations while the application of GAM does not.
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4. Discussion

In the current study, the applicability of two-shape parameter distribution is investigated for the
bias correction of precipitation using QDM. As shown in Figure 2, the KAP can represent the statistical
characteristics of all employed data, because all points (L-skewness and L-kurtosis) are inside of the
area of KAP. The points also are near GPA, GNO and P3, but they may not successfully represent
the statistical characteristics of the simulated precipitation data. Additionally, based on the results of
the basic statistic and ETCCDI indices, GLD and KAP lead to good performances in reproducing the
distributional characteristics of the observed precipitation data. The performance of KAP is superior
to that of other employed distributions, and the performance of GLD is comparable to one of GAM.
BUR provides a poor performance even if it is a two-shape parameter distribution. The two-shape
parameter distributions have great flexibility because of their complexity. Thus, their performance
should be assessed considering parsimony. KAP and BUR lead to a low BIC value, and the BIC of
GLD is similar to the BICs of GAM and EXP. Even if complexity is considered in the assessment, their
performances are better or comparable to the distributions that have one or no shape parameter. Hence,
the two-shape parameter can be applied in QDM for a bias correction of precipitation, and they should
be considered candidate distribution models for modeling precipitation in bias correction.

The most appropriate distribution model can be selected from the results for the bias correction of
the precipitation data in South Korea. The best performances to reproduce the statistical characteristics
of the observed precipitation are observed from KAP based on the results of the basic statistics and
ETCCDI indices. Additionally, KAP has the largest number of parameters among the employed
distribution models. Hence, BIC would be a severe evaluation measure for KAP because of the penalty
term. KAP leads to the lowest BIC values among the employed distributions even if it receives the
largest penalty. In Table 4, KAP is selected for all employed stations as the distribution providing
the lowest BIC. In Figure 2, the points of OBS and REF are inside KAP. This result supports that
KAP has a capacity to successfully represent the statistical characteristics of observed and simulated
precipitation data in South Korea, unlike the other distributions. Therefore, KAP is the best distribution
model among the employed distributions for QDM to bias-correct the simulated precipitation in South
Korea. These results are consistent with the analysis results of the probability distribution for daily
precipitation in the United States [20]. They report that KAP is the best distribution for modeling the
daily precipitation on a wet day.

The main purpose of precipitation projection under climate change is to assess possible future
change in phenomena related to precipitation, e.g., floods, droughts, drainage operation and crop
yield prediction [76–79]. The current study focuses upon the impacts on the frequency analysis of
extreme precipitation. As shown in Figures 9 and 10, there are large differences between the quantiles
from GAM and KAP, even if their performances to reproduce statistical characteristics are similar.
This result indicates that uncertainty from the distribution selection is large. Small differences in
bias-corrected precipitation data can propagate to a large difference in analysis results for phenomena
related to precipitation. For example, the maximum difference is 200 mm, and it is greater than 30% of
the quantile. This difference can largely change the design criteria of hydraulic infrastructure such as
dams and urban drainage systems.

GAM is often employed as a distribution model in bias correction of precipitation [12,80].
The appropriateness of GAM for modeling precipitation has been proved in an extensive body of
literature [81–86]. As expected, GAM leads to good performance for reproducing the statistical
characteristics of observed precipitation. However, GAM leads to poor performance for results of
frequency analysis for extreme precipitation. As shown in Figure 9e, there are three yellow eyes
(northwest, northeast, and south). These eyes indicate that the quantiles at these three locations are
much larger than the quantiles of nearby locations. These eyes occur in a mountainous area and island
because of geomorphological characteristics. Two of the eyes are on flat plains. Though quantiles at
these two eyes can be different from the quantiles at nearby locations, the differences should be small.
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This result supports that the quantiles from GAM inadequately reproduce the spatial dependence of
extreme precipitation in South Korea.

Hence, KAP would be a better choice than GAM for the bias correction of precipitation simulated
RCM in South Korea. Additionally, the appropriateness of these distribution models should be
investigated through a simple case study to attenuate uncertainty from the bias correction method for
the analyses of phenomena related to precipitation.

5. Conclusions

The current study aims to investigate the applicability and appropriateness of two-shape parameter
distributions in QDM for a bias correction of precipitation simulated by an RCM. The applicability
and appropriateness of seven distributions are evaluated and compared. Three of these are two-shape
parameter distributions and the others have one or no shape parameter. An L-moment ratio diagram,
BIC, basic statistics and ETCCDI are employed to assess their applicability and appropriateness through
a case study of simulated daily precipitation data under the RCP4.5 climate change scenario in South
Korea. In the current study, we reach the following conclusions:

1. Two-shape parameter distributions can be used in QDM for a bias correction of the daily
precipitation data. The application of GLD and KAP distributions provide good performances
in reproducing the statistical characteristics of observed precipitation data, while BUR leads to
poor performance. KAP outperforms GAM, which is popularly used in QDM. Additionally, the
performance of the GLD can be comparable to one of the GAM.

2. The KAP distribution is considered as the most appropriate distribution model in QDM for the bias
correction of precipitation in South Korea. KAP gives the lowest BIC. Bias-corrected precipitation
data using KAP successfully reproduces the basic statistics and extreme characteristics of
the observed data. Particularly, KAP is superior to the other distributions for reproducing
characteristics of extreme precipitation events.

3. Selection of an appropriate distribution model in QDM is very important in bias correction of
precipitation data. The fit and appropriateness of GAM and KAP are better than that of the other
employed distributions based on the results of basic statistics and ETCCDI indices. Results of
frequency analysis for extreme precipitation bias-corrected using GAM and KAP present large
differences. The precipitation bias-corrected using GAM seems to lose the spatial dependence
of observed data during the S2 period, while precipitation data using KAP seems to preserve
spatial dependences. When the precipitation data bias-corrected by the GAM are used for flood
modeling considering climate change, the result can greatly influence the flood modeling results.

Although GAM would lead to a good performance in the bias correction of precipitation data
based on the results of the evaluation measures, spatial dependences of quantiles from the frequency
analysis of extreme precipitation using GAM is unrealistic. The influence of selecting a distribution
model in QDM on modeling and analysis phenomena related to precipitation, such as flood and
drought, remains questionable. To reduce uncertainty in the projection of a climate change scenario on
modeling and analysis, the influences of selecting the distribution on the modeling and analysis of any
phenomena related to precipitation should be investigated. In addition, simulated precipitation data in
South Korea are employed to examine the applicability and appropriateness of two-shape parameter
distributions in the current study. In other regions or countries, their applicability and appropriateness
may be different. Thus, they are assessed in QDM for the bias correction of precipitation in other regions.
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