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Abstract: We developed a GPU-accelerated 2D physically based distributed rainfall runoff model
for a PC environment. The governing equations were derived from the diffusive wave model for
surface flow and the Horton infiltration model for rainfall loss. A numerical method for the diffusive
wave equations was implemented based on a Godunov-type finite volume scheme. The flux at
the computational cell interface was reconstructed using the piecewise linear monotonic upwind
scheme for conservation laws with a van Leer slope total variation diminishing limiter. Parallelization
was implemented using CUDA-Fortran with an NVIDIA GeForce GTX 1060 GPU. The proposed
model was tested and verified against several 1D and 2D rainfall runoff processes with various
topographies containing depressions. Simulated hydrographs, water depth, and velocity were
compared to analytical solutions, dynamic wave modeling results, and measurement data. The
diffusive wave model reproduced the runoff processes of impermeable basins with results similar to
those of analytical solutions and the numerical results of a dynamic wave model. For ideal permeable
basins containing depressions such as furrows and ponds, physically reasonable rainfall runoff

processes were observed. From tests on a real basin with complex terrain, reasonable agreement with
the measured data was observed. The performance of parallel computing was very efficient as the
number of grids increased, achieving a maximum speedup of approximately 150 times compared to a
CPU version using an Intel i7 4.7-GHz CPU in a PC environment.
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1. Introduction

The prediction and control of floodwater have attracted significant public and scientific interest for
many years. Many theoretical, experimental, and numerical studies have led to a better understanding
of the processes associated with rainfall runoff. For floods induced by rainfall events, the timescale
of runoff processes typically varies from minutes to days depending on the characteristics of rainfall
and basins. Therefore, one of the key aspects of flood forecasting in practice is speed of prediction.
Conceptual rainfall runoff models typically require relatively little computational resources and can
predict flood patterns almost instantly. Therefore, they have been widely used in practice. However,
conceptual models typically require additional processes called trial-and-error procedures because
they rely on numerous parameters, where a considerable portion of the parameters are not physical,
but empirical [1]. As a result, significant errors can occur, and the accuracy and reliability of prediction
are heavily dependent on the users of such models [2].

Recently, advances in measurement and computational techniques have enabled us to consider
additional physical factors related to rainfall runoff processes. In particular, rainfall radars, which
are innovative rainfall measurement tools, measure rainfall intensity and produce raster-type data
with arbitrary spatial resolutions. These raster-type rainfall data are helpful for the implementation of
physically based distributed rainfall runoff models.
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Physically based models are based on depth-averaged equations for the mass and momentum
conservation principles. A dynamic wave model based on the shallow water equations (or 2D
Saint-Venant equations) was derived from the Navier–Stokes equations by performing depth averaging,
assuming that the pressure distribution is hydrostatic, and assuming that the horizontal scale is much
larger than vertical scale as follows [3]:
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where the subscript ( j, k) = (1, 2). t is the time and x j is the horizontal axis. h is the water depth and z is
the bottom elevation. uj is the flow velocity, i0 is the rainfall intensity, and f is the infiltration rate. g is
the gravitational acceleration, τb

j is the bed shear stress, and ρ is the density of water. Recently, many
2D dynamic wave models have been applied to the simulation of overland flow during rainfall runoff
processes [4–12].

Kinematic wave models assume that local and advective accelerations, as well as hydrostatic
pressure effects are negligible, meaning the energy slope is balanced to the bottom slope as follows:

∂z
∂x j
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j

ghρ
= −S f j, (3)

where S f is the energy slope term. Lighthill and Whitham [13] proposed an early kinematic wave
model, such models have been widely used to simulate overland flow [14–17]. However, kinematic
wave models have limitations in terms of predicting backwater effects and the dispersion of flood
peaks [18]. Additionally, kinematic wave models cannot be applied to topographies containing
depressions because flow direction is not dominated by the inertia and water surface slope, but purely
by the bottom slope.

By assuming that the scales of gravity, pressure, and friction are comparable, but the local and
advective accelerations are negligible, the diffusive wave model can be derived as follows [19]:

∂h
∂x j

+
∂z
∂x j

= S f j. (4)

In the framework of the diffusive wave model, the water flow direction depends on the water
surface slope ∂ζ/∂x j, where ζ = h + z. Therefore, we can apply diffusive wave models to complex
topographies with convex and concave profiles, unlike kinematic wave models. Additionally, although
diffusive wave models are less physical than dynamic wave models, Yeh et al. [6] and Costabile et al. [7]
demonstrated that diffusive wave models could predict results for slow overland flows with accuracy
comparable to that of a dynamic wave model. Therefore, diffusive wave models are appropriate for
the simulation of rainfall runoff processes in complex topographic basins.

As mentioned above, one of the most significant obstacles to applying distributed runoff models
to rainfall runoff events is computational speed because the calculation of rainfall runoff models must
be completed within a very short period [20]. To date, most rainfall runoff models have been developed
and implemented as serial streams of instructions that are executed sequentially. Therefore, it takes a
very long time for physically based distributed models to compute rainfall runoff events because these
models are typically composed of huge numbers of computational grids in space and time.

To handle such problems, parallel computing has been widely developed and applied in many
scientific and engineering fields. The message-passing interface (MPI) is a portable message-passing
standard for high-performance computing and programs. Irfan and Lynett [21], and Cordier et al. [22]
developed depth-integrated flow models for solving Boussinesq-type equations and shallow water



Water 2019, 11, 1447 3 of 13

equations by using the MPI based on a domain decomposition strategy. OpenMP is another popular
choice for parallel computing because it is relatively easy to use for developing parallel applications [23].
Regarding floods, Neal et al. [24] developed an OpenMP version of a storage cell flood model that was
reported to be 5.8 times faster than a CPU version. Leandro [25] developed a diffusive wave model
using OpenMP and achieved a speedup of 5.1 times using 12 cores. Although OpenMP is easy to use,
there are some limitations in terms of reducing computational time by using OpenMP because CPUs
have small numbers of cores. In contrast, GPUs can have hundreds of cores on a single chip, meaning
GPUs can perform parallel computing very efficiently by processing many data simultaneously.

In this paper, we propose a GPU-accelerated diffusive wave model for simulating rainfall runoff

processes in a PC environment. First, the diffusive wave equations for rainfall runoff processes are
introduced. Second, numerical schemes for solving the governing equations are described. Finally, the
proposed model is applied to several benchmark tests and the performance results are reported.

2. Methods

2.1. Diffusive Wave Model

The 2D diffusive wave equations for overland flow considering rainfall and infiltration are
expressed as follows [26]:
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where (x, y) represent the horizontal spatial axes. (p, q) are the horizontal unit flow discharge in
the x and y directions, respectively.

(
S f x, S f y

)
are the bottom friction slope in the x and y directions,

respectively, which are estimated using Manning’s friction formula as follows:
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where (u, v) = (p/h, q/h) are the flow velocities in the x and y directions, respectively and, n is
Manning’s roughness coefficient.

To derive an explicit expression for the unit flow discharge, we substituted u and v into Equations (6)
and (7) and replaced h+ z with ζ. This allowed us to obtain the following expressions for the horizontal
momentum equations.
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By rearranging Equations (8)–(10), we can derive u = vS f x/S f y and v = uS f y/S f x meaning p and
q can be expressed as follows:
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The flow characteristics under dropping rainwater events are further complicated by the
disturbances of raindrops because raindrops introduce not only mass, but also momentum and
energy into an overland flow [27]. In other words, the effects of raindrops can be more important
in shallow water, such as overland flow water, than in deep water. Woo and Brater [28] found that
raindrop impacts could modify the relationship between the Reynolds number and resistance factor in
the laminar flow range. Yu and McNown [29] reported a change in the Darcy–Weisbach resistance
coefficient f based on changes in flow regime. Based on these results, it is clear that overland flows
under rainfall conditions will exhibit different patterns compared to those without rainfall. Therefore,
in this study, we considered raindrop effects on the bottom friction factor.

The Darcy–Weisbach equation can be expressed as follows [30]:

f =
kt

Re
=

k0 + Aib

Re
, (13)

where kt is the friction coefficient representing the effects caused by both surface roughness and rainfall
intensity. k0 represents surface roughness and a value of k0 = 24 represents a smooth surface. A and b
are 1.42 × 106 s/m and 1.0, respectively. Re is derived by considering Manning’s formula as follows:

Re =
h

5
3 S

1
2
f

nν
, (14)

where ν is kinematic viscosity. The relationship between f and n is obtained by combining Manning’s
formula and Chezy’s formula to remove f from Equation (13) as follows:

n =

√
f

8g
h

1
6 . (15)

By rearranging and combining Equations (13) and (15), we can obtain an explicit expression for n
considering rainfall intensity and water depth as follows:

n =
ν
(
k0 + Aib

)
8gh

4
3 S

1
2
f

. (16)

2.2. Infiltration Model

Infiltration into the ground is estimated using the Horton model [31] as follows:

fp (t) = fc + ( f0 − fc)e−kt, (17)

where f0 and fc (m/s) represent the initial and final rates of the infiltration capacity, respectively. k
(s−1) is a constant representing the rate of decline in infiltration capacity over time. Horton’s model is
an exponential curve derived from empirical results and assumes that there is a sufficient water supply
on the ground surface. In other words, the infiltration rate, f is identical to the infiltration capacity,
fp only when the rainfall intensity i0 is greater than fp. If i0 is less than fp, then all the rainfall will
infiltrate into the ground. Therefore, the infiltration rate can be expressed as follows:

f (t) =
{

i0(t) if i0(t) < fp(t)
fp(t) if i0(t) ≥ fp(t)

. (18)

The cumulative infiltration F(t) up to a time t can be calculated by integrating Equation (17)
as follows:

F(t) = fct +
( f0 − fc)

k

(
1− e−kt

)
. (19)
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2.3. Numerical Scheme

The numerical scheme for solving the mass conservation equation is based on a Godunov-type
finite volume method. The reconstructed value at the interface between two computational volumes is
estimated using the piecewise linear monotonic upwind scheme for conservation laws (MUSCL) [32]
as follows:

ϕ+
i+1/2 = ϕi+1 − 0.5∇ϕi+1∆x,ϕ−i+1/2 = ϕi − 0.5∇ϕi∆x, (20)

where ϕ is an arbitrary variable and the subscripts i and i + 1/2 represent the indexes for the
computational volume and interface, respectively. ϕ+

i+1/2 andϕ−i+1/2 represent the reconstructed values
on the right and left sides of the interface, respectively. ∆x is the computational grid size and ∇ is a
total variation diminishing (TVD) limiter that prevents spurious numerical oscillations. In this study,
we employed a van leer limiter as follows:

∇ϕ =
∇ϕL

∣∣∣∇ϕR
∣∣∣ + ∣∣∣∇ϕL
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where
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, ∇ϕR =

ϕi+1 − ϕi

∆x
. (22)

To compute the fluxes Pi+1/2 and Qi+1/2 at the cell interface in the x and y directions, respectively
the Lax–Friedrichs method [33] was employed as follows:

Pi+1/2 =
1
2

[
p+i+1/2 + p−i+1/2 − ai+1/2 (hi+1 − hi)

]
, (23)
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where the wave speed ai+1/2 is given by the following equations:

ai+1/2 =
5
3

Max
(∣∣∣∣u+

i+1/2

∣∣∣∣, ∣∣∣u−i+1/2
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For time integration, the following second-order Runge-Kutta method was adopted:

h(1) = hm + ∆tL(hm), (26)

hm+1 =
1
2

hm +
1
2

h(1) + ∆tL(h(1)), (27)

L(h) = −
1

∆x

∑
P(h) −

1
∆y

∑
Q(h) + r− i0, (28)

where ∆t is the time step and ∆y is the computational grid size in the y direction. P and Q represent
the fluxes at the cell interfaces. We assumed that the flow velocity becomes 0 m/s when h < 10−4 m to
implement wet/dry bed changing.

2.4. GPU Environment and Programming

The GPU version of the diffusive wave code was implemented using CUDA Fortran, a parallel
computing platform developed by NVIDIA. As shown in Figure 1, threads are grouped into block
and blocks are grouped into grid in CUDA. Thus, it is convenient to associate the thread block
with a particular index as follows because many applications of rainfall runoff models involve large
two-dimensional data.

i = threadidx%x + (blockidx%x − 1) × blockDim%x, (29)
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j = threadidx%y + (blockidx%y − 1) × blockDim%y, (30)

where i and j are the thread index, respectively. blockidx%x and blockidx%y are the dimensions of the
block identifiers in the x and y direction, and blockDim%x and blockDim%y are the dimensions of the
block dimensions, respectively.
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CUDA can control several types of memory in GPU such as global, local, texture, constant, shared,
and register as shown in Figure 1. Among them, register memory is the fastest variable memory and
visible to thread, thus it is most advantageous to use register as much as possible. The blocks in a
grid are executed independently and it is not necessary to communicate or cooperate between blocks
because the numerical scheme of the diffusive wave equation does not include simultaneous equation
solvers such as Gaussian elimination or Thomas algorithm, which is inherently in serial significantly
increasing the running time. Therefore, very straightforward and simple implementation using mainly
register memory for the diffusive wave equation was possible without using shared memory or texture.

The numerical model was implemented and tested in a PC environment with an Intel Core i7-8700K
4.70-GHz CPU, 16 GB RAM, and an NVIDIA GeForce GTX 1060 GPU with 1152 cores. In the PC system
used in this study, the maximum number of threads was 1024 per block in the GPU. Thus, when we
needed to simulate which array size was larger than 1024, we used multiple blocks with 1024 threads each.

3. Results and Verification

3.1. Moving Storms on 1D Impermeable Overland Plane

To verify the accuracy of the proposed model, we compared the computed results to the analytical
solution proposed by Singh [34]. The test basin was an impermeable single overland plane. The
basin length was 9.754 m with a bottom slope of 0.04 and Manning’s roughness coefficient of
n = 0.04 m−1/3s−1. The rainstorm length was 29.26 m and its rainfall intensity was i0 = 88.9 mm/h.
The storm movement speeds were Vs = 0.094 m/s. and 0.187 m/s for the upstream and downstream
moving cases, respectively. For the numerical simulations, the computational grid size and time step
were set to ∆x = 0.0254 m and ∆t = 0.01 s, respectively. A transmissive boundary condition was
applied at the downstream boundary and a reflective boundary condition was applied everywhere else.
Initially, a value of h = 0 m was assumed for the entire domain. Figure 2 indicates close agreement
between the relative unit discharges at the basin outlet calculated by the analytical solution and
numerical model. The root-mean-square errors (RMSE) were 0.0071 and 0.043 for the upstream and
downstream moving storm cases, respectively.
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3.2. 1D Permeable Basin with Local Depressions

One of the most significant disadvantages of the kinematic wave models is that the flow path
and direction are determined solely by the gravity, without considering other momentum factors. In
other words, the signs of the slopes of the water surface profile and basin bottom profile must be the
same. Therefore, if the topography of a basin has a depression, such as, a furrow or pond then, one can
use kinematic wave models only after modifying the local depressive topography. In this section, the
diffusive wave model is applied to an inclined sinusoidal plane (Figure 3) to test its applicability to
topographies containing depressions. The bottom profile of the test basin with an inclined sinusoidal
shape is defined as follows:

z = 21.0− 0.5sin
(
π
10

x
)
− 0.005x, 0 m ≤ x ≤ 200 m. (31)

The initial water depth was h = 0 m for the entire basin and a steady uniform rainfall intensity
with i0 = 0.25 mm/s lasted for 125 min. The infiltration rate was calculated using the Horton infiltration
model with parameter values of k = 2.43 × 10−3 s−1, f0 = 1.977 × 10−4 m/s, and fc = 3.272 × 10−5 m/s.
The computational grid size was ∆x = ∆y = 1.0 m and the time interval was ∆t = 0.01 s. For
the simulation, a transmissive boundary condition was applied at the downstream boundary and a
reflective boundary condition was applied everywhere else. Figure 3 presents the computed profiles
for water level, cumulative infiltration, and hydrograph at the basin outlet. At the beginning of the
simulation, most of the rainwater was not released into the basin outlet, but flowed into the troughs
by following the terrain. After rainwater filled the furrows, as shown in Figure 3b,c, the rainwater
falling on the entire basin could flow toward the basin outlet, thereby increasing the discharge, as
shown in Figure 3e. Since the loss through infiltration was somewhat considerable, the discharge at the
basin outlet was much smaller than the equilibrium discharge. Figure 3d reveals that the water surface
elevation decreased after the rain stopped by infiltration. Additionally, the cumulative infiltration
became non-uniform as the dry bed area extended.
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Figure 3. (a–d) Computed water surface profile and accumulated infiltration at (a) t = 5 min,
(b) t = 60 min, (c) t = 120 min, and (d) t = 170 min. (e) Hydrographs at the downstream boundary.

3.3. 2D Catchments

To test the applicability of the diffusive wave model to 2D spaces, we applied the model to a
V-shaped basin consisting of two 1000 m× 800 m planes and one 1000 m× 20 m channel. The slope
of the plane perpendicular to the channel was 0.05 and the channel bottom slope 0.02. Manning’s
roughness coefficient was n = 0.015 m−1/3s−1 for the entire domain. A constant rainfall intensity of
i0 = 10.8 mm/h was uniformly applied for 90 min. A transmissive boundary condition was applied at
the downstream boundary and a reflective boundary condition was applied on the sides and upstream
boundaries. The grid sizes were ∆x = ∆y = 10 m and the time step was ∆t = 1.0 s. Figure 4 presents
the discharges at the downstream boundary computed by the diffusive wave model and a dynamic
wave model [35]. The RMSE normalized by the peak discharge at the outlet was 0.0263.
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Figure 4. Computed discharges at the basin outlet.

Next, the diffusive wave model was applied to a 2D basin with several storage ponds to
test the model’s ability to simulating runoff processes including disconnected water bodies with
depressed topography. The basin topography was defined as z = 0.01y + 0.01|x− 5| − 0.01 sin(πx/2) −
0.01sin(πy/2) + 1, where 0 ≤ x ≤ 10 m and 0 ≤ y ≤ 8 m. Therefore, there were four circular ponds
and a channel with two troughs, as shown in Figure 5.
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Figure 5. Bottom elevation of a 2D test with several storage ponds.
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The Manning’s roughness coefficient was n = 0.013 m−1/3s−1. The basin was permeable and the
coefficients were k = 2.67 × 10−2/s, f0 = 7.78 × 10−5 m/s, and fc = 7.64 × 10−6 m/s. A rainstorm
with a speed of 0.5 m/min moved from the upstream side to the downstream side of the basin. Rainfall
with an intensity of i0 = 50 mm/h lasted for 40 min. For the numerical simulation, the grid sizes were
∆x = ∆y = 0.1 m and the time step was ∆t = 0.01 s. A transmissive boundary condition was applied at
the downstream boundary and a reflective boundary condition was applied at the sides and upstream
boundaries. Figure 6 presents the computed results at several stages. Initially, the entire domain was
dry, as shown in Figure 6a. After it began to rain, the two ponds in the upper area were filled with
water and the excessive water overflowed the ponds, as shown in Figure 6b. The rainstorm continued
moving in the downstream direction, so most of the upper basin area became dry, except for inside
the ponds, as shown in Figure 6c. Rain still precipitated in the downstream area, meaning the lower
area became flooded. Figure 6d reveals that the water in the two ponds in the upper area disappeared
through infiltration. From this figure, one can see that the diffusive wave model reproduced physically
reasonable rainfall runoff processes on a complex topography with 2D depressions. Considering the
results of these two test cases, the proposed diffusive wave model is a promising prediction tool for
rainfall runoff processes in 2D catchments.
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3.4. Complex Natural Basin

The diffusive wave model was tested on a real catchment and the results were compared to
measured data. The domain was 10 m long and 4 m wide with an average bottom slope of 0.01,
as shown in Figure 7. Prior to the experiment, rainfall continued for several hours, meaning the
soil erosion effect was sufficiently slow to ignore the bottom evolution that occurred during the
experiment. For the numerical simulation, the 10 × 10 cm2 digital elevation model (DEM) presented
by Tartard et al. [36] with parameters of ∆t = 0.01 s and i0 = 70 mm/h was used. A transmissive
boundary condition was also applied at the downstream boundary and a reflective boundary condition
was applied to other boundaries.
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Figure 7. (Left) Elevation of the tested basin in Thies, Senegal. (Right) Bottom profile along y-axis at
x = 2 m.

Figure 8 presents the complex dendritic patterns of the computed water depth and flow velocity
generated by following the complex terrain. Both plots of computed flow velocity show a rapid increase
in the flow velocity in downstream area corresponding to the relative steep bottom slope. Figure 9
presents a comparison between the computed velocity of the proposed model and the measured
velocity [36,37] at the 62 points. The RMSEs of the computed results were 0.0284 m/s and 0.0343 m/s
when using n = 0.02 and when using Equation (16), respectively. For reference, Mugler et al. [38]
obtained an RMSE of 0.03 m/s for the same case using a diffusive wave model. One of the main
reasons for discrepancy is that the computed velocities were averaged over a 10 × 10 cm2 area, while
the measured velocities [36,37] were based on points. Additionally, the low spatial resolution of the
topography and exclusion of local and advective accelerations from the momentum equation may lead
to small errors.
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4. GPU Speedup of Parallel Computing

In this section, we compared the performance of the GPU-accelerated diffusive wave model using
an NVIDIA GeForce GTX 1060 GPU with 1152 cores to that of the CPU version using an Intel i7 4.7-GHz
CPU in a PC environment. To compare the two versions, we simulated the V-shaped basin case from
Section 3.3 with various numbers of grids ranging from 102 to 1.024 × 107. Also, the numerical test
was performed for only one minute because the purpose was to compare the computation times of
the GPU and CPU versions. Figure 10 presents the computation times of the GPU and CPU versions,
as well as the speedup ratio achieved by parallel computing, where the speedup ratio is defined as
the ratio of the computation times of the GPU and CPU versions. When the number of the grids was
10 × 10, the speedup ratio was less than one because there is a time delay associated with transferring
data between the CPU and GPU. However, the GPU-accelerated version became much more efficient
than the CPU version as the number of grids increased. For the grid number of 3200 × 3200, the GPU
version finished computation approximately 150 times faster than the CPU version.
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5. Conclusions

In this study, we developed and tested a GPU-accelerated 2D diffusive wave model for simulating
rainfall runoff processes. The diffusive wave equations were solved using a Godunov-type finite
volume scheme. The flux at the computational cell interface was reconstructed using piecewise linear
MUSCL with a van Leer slope TVD limiter. Infiltration was computed using the Horton infiltration
model. Parallelization was implemented using CUDA-Fortran in a PC environment with an NVIDIA
GeForce GTX 1060 GPU. The proposed model was first applied to 1D and 2D impermeable basins
without depressions. The computed results were compared to analytical solutions and the dynamic
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wave model results showed very close agreement with the analytical solutions. We then applied the
diffusive wave model to 1D and 2D permeable basins with depressions, such as furrows or ponds. The
diffusive wave model reasonably simulated the overland flow around the depressions. Finally, we
applied the diffusive wave model to a real basin with complex terrain and reasonable agreement with
the measured data was observed. The performance of parallel computing became very efficient as the
number of the computational grids increased, achieving a maximum speedup ratio of approximately
150 times compared to the CPU version using an Intel i7 CPU in a PC environment.

Although we proposed a GPU-accelerated high resolution numerical scheme for diffusive wave
equations, it is necessary to integrate with various hydrological processes modules such as river
flow, groundwater, vegetation effect, and hydraulic structure for practical application of the model to
real watersheds, which are beyond this study. Since the width of streams varies from centimeter to
kilometer scales, the present grid based rainfall runoff model cannot properly describe river geometry.
Rainfall runoff is also significantly affected by groundwater flow and hydraulic structure, which require
many parameters such as hydraulic conductivity, porosity, and operation rules.
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