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Abstract: Soil moisture is an important indicator that is widely used in meteorology, hydrology,
and agriculture. Two key problems must be addressed in the process of downscaling soil moisture:
the selection of the downscaling method and the determination of the environmental variables,
namely, the influencing factors of soil moisture. This study attempted to utilize machine learning
and data mining algorithms to downscale the Advanced Microwave Scanning Radiometer-Earth
Observing System (AMSR-E) soil moisture data from 25 km to 1 km and compared the advantages and
disadvantages of the random forest model and the Cubist algorithm to determine the more suitable
soil moisture downscaling method for the middle and lower reaches of the Yangtze River Basin
(MLRYRB). At present, either the normalized difference vegetation index (NDVI) or a digital elevation
model (DEM) is selected as the environmental variable for the downscaling models. In contrast,
variables, such as albedo and evapotranspiration, are infrequently applied; nevertheless, this study
selected these two environmental variables, which have a considerable impact on soil moisture.
Thus, the selected environmental variables in the downscaling process included the longitude,
latitude, elevation, slope, NDVI, daytime and nighttime land surface temperature (LST_D and LST_N,
respectively), albedo, evapotranspiration (ET), land cover (LC) type, and aspect. This study achieved
downscaling on a 16-day timescale based on Moderate Resolution Imaging Spectroradiometer
(MODIS) data. A comparison of the random forest model with the Cubist algorithm revealed that the
R2 of the random forest-based downscaling method is higher than that of the Cubist algorithm-based
method by 0.0161; moreover, the root-mean-square error (RMSE) is reduced by 0.0006 and the mean
absolute error (MAE) is reduced by 0.0014. Testing the accuracies of these two downscaling methods
showed that the random forest model is more suitable than the Cubist algorithm for downscaling
AMSR-E soil moisture data from 25 km to 1 km in the MLRYRB, which provides a theoretical basis
for obtaining high spatial resolution soil moisture data.

Keywords: soil moisture; Advanced Microwave Scanning Radiometer-Earth Observing System
(AMSR-E); downscaling; random forest; Cubist

1. Introduction

Soil moisture is an important component of both the water cycle and the surface energy cycle;
it is also an important indicator for reflecting land degradation and characterizing surface drought
information [1–5]. Soil moisture is related to a number of factors, which include vegetation growth,
crop growth, and food production, as well as important parameters in the fields of hydrology, climate
research, agriculture, and ecology [6,7]. Consequently, soil moisture has been widely used in various
environmental applications, such as hydrological modeling, land surface evapotranspiration simulation,
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numerical weather prediction, and surface runoff prediction [8]. Furthermore, timely access to accurate
soil moisture information can enable the spatial distribution of soil moisture to be mapped, which is
of great significance for improving the efficiency of agricultural irrigation water use, agricultural
production, sustainable water resource utilizing, and drought condition monitoring. Unfortunately,
the traditional methods that are used to measure soil moisture, which include the drying and weighing
method, negative pressure meter method, neutron meter detection method, indirect resistance method,
and time domain reflection (TDR) method, suffer from numerous disadvantages, namely, they are
limited by sparse sampling, they have poor representativeness and poor dynamics, and they are time
consuming and laborious, while offering only a small monitoring range.

When compared with traditional soil moisture monitoring methods, in recent years remote sensing
technology can provide a wide range of continuous monitoring, which are dynamic and inexpensive.
The remote sensing inversion of soil moisture is mainly divided into optical remote sensing and
microwave remote sensing methods [9]. The former is primarily based on the soil color and surface
temperature, both of which are affected by soil moisture, and thus visible, near-infrared and thermal
infrared remote sensing methods are used for soil moisture monitoring [10,11]. To date, many scholars
have performed research on the optical remote sensing inversion of soil moisture. As a result, numerous
soil moisture inversion models, such as the normalized difference vegetation index (NDVI), apparent
thermal inertia (ATI), and temperature vegetation dryness index (TVDI), have been established [12,13].
However, the signals in the visible, near-infrared, and thermal infrared bands have weak penetration
ability and they are easily affected by factors, such as atmospheric conditions and clouds. In contrast,
microwaves boast a strong penetration ability, and the surface moisture content of soil can be monitored
at any time of day [14]. To some extent, these advantages, namely, the acquisition of all-weather
observations and the ability to penetrate clouds, fog, and snow, compensate for the shortcomings
of optical remote sensing in soil moisture inversion and they introduce unique advantages into soil
moisture monitoring.

Microwave remote sensing is divided into active and passive microwave remote sensing techniques
on the basis of different energy sources. Active microwave remote sensors mainly employ synthetic
aperture radar, while passive microwave remote sensors are known as microwave radiometers.
Although active microwave remote sensing boasts high spatial and temporal resolutions, this approach
is susceptible to the surface roughness, vegetation canopy structure, etc., and thus the inversion of soil
moisture suffers from considerable uncertainty. The difference between active and passive microwave
remote sensing is that microwave radiometers are less affected by these disturbances and they are
sensitive to temperature, vegetation, and soil moisture. Because of these advantages, passive microwave
remote sensing is widely utilized in hydrology, agriculture, and meteorology. With the development
of microwave remote sensing technology, a series of microwave radiometer-based soil moisture
products, such as the Scanning Multichannel Microwave Radiometer (SMMR) [15,16], Special Sensor
Microwave Imager (SSM/I) [17–19], Tropical Rainfall Measuring Mission (TRMM) Microwave Imager
(TMI) [20–23], Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) [24–30],
Soil Moisture and Ocean Salinity (SMOS) satellite [31,32], and Fengyun (FY) series of satellites launched
by China, have emerged [30,33]. These passive microwave remote sensing-based soil moisture products
provide large areas of soil moisture distributions, which constitute important basic data for global
or regional research; however, 25–40 km is the spatial resolution of most soil moisture products,
which makes it difficult for soil moisture data to satisfy the needs of applications, such as hydrological
modeling. Therefore, passive microwave products must be downscaled to obtain high-resolution soil
moisture data.

Researchers have established a variety of empirical equations that are based on the relationship
between soil moisture and environmental variables. However, global linear regression assumes that
the distributions of variables are spatially consistent before conducting statistical analysis, and thus
local characteristics are ignored. Brunsdon et al. [34] proposed the concept of geographically weighted
regression (GWR) based on the principles of local regression to improve the global regression model.
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When compared with the global regression model, GWR mainly introduces geographic location
information into the regression model [35,36]. However, due to the limitations of the GWR algorithm,
it is impossible to effectively screen local environmental variables with the closest soil moisture based
on the spatial distribution; as a result, GWR is not applicable for obtaining multiple factors to downscale
the soil moisture. To date, following the emergence of machine learning algorithms, the random forest
algorithm, which is an ensemble learning algorithm that was developed on the basis of decision trees,
has been widely used in many fields, because it provides better ability in capturing the nonlinear
relationships between variables. Shi et al. [37] downscaled TRMM products based on the random
forest model and obtained precipitation data at a 1 km resolution over the Tibet Plateau. In addition,
Ma et al. [38] introduced the Cubist data mining algorithm to downscale TRMM annual precipitation
data across the Tibet Plateau from a resolution of 0.25◦ × 0.25◦ to 1 km× 1 km. The results demonstrated
that the performance of the Cubist algorithm is better than that of the GWR model.

Although both algorithms are very effective for remote sensing precipitation products, the most
widely used downscaling algorithm for passive microwave radiometer soil moisture measurements is
still the empirical relationship with optical remote sensing images. Therefore, the purpose of this study
is to use the random forest and Cubist models to downscale the AMSR-E soil moisture products in the
study area to obtain higher-resolution soil moisture data. The specific objectives are as follows: (1) to
apply the random forest and Cubist algorithms to downscale AMSR-E passive microwave products
from 25 km to 1 km and (2) to compare the downscaling results of these two models to determine the
most suitable downscaling algorithm for the study area.

2. Data and Methods

2.1. Study Area

The Yangtze River is one of the major rivers in China, maintaining a length of approximately
6300 km and a catchment area of approximately 1.8 million km2. We choose the middle and lower
reaches of the Yangtze River Basin (MLRYRB, see Figure 1), which lies between 25◦ and 35◦ N and
between 106◦ and 122◦ E, as the study area. The Terra and Aqua combined Moderate Resolution
Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) Version 6 data product adopts
five different land cover classification schemes. This study adopts the second classification method
of the Annual University of Maryland (UMD) classification, which shows the land cover types in
the MLRYRB.
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Figure 1. Annual average soil moisture distribution in the middle and lower reaches of the Yangtze 
River Basin (MLRYRB) based on Advanced Microwave Scanning Radiometer-Earth Observing 
System (AMSR-E). 

2.2. Data 

The AMSR-E is a multichannel passive microwave sensor that was launched on NASA’s Earth 
Observing System (EOS) Aqua satellite in May 2002, with daily ascending (13:30 equatorial local 
crossing time) and descending (01:30 equatorial local crossing time) overpasses [25,39]. In this study, 
we select the Level-3 land surface product of the AMSR-E (AE_Land3) onboard NASA’s Aqua 
satellite with a spatial resolution of 25 km × 25 km (Figure 2). The MODIS products that were utilized 
in this study, including NDVI, daytime land surface temperature (LST_D), nighttime LST (LST_N), 
albedo, land cover (LC) type, and evapotranspiration (ET) products, are acquired from NASA. Table 
1 summarizes the attribute information of the MODIS data set that was used in this study. In addition, 
the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) product was obtained 
by the International Scientific & Technical Data Mirror Site, Computer Network Information Center, 
Chinese Academy of Science, with a spatial resolution of 90 m (http://www.gscloud.cn). The slope 
and aspect are derived from the DEM data. Additionally, the observed soil moisture data (0–10 cm) 
in situ soil stations (as shown in Figure 1) used in this study were provided from the China 
Meteorological Data Sharing Service System (available at http://cdc.nmic.cn/home.do). 

Figure 1. Annual average soil moisture distribution in the middle and lower reaches of the Yangtze
River Basin (MLRYRB) based on Advanced Microwave Scanning Radiometer-Earth Observing
System (AMSR-E).

2.2. Data

The AMSR-E is a multichannel passive microwave sensor that was launched on NASA’s Earth
Observing System (EOS) Aqua satellite in May 2002, with daily ascending (13:30 equatorial local crossing
time) and descending (01:30 equatorial local crossing time) overpasses [25,39]. In this study, we select
the Level-3 land surface product of the AMSR-E (AE_Land3) onboard NASA’s Aqua satellite with a
spatial resolution of 25 km × 25 km (Figure 2). The MODIS products that were utilized in this study,
including NDVI, daytime land surface temperature (LST_D), nighttime LST (LST_N), albedo, land
cover (LC) type, and evapotranspiration (ET) products, are acquired from NASA. Table 1 summarizes
the attribute information of the MODIS data set that was used in this study. In addition, the Shuttle
Radar Topography Mission (SRTM) digital elevation model (DEM) product was obtained by the
International Scientific & Technical Data Mirror Site, Computer Network Information Center, Chinese
Academy of Science, with a spatial resolution of 90 m (http://www.gscloud.cn). The slope and aspect
are derived from the DEM data. Additionally, the observed soil moisture data (0–10 cm) in situ soil
stations (as shown in Figure 1) used in this study were provided from the China Meteorological Data
Sharing Service System (available at http://cdc.nmic.cn/home.do).

http://www.gscloud.cn
http://cdc.nmic.cn/home.do
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We choose the rule-based machine learning approaches, including the random forest and Cubist 
algorithms, to downscale the AMSR-E soil moisture data from 25 km to 1 km. The random forest 
method, which is a popularly used machine-learning method, uses randomization when selecting the 
features at each node. The Cubist method is a spatial data mining algorithm that applies a divide-
and-conquer strategy. The reader is referred to the literature for an introduction to these two machine 
learning algorithms [38,40–43]. The spatial downscaling method is based on the relationship between 
soil moisture and various environmental variables. Two key problems must be addressed to 
downscale the AMSR-E soil moisture data: one is the selection of the downscaling method, and the 
other is the determination of the surface variables of soil moisture. This study attempts to introduce 
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Figure 2. Global soil moisture distribution based on the AMSR-E (taking January 1, 2003, as an example).

Table 1. Attribute information of the Moderate Resolution Imaging Spectroradiometer (MODIS) data.

Scientific Data Sets (SDS) Spatial Resolution Scale Factor

MOD13A2 (MODIS/Terra Vegetation Indices 16-Day L3 Global
1 km SIN Grid V006) 1 km 0.0001

MOD11A2 (MODIS/Terra Land Surface
Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V006) 1 km 0.02

MCD43A3 (MODIS/Terra+Aqua BRDF/Albedo Daily L3
Global-500 m V006) 500 m 0.001

MCD12Q1 (MODIS/Terra+Aqua Land Cover Type Yearly L3
Global 500 m SIN Grid V006) 500 m N/A

MOD16A2 (MODIS/Terra Net Evapotranspiration 8-Day L4
Global 500 m SIN Grid V006) 500 m 0.1

2.3. Methodology

We choose the rule-based machine learning approaches, including the random forest and Cubist
algorithms, to downscale the AMSR-E soil moisture data from 25 km to 1 km. The random forest
method, which is a popularly used machine-learning method, uses randomization when selecting
the features at each node. The Cubist method is a spatial data mining algorithm that applies a
divide-and-conquer strategy. The reader is referred to the literature for an introduction to these two
machine learning algorithms [38,40–43]. The spatial downscaling method is based on the relationship
between soil moisture and various environmental variables. Two key problems must be addressed to
downscale the AMSR-E soil moisture data: one is the selection of the downscaling method, and the other
is the determination of the surface variables of soil moisture. This study attempts to introduce machine
learning algorithms into the downscaling model and compares the advantages and disadvantages
of the random forest model with those of the Cubist algorithm to determine the most suitable soil
moisture downscaling method for the MLRYRB. The NDVI, DEM, and surface temperature are the most
commonly employed environmental variables. In contrast, there are few applications for variables,
such as albedo and ET; nevertheless, this study considers these factors to have a greater impact on soil
moisture. Therefore, the longitude, latitude, DEM, slope, aspect, NDVI, LST_D, LST_N, albedo, ET,
and LC are the final environmental variables that were utilized in the downscaling process.

The basic idea of the downscaling method is to first establish the relationship between soil moisture
and all of the environmental variables at a spatial resolution of 25 km and then apply the established
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model to the environmental variables, which have a resolution of 1 km, to obtain spatially continuous
soil moisture with a 1 km spatial resolution. The main steps of the downscaling process are as follows:

(1) First, the environmental variables during the 2003–2010 period are resampled to 25 km and
1 km, and the machine learning models, including the random forest and Cubist models, with a 16-day
timescale, are established at a spatial resolution of 25 km:

f (SM25km) = f (longitude25km, latitude25km, DEM25km, slope25km, aspect25km,
NDVI25km, LST_D25km, LST_N25km, albedo25km, ET25km, LC25km)

(1)

where SM25km is the AMSR-E soil moisture data and f (SM25km) is the downscaling model, namely,
either the random forest model or the Cubist model.

(2) Subsequently, the AMSR-E soil moisture data are subtracted from the estimated soil moisture
at a spatial resolution of 25 km to obtain a residual at 25 km, after which residual at 25 km model is
resampled to 1 km;

(3) The established model is applied to the environmental variables at a spatial resolution of 1 km
to obtain soil moisture data of 1 km before applying a residual correction:

f (SM1km) = f (longitude1km, latitude1km, DEM1km, slope1km, aspect1km,
NDVI1km, LST_D1km, LST_N1km, albedo1km, ET1km, LC1km)

(2)

(4) Finally, the estimated value at 1 km is added to the residual at 1 km to obtain the 16-day
soil moisture data with a spatial resolution of 1 km after a residual correction. Figure 3 provides the
flowchart to illustrate the main steps of this procedure.
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3. Results and Discussion

3.1. Relationship between Soil Moisture and Environmental Variables

Most of the environmental variables, namely, the longitude, latitude, elevation, slope, NDVI,
LST_D, LST_N, albedo, and ET, are numerical variables, whereas the LC and aspect are factor variables.
Thus, Figure 4 shows the soil moisture values corresponding to different LC types, which demonstrates
that the AMSR-E soil moisture values in different LC types in the MLRYRB exhibit the following
trend: deciduous broadleaf forests > evergreen needleleaf forests > mixed forests > woody savannas >

evergreen broadleaf forests > savannas > cropland/natural vegetation mosaics > croplands > grasslands
> urban and built-up lands. Additionally, the AMSR-E soil moisture values of different forestland LC
types are higher than those of the other LC types. Similarly, the distribution of soil moisture values
that are based on the aspect from 2003 to 2010 is shown in Figure 5. As shown, in addition to the low
AMSR-E value of the flat aspect (Flat = 0.1112), the AMSR-E values of the other eight geographical
slopes do not substantially vary (the mean of each slope direction is given in parentheses): southeast
(Southeast = 0.1296) > south (South = 0.1280) > northwest (Northwest = 0.1277) > west (West = 0.1269)
> north (North = 0.1264) > southwest (Southwest = 0.1263) > northeast (Northeast = 0.1248) > east
(East = 0.1234). Although the aspect has certain influence on the distribution of soil moisture, it is also
closely related to the topography and surface vegetation cover type. Figure 6 shows the interannual
variation of the AMSR-E soil moisture throughout the study area in 2003–2010. The shaded portion
around the straight blue fitting line is the standard deviation of the linear fit. The soil moisture mean
clearly exhibits a downward trend during the entire period of 2003–2010; in addition, the standard
deviation in the middle of the study period is relatively small, whereas that in the beginning and end
of the study period is relatively large.
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3.2. Downscaling Results Based on the Random Forest Algorithm

The environmental variables at 1 km spatial resolution are applied to estimate soil moisture at
1 km spatial resolution according to the soil moisture downscaling model that was constructed with the
random forest at a spatial resolution of 25 km × 25 km (Figure 7b); then, the residuals at 25 km × 25 km
are resampled to residuals at 1 km while using bilinear interpolation (Figure 7c). Next, the estimated
values at 1 km are added to the residuals at 1 km to obtain 16-day soil moisture data with a spatial
resolution of 1 km after applying a residual correction (Figure 7d). Figure 7 shows that the original
AMSR-E soil moisture data are consistent with the trend of the estimated soil moisture data after
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applying a residual correction, which indicates that the random forest-based downscaling method
is well applicable to the study area. In addition, Figure 7 also shows that the soil moisture after the
residual correction is more detailed and more representative of the spatial variation in the soil moisture
values and is closer to the original AMSR-E soil moisture data distribution than the estimated results
before the residual correction.
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Figure 7. (a) AMSR-E soil moisture at a 25 km resolution; (b) downscaled results before the residual
correction based on the random forest in the MLRYRB; (c) interpolated residuals using ordinary kriging;
and, (d) downscaled results after the residual correction based on the random forest (taking DOY =

2003001 as an example).

We compare the downscaled results with the original AMSR-E soil moisture to further validate the
performance of the random forest-based downscaling model (Figure 8). The left panels in Figure 8 are
scatterplots between the downscaling results before the residual correction and the original AMSR-E
data, while the right panels are the scatterplots between the downscaling results after the residual
correction and the original AMSR-E soil moisture. The transparency in Figure 8 is set according to the
number of data points. A darker graph indicates that the density is higher and that the data points are
very concentrated; the lighter the color is, the smaller the density, that is, the less the data are scattered.
Evidently, the range of R2 between the downscaling results before the residual correction and the
original AMSR-E data is 0.55–0.64, while the range of R2 after the residual correction is 0.68–0.74.
The scatter plots on the left side of Figure 8 indicate that most of the data points are distributed above
the 1:1 line, when the soil moisture is less than 0.12, and the data points are distributed below the
1:1 line when the soil moisture is greater than 0.12. In the scatter plots on the right side of Figure 8
corresponding to the downscaling results after the residual correction, the data points are evenly
distributed on both sides of the 1:1 line. In general, the correlation between the AMSR-E soil moisture
and the results of the random forest-based downscaling model are very good, which indicates that this
downscaling model has good applicability in the MLRYRB.
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Figure 8. Scatter plots of the downscaled soil moisture results based on the random forest model and
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3.3. Downscaling Results Based on the Cubist Model

This study selects the same environmental variables as those used for the random forest-based
downscaling model for the Cubist downscaling algorithm: the longitude, latitude, elevation, slope,
NDVI, LST_D, LST_N, albedo, ET, LC type, and aspect. However, the results show that, due to the
linear relationship among longitude, latitude, and soil moisture, blocky features are too obvious in
the downscaling results of the Cubist algorithm (see the red rectangles in Figure 9). In other words,
the relationship for each rule between the soil moisture data and the latitude and longitude displays
abrupt changes, which is obviously contrary to the continuity of soil moisture in space. Therefore,
this study excludes two surface variables in the Cubist downscaling model, namely, longitude
and latitude.
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Figure 9. The downscaled results based on the Cubist algorithm (including longitude and latitude).

The downscaling process is carried out based on the Cubist model after removing the latitude and
longitude surface variables. Table 2 lists the spatial regression relationship between the soil moisture
and each surface variable (in the case of DOY = 2003001). 11 rules are generated after removing the
longitude and latitude variables; however, not all of the variables participate in the downscaling model
in each rule. This is one of the advantages of the Cubist algorithm, which automatically filters the
optimal combination of variables that are required within the rules. To more intuitively ascertain
whether each variable participates in the relationship of each rule, this study uses the R Lattice package
to draw the regression coefficient graph of each rule (Figure 10). As the aspect and LC are factor
variables, they only participate in the classification of each rule and do not participate in the regression
calculations. Figure 10 shows that the albedo and ET surface variables participate in fewer rules;
albedo participates in the model construction of the first and sixth rules, while the ET participates
in the first, fifth, and tenth rules. These graphs can visualize the regression coefficient and intercept
participating in each rule.

Figure 11 shows the distributions of the main split nodes of the environmental variables in the
11 rules of the Cubist downscaling algorithm (taking DOY = 2003001 as an example). The x-axis is
the range of each variable and it is normalized from 0 to 1, while the y-axis is the split node of the
variable used in each rule. For example, if a rule’s variable is less than a certain value, then the rule’s
line will be drawn blue; if a rule’s variable is greater than a certain value, the rule’s line will be drawn
purple. Figure 11 shows that during the 16-day period corresponding to DOY = 2003001, the variables
composing the main split nodes are the NDVI, slope, DEM, and ET. The DEM is a main split node in
all 11 rules, whereas the slope is a main split node in every rule, except the fourth, sixth, and eighth
rules, the ET plays the role of a main split node in four of the rules, and the NDVI is a main split node
in the first and fifth rules. The regression relationship and split node information of each rule in the
Cubist downscaling algorithm are fully reflected through Table 2 and the graphs in Figures 10 and 11.
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Table 2. Spatial regression relationships between the AMSR-E soil moisture and environmental
variables in the MLRYRB (in the case of DOY = 2003001) based on the Cubist algorithm. For the
aspect, numbers 1 through 9 indicate Flat, North, Northeast, East, Southeast, South, Southwest, West,
and Northwest.

Rule 1: if {DEM > 1062, Slope > 3.82698, Slope ≤ 8.79908, Aspect in {4, 5, 6, 7, 9}, NDVI > 0.42153, ET ≤ 14.8708}
then

outcome = 0.0623238 + 0.0426 × Slope − 0.0217 × ET − 1.412 × albedo + 0.315 × NDVI
Rule 2: if {DEM > 1062, Slope > 2.77987, Slope ≤ 3.82698, LC in {4, 5}} then

outcome = −0.5929961 + 0.2089 × Slope
Rule 3: if {DEM > 646, Slope > 8.79908} then

outcome = −0.6552099 − 1.79 × 10−5
× DEM + 0.0025 × LST_D

Rule 4: if {DEM ≤ 136} then
outcome = −0.3143938 + 0.0002028 × DEM + 0.0015 × LST_N + 0.0015 × Slope + 0.019 × NDVI

Rule 5: if {DEM > 1062, Slope > 3.82698, Aspect in {4, 5, 6, 7, 9}, NDVI ≤ 0.42153, ET ≤ 14.8708} then
outcome = 0.7520723 − 0.0417 × ET − 0.444 × NDVI + 0.0061 × Slope + 0.0002 × LST_D

Rule 6: if {DEM > 136, DEM ≤ 646} then
outcome = −0.0459537 + 0.00228 × LST_N + 3.57 × 10−5

× DEM − 0.0016 × LST_D + 0.0012 × Slope −
0.035 × albedo + 0.003 × NDVI
Rule 7: if {DEM > 646, Slope > 2.77987, Slope ≤ 3.82698, LC in {8, 9, 12}} then

outcome = 0.0276217 + 0.0255 × Slope + 5.8 × 10−6
× DEM + 0.00016 × LST_N + 0.003 × NDVI

Rule 8: if {DEM > 646, DEM ≤ 1062} then
outcome = 0.1565938

Rule 9: if {DEM > 1062, Slope > 3.82698, Slope ≤ 8.79908, ET > 14.8708} then
outcome = −0.0548823 + 0.0008 × LST_N + 5.5 × 10−6

× DEM + 0.0003 × Slope + 0.003 × NDVI
Rule 10: if {DEM > 1062, Slope > 3.82698, Aspect in {3, 8}, ET ≤ 14.8708} then

outcome = 0.1484353 + 0.0081 × Slope − 0.0044 × ET + 0.00014 × LST_N
Rule 11: if {DEM > 646, Slope ≤ 2.77987} then

outcome = 0.7492527 − 0.0021 × LST_D + 8 × 10−7
× DEM



Water 2019, 11, 1401 15 of 25Water 2019, 11, x FOR PEER REVIEW 15 of 25 

 

 
Figure 10. Regression coefficient of each relationship in the Cubist downscaling algorithm (taking 
DOY = 2003001 as an example). 

 

Figure 11. Information of the main split node in each relationship in the Cubist downscaling algorithm 
(taking DOY = 2003001 as an example). 

Figure 10. Regression coefficient of each relationship in the Cubist downscaling algorithm (taking DOY
= 2003001 as an example).

Water 2019, 11, x FOR PEER REVIEW 15 of 25 

 

 
Figure 10. Regression coefficient of each relationship in the Cubist downscaling algorithm (taking 
DOY = 2003001 as an example). 

 

Figure 11. Information of the main split node in each relationship in the Cubist downscaling algorithm 
(taking DOY = 2003001 as an example). 

Figure 11. Information of the main split node in each relationship in the Cubist downscaling algorithm
(taking DOY = 2003001 as an example).



Water 2019, 11, 1401 16 of 25

The environmental variables with a 1 km spatial resolution are applied to estimate soil moisture
at a 1 km spatial resolution according to the Cubist-based soil moisture downscaling model at a spatial
resolution of 25 km× 25 km (Figure 12b); then, the residuals at 25 km× 25 km are resampled to residuals
at 1 km using bilinear interpolation (Figure 12c). Next, the estimated values at 1 km are added to the
residuals at 1 km to obtain 16-day soil moisture data with a spatial resolution of 1 km after applying a
residual correction. Figure 12 demonstrates that the AMSR-E passive microwave soil moisture data are
consistent with the distribution of the residual-corrected estimated values, which indicates that the
Cubist-based downscaling method also shows good performance in the MLRYRB.
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Figure 12. (a) AMSR-E soil moisture at a 25 km resolution; (b) downscaled results before the residual
correction based on the Cubist model in the MLRYRB; (c) interpolated residuals using ordinary kriging;
and, (d) downscaled results after the residual correction based on the Cubist model (taking DOY =

2003001 as an example).

We compare the original AMSR-E soil moisture data with the downscaling results to further
validate the effectiveness of the Cubist-based downscaling algorithm (including the downscaling
results before and after the residual correction). Again, we set the transparency in Figure 13 according
to the data density: the darker areas correspond to a higher data density, while lighter areas indicate
fewer data points. The graphs on the left in Figure 13 are the downscaling results of the Cubist
algorithm before the residual correction, and the graphs on the right are the soil moisture downscaling
results after the residual correction. Figure 13 shows that the R2 values of the downscaled data before
the residual correction vary from 0.50 to 0.56, while the R2 values of the downscaled data based on
the random forest model before the residual correction range from 0.55–0.64. The correlations of the
random forest-based results are higher than those of the Cubist-downscaling results. In addition,
the distributions of data points in the scatter plots of the Cubist model are similar to those of the
random forest model. Most of the downscaled data before the residual correction are higher than the
original AMSR-E soil moisture values when the soil moisture is less than 0.12; when the soil moisture
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is greater than 0.12, most of the original AMSR-E soil moisture values are larger than the downscaled
soil moisture values. Moreover, the results are not evenly distributed on both sides of the 1:1 line;
that is, when compared with the random forest algorithm, the data points that are based on the Cubist
algorithm are more dispersed. The R2 values between the residual-corrected downscaling results of
the Cubist algorithm and the AMSR-E soil moisture values range from 0.68 to 0.71, which is lower
than the range of R2 values corresponding to the random forest downscaling algorithm (0.68 to 0.74).
The distribution of data points is more concentrated after the residual correction than the downscaling
results before the residual correction, which indicates that a residual correction can significantly
improve the downscaling results of soil moisture data.
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3.4. Comparative Analysis of the Downscaling Results Based on the Random Forest and Cubist Algorithms

Table 3 shows the accuracy verification between the downscaled results and the observed in
situ soil moisture. The results showed that the mean R2, root-mean-square error (RMSE), and mean
absolute error (MAE) values between the original AMSR-E data and in situ soil moisture were 0.6018,
0.0131 m3/m3, and 0.0113 m3/m3, respectively. Furthermore, the results showed that the mean R2,
RMSE, and MAE values between the downscaled results based on the random forest and the in situ soil
moisture was 0.7819, 0.0090 m3/m3, and 0.0076 m3/m3, which was better than that of the downscaled
results that were based on Cubist (R2 = 0.6722, RMSE = 0.0128 m3/ m3, and MAE = 0.0111 m3/m3).
The two developed downscaling methods in this study can improve not only the spatial resolution of
the remote sensing AMSR-E data, but also the accuracy of the data.

Table 3. Comparison between the downscaling results based on the two methods and in situ
soil moisture.

Station
Name

AMSR-E Random Forest Cubist

R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Nanyang 0.6836 0.0066 0.0053 0.8545 0.0064 0.0045 0.7331 0.0077 0.0059
Fangxian 0.4002 0.0161 0.0120 0.5024 0.0126 0.0104 0.4673 0.0132 0.0104

Lixian 0.8234 0.0125 0.0107 0.8757 0.0074 0.0061 0.7390 0.0088 0.0062
Guzhang 0.7278 0.0085 0.0070 0.8632 0.0059 0.0047 0.8368 0.0052 0.0039
Shaodong 0.5923 0.0151 0.0134 0.8569 0.0070 0.0056 0.6687 0.0176 0.0160

Yichun 0.7286 0.0120 0.0102 0.8375 0.0061 0.0047 0.8145 0.0055 0.0043
Guidong 0.5469 0.0084 0.0075 0.6758 0.0109 0.0096 0.6202 0.0203 0.0195
Yingshan 0.4692 0.0242 0.0228 0.7510 0.0179 0.0172 0.5008 0.0265 0.0256

Xuancheng 0.4979 0.0116 0.0095 0.7959 0.0077 0.0059 0.6706 0.0095 0.0076
Guixi 0.5484 0.0162 0.0144 0.8063 0.0084 0.0071 0.6708 0.0134 0.0120

Mean values 0.6018 0.0131 0.0113 0.7819 0.0090 0.0076 0.6722 0.0128 0.0111

This study compares the random forest and Cubist algorithms to determine the most suitable
method for downscaling soil moisture in the MLRYRB. Figure 14 illustrates the downscaled results
of the two downscaling methods. Similarly, we set the transparency according to the density of the
points: the darker the plot, the more data points there are, while the lighter areas indicate fewer data
points. Evidently, the correlation between the downscaling results based on the random forest method
and the AMSR-E soil moisture (R2 = 0.71) is better than that between the results that are based on the
Cubist algorithm and the AMSR-E soil moisture (R2 = 0.70). The data points in Figure 14a are more
densely concentrated around the 1:1 line than are those in Figure 14b, while the data points of the
Cubist algorithm (Figure 14b) are more dispersed; however, in both panels, there are some outliers
below the 1:1 line, although the number of points is small. This is related to the quality of the MODIS
images, because clouds cover some images, though other reasons can also lead to noise.
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Figure 14. Comparative analysis of the two downscaling methods. (a) Scatter plot between the random
forest-based downscaled results and the AMSR-E soil moisture; and, (b) scatter plot between the
Cubist-based downscaled results and the AMSR-E soil moisture.

To further analyze the performance of the two methods, their accuracies were tested while using
three evaluation indicators, namely, R2, the root-mean-square error (RMSE), and the mean absolute
error (MAE); Table 4 shows the results. The results show that the R2, RMSE, and MAE values between
the soil moisture data downscaled by the random forest method and the original AMSR-E soil moisture
are 0.7045, 0.0155, and 0.0096, respectively, while those between the downscaling results that are based
on the Cubist algorithm and the AMSR-E soil moisture are 0.6884, 0.0162, and 0.0010, respectively.
The R2 values that are based on the random forest downscaling method are 0.011, which is higher than
those based on the Cubist algorithm, while the RMSE is reduced by 0.0006, and the MAE is reduced
by 0.0014. The accuracies of the two downscaling methods are verified through a box plot to more
intuitively compare the performance of the two downscaling methods (Figure 15). Figure 15 illustrates
that the R2, RMSE, and MAE of the soil moisture data obtained by the random forest-based downscaling
method are better than those that were obtained by the Cubist algorithm, which indicated that the
former model is a more suitable AMSR-E soil moisture downscaling method than the latter in the
MLRYRB. This finding also provides a theoretical basis for obtaining high spatial resolution soil
moisture data.
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Table 4. Accuracy validation between the downscaling results based on the two methods and the
AMSR-E soil moisture.

Year
Random Forest Cubist

R2 RMSE MAE R2 RMSE MAE

2003 0.6866 0.0146 0.0088 0.6759 0.0150 0.0100
2004 0.7311 0.0153 0.0094 0.6783 0.0172 0.0113
2005 0.7155 0.0151 0.0093 0.6841 0.0164 0.0109
2006 0.6780 0.0162 0.0098 0.6808 0.0161 0.0110
2007 0.6965 0.0162 0.0100 0.6950 0.0163 0.0114
2008 0.7381 0.0156 0.0097 0.7115 0.0166 0.0114
2009 0.6840 0.0161 0.0099 0.6783 0.0163 0.0112
2010 0.7066 0.0150 0.0095 0.7036 0.0152 0.0106

Mean values 0.7045 0.0155 0.0096 0.6884 0.0162 0.0110
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4. Conclusions 
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4. Conclusions

In this study, we choose the random forest model and Cubist algorithm to downscale AMSR-E
soil moisture from 25 km to 1 km in the MLRYRB; for this task, the longitude, latitude, elevation,
slope, NDVI, LST_D, LST_N, albedo, ET, LC, and aspect are selected as the environmental variables.
Moreover, the random forest model and Cubist algorithm are compared and analyzed. The main
conclusions can be summarized, as follows:

(1) Based on the random forest model, we downscale the AMSR-E soil moisture from 25 km
to 1 km in the MLRYRB. The results show that the random forest downscaling method is strongly
applicable in the MLRYRB, and the downscaled results after a residual correction have more details
and they are more representative of the spatial distribution of soil moisture.

(2) The R2 between the downscaling results that are based on the Cubist downscaling algorithm
after the residual correction and the original AMSR-E soil moisture values range from 0.68 to 0.71,
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which is lower than the range of the R2 between those that are based on the random forest downscaling
algorithm and original AMSR-E soil moisture data (0.68 to 0.74).

(3) A comparison between the random forest model and the Cubist algorithm reveals that the R2

of the random forest-based downscaling method is higher than that of the Cubist algorithm-based
downscaling method by 0.0161; moreover, the RMSE is reduced by 0.0006 and the MAE is reduced by
0.0014. Furthermore, testing the accuracies of the two downscaling methods reveals that the random
forest model is a more suitable method than the Cubist algorithm for downscaling AMSR-E soil
moisture data from 25 km to 1 km in the MLRYRB, and this finding provides a theoretical basis for
obtaining high spatial resolution soil moisture data.
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