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Abstract: Actual evapotranspiration (ET) and its individual components’ contributions to the
water–energy nexus provide insights into our hydrological cycle in a changing climate. Based on
long-term satellite ET data assimilated by the Global Land Evaporation Amsterdam Model (GLEAM),
we analyzed changes in ET and its components over the Nile River Basin from 1980 to 2014. The results
show a multi-year mean ET of 518 mm·year–1. The long-term ET trend showed a decline at a rate
of 18.8 mm·year–10. ET and its components showed strong seasonality and the ET components’
contribution to total ET varied in space and time. ET and its components decreased in humid regions,
which was related to precipitation deficits. ET increases in arid-semiarid regions were due to water
availability from crop irrigation fields in the Nile Plain. Precipitation was the dominant limiting
driver of ET in the region. Vegetation transpiration (an average of 78.1% of total ET) dominated the
basin’s water fluxes, suggesting biological fluxes play a role in the regional water cycle’s response to
climate change. This analysis furthers our understanding of the water dynamics in the region and
may significantly improve our knowledge of future hydrological modelling.

Keywords: Nile River Basin; actual evapotranspiration (ET); evapotranspiration components;
GLEAM; water resource management

1. Introduction

Terrestrial evapotranspiration (ET) is water transferred from the land surface to the atmosphere.
ET is an essential process that regulates the terrestrial water budget and surface energy exchanges.
ET, as a climate change variable, accounts for nearly 60% of global land precipitation (P) and uses up to
50% of all net radiation (Rn) available on land [1]. Therefore, in a changing climate, understanding the
contribution of trends and changing patterns in water and energy supply to ET is important for efficient
water resource management [2]. However, actual information about ET is not fully understood in the
global hydrological cycle because terrestrial ET is highly variable in space and time and is possibly
the most difficult and complicated component to measure in the hydrological cycle [3]. The ability
to quantify and accurately predict ET variability and its possible causes would provide a valuable
contribution to water resource planning and irrigation development, particularly in water-scarce
basins, and may further our knowledge of global and regional climate change impacts on the terrestrial
water–energy nexus.
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Estimating land ET and its components can be computed using many different methods. Most
studies and reviews have focused on trends in pan evaporation, empirical equations, and land
models [1,4,5]. However, these methods have some inherent limitations and the most common issues
raised in the literature are as follows: though the interpretation of pan evaporation is indirectly related
to actual ET, this indirect method fails to consider or ignores biophysical mechanisms that influence
ET. Land surface models (LSMs) and empirical calculations have been developed to resolve this
limitation. However, LSMs produce uncertainties that are difficult to quantify [6,7]. In most cases,
these uncertainties degrade the quality of the models for water resources planning, particularly in
regions where inconsistent monitoring and measuring direct observation data tend to conflict with
hypotheses relating to the main drivers of ET and the direction of trends [8–11]. It is therefore useful
and important to consider an approach that can fill these gaps, especially in water-scarce basins with
huge agricultural and hydropower potential.

Remote sensing technology provides another valuable tool to produce ET estimates on different
temporal and spatial scales [1]. The Global Land Evaporation Amsterdam Model for ET (GLEAM
ET) has been developed based on remote sensing dataset inputs. The following references provide
in-depth information about GLEAM products [3,12–14]. Numerous benefits in terms of added value
exist when using long-term GLEAM products to evaluate the critical role ET plays in ecological and
hydrological processes. The first benefit is that the GLEAM product provides long-term direct estimates
of actual global ET compared to other previous remote sensing products [12–14]. The second benefit is
that GLEAM products include individual ET components that can be used to identify and quantify
the general characteristic of each component’s variability on different time scales (i.e., from diurnal,
seasonal, and annual to interdecadal). The third benefit is that GLEAM, apart from using surface
soil moisture and multiple sources of precipitation data to constrain atmospheric demand, includes
vegetation optical depth (VOD). The VOD determines both green and non-green vegetation constraints
on evaporation and important complementary information on the state and temporal variabilities of
vegetation features, in particular regarding aboveground biomass (AGB) dynamics [3,12–16].

This is not the case for some previous remote sensing products which used normalized difference
vegetation index (NDVI) as a proxy to determine vegetation dynamics, an approach that is affected by
saturation effects in greener parts of dry and semi-arid areas where vegetation is sensitive to interannual
P variations [17,18]. This is of valuable interest to improve our understanding of interannual variabilities
of ET. GLEAM products are not only used to study the climate but also to investigate which factors
drive trends in ET and its components under a wide range of eco-climatic regions on a regional scale
(but with global implications). As Teuling et al. [19] have suggested, regional trends in ET are most
likely induced by trends in the limiting driver.

Jung et al. [20] have demonstrated that the increase in ET trends in the Northern Hemisphere
(HM) and subsequent declines in the Southern Hemisphere (SM) highlight the need for a rigorous
evaluation of the terrestrial ET at basin scales, especially for basins that straddle the equator as a large
positive (negative) effect for HM (SM) may offset many small negative (positive) effects that occur in
SM (HM), thereby influencing the overall combined effects that may alter the signs of trends.

The Nile River Basin, in terms of water resources, is one of the most important water sources
serving 11 riparian countries in Africa. The basin supplies water to 25% of Africa’s population, sustains
functions of biodiversity and other biomes such as the Sudd (tropical wetland) and the Nile Delta, and
provides water to sustain industries, agriculture, navigation, tourism, and hydropower production.
The changing surface water balance, as a result of the changing climate, impacts the amount of water
available for human use and to maintain the basin’s hydrologic processes [21–23]. Such changes have
profound implications in the Nile Basin, which is already suffering from water deficits, high population
growth, and uncontrolled land use changes [22,24,25].
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Reports show that high uncertainty surrounding water resources availability has intensified tension
among some Nile countries [26]. This makes water a limited resource in the region, and, by extension,
affects agricultural production, challenges socio-economic systems, and threatens environmental
sustainability. Thus, it is necessary to explore the magnitude, variability, and trends in GLEAM ET and
its components in the Nile Basin, which has huge agricultural and hydropower potential.

We focused on GLEAM ET and its components’ effects on trends in solar radiation, precipitation,
and vegetation cover. Previous literature that has analyzed the interaction of regional land surface
climate and ET in the Nile Basin has focused on the link between climate, vegetation, and terrestrial ET
but has not included the contribution and trends of individual ET components. Most findings were
based on short-term datasets from remote sensing or surface climate reanalysis sources, which, due to
differences in methodologies and lengths of study periods, should be interpreted cautiously [8,24,27–29].
We thus conducted a basin-wide analysis of this relationship with long-term remote sensing data of
ET and its components, which had remained unexplored in the Nile River Basin. Here, long-term
GLEAM ET over the period 1980–2014 was used to achieve the following objectives: (1) to quantify
and analyze long-term variations in ET and its components in the Nile Basin and (2) to investigate the
main controlling driver(s) of ET and its components. To the best of our knowledge, little information
is available on the estimates of ET components and their contributions to terrestrial ET in this
region [8,24,28]. Also, the influence of the driving factors to changes in total ET over the Nile Basin is
still being explored.

The rest of the paper is organized as follows. A brief description of the study area, the data, and
methods is presented in Section 2. Section 3 presents the results for the study. The discussion and
conclusions are summarized in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. Study Area: The Nile River Basin

The Nile River Basin (4◦0’0” S–35◦0’0” N, 23◦0’0” E–40◦0’0” E), located in Northeastern Africa, is a
major river basin, drained by the longest river in the world, which is about 6853 km long. It has a total
drainage area of 2.9 × 106 km2 and is home to almost one-quarter of Africa’s current population [30].
The basin is divided into eight climate zones according to the Köppen climate classification system [31].
Two major tributaries, the White Nile (sourced from the equatorial lakes) and the Blue Nile (sourced
from the Ethiopia Highlands), join at Kharthoum in Sudan and flow northward through the desert to
form the Nile Delta in Egypt before discharging into the Mediterranean Sea.

Based on European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-40
precipitation and temperature) datasets from 1980–2014, the average annual precipitation for this
period was 500 mm and the mean annual temperature was 27 ◦C. However, due to the oscillation
of the inter-tropical convergence zone (ITCZ), the amount, duration, and intensity of rainfall in the
basin vary significantly (2000–4500 mm year−1 in the equatorial region and the Ethiopian highlands
and ≤100 mm in the Saharan desert) (Figure A1). The geography of the Nile basin may be divided
into three reaches based on latitudinal extent: the upper reach (4◦0’0” S–5◦0’0” N), the middle reach
(5◦0’0” N–15◦0’0” N), and the lower reach (15◦0’0” N–32◦0’0” N) [32].

The lower reach is characterized by vast flood plains along the Nile Delta, whereas the upper
and part of the middle reach are mountain ranges from east to west and south with river valleys
interleaved. The highest point in the Nile River Basin is the Ethiopian highlands, with an altitude of
5070 m (Figure 1a). The predominant landcover types are shown in Figure 1b.



Water 2019, 11, 1400 4 of 27
Water 2019, 11, x FOR PEER REVIEW 4 of 28 

 

 

Figure 1. Nile Basin: (a) 30 m Shuttle Radar Topography Mission (SRTM) Digital Elevation Data (DEM) 

along with the major water bodies found in the basin (b) Moderate Resolution Imaging 

Spectroradiometer (MODIS) land cover map (MCD12Q1, International Geosphere-Biosphere 

Programme (IGBP) scheme) for the year 2000 showing the different and major landscapes found in 

the Nile Basin [33]. Both DEM and MODIS land cover were acquired in the year 2000 by their 

respective organizations. 

2.2. Data Description 

2.2.1. GLEAM Data 

GLEAM has a daily, quasi-global (50° N–S and 180° W–E) basis [12–14]. The GLEAM dataset has 

been rigorously validated and the estimates were found to correlate well with in situ stations’ annual 

cumulative evaporation data [14]. Despite some reported regional differences in the GLEAM ET 

estimations owing to the sparse network of in situ stations’ data during the validation process, 

GLEAM has been found to effectively quantify actual ET and its components in various regions 

across the globe [13,14]. 

GLEAM differentiates between bare soil evaporation (Eb), transpiration from short and tall 

vegetation (Et), snow sublimation (Es), open-water evaporation (Ew), and interception loss (Ei) from 

tall vegetation. Ei is independently calculated based on the Gash analytical model using observations 

of P [34,35]. The components of ET are based on a formulation made by Priestley and Taylor [36]. The 

version of the GLEAM dataset used in this study (GLEAM_v3.1a) has a daily temporal resolution of 

35 years and is gridded at a spatial resolution of 0.25°, and was acquired from the GLEAM website 

[12,13,37]. 

2.2.2. ECMWF Reanalysis Datasets 

Gridded daily ECMWF reanalysis (ERA-interim) P and Rn data aggregated at 0.25 × 0.25° 

latitude/longitude resolution provided by the European Center for Medium-Range Weather 

Forecasts (ECMWF) were acquired. We used the data to investigate the important role these variables 

play in regulating ET on diurnal to interannual time scales across the Nile Basin. The ERA-interim is 

a global atmospheric reanalysis product available from 1979 to the present and can be downloaded 

from the ECMWF website [38]. The full description of the model and assimilation system is available 

online on the ECMWF website. The detailed P and Rn data estimation procedure, data usage, and 

Figure 1. Nile Basin: (a) 30 m Shuttle Radar Topography Mission (SRTM) Digital Elevation Data (DEM)
along with the major water bodies found in the basin (b) Moderate Resolution Imaging Spectroradiometer
(MODIS) land cover map (MCD12Q1, International Geosphere-Biosphere Programme (IGBP) scheme) for
the year 2000 showing the different and major landscapes found in the Nile Basin [33]. Both DEM and
MODIS land cover were acquired in the year 2000 by their respective organizations.

2.2. Data Description

2.2.1. GLEAM Data

GLEAM has a daily, quasi-global (50◦ N–S and 180◦ W–E) basis [12–14]. The GLEAM dataset
has been rigorously validated and the estimates were found to correlate well with in situ stations’
annual cumulative evaporation data [14]. Despite some reported regional differences in the GLEAM
ET estimations owing to the sparse network of in situ stations’ data during the validation process,
GLEAM has been found to effectively quantify actual ET and its components in various regions across
the globe [13,14].

GLEAM differentiates between bare soil evaporation (Eb), transpiration from short and tall
vegetation (Et), snow sublimation (Es), open-water evaporation (Ew), and interception loss (Ei) from
tall vegetation. Ei is independently calculated based on the Gash analytical model using observations
of P [34,35]. The components of ET are based on a formulation made by Priestley and Taylor [36].
The version of the GLEAM dataset used in this study (GLEAM_v3.1a) has a daily temporal resolution
of 35 years and is gridded at a spatial resolution of 0.25◦, and was acquired from the GLEAM
website [12,13,37].

2.2.2. ECMWF Reanalysis Datasets

Gridded daily ECMWF reanalysis (ERA-interim) P and Rn data aggregated at 0.25 × 0.25◦

latitude/longitude resolution provided by the European Center for Medium-Range Weather Forecasts
(ECMWF) were acquired. We used the data to investigate the important role these variables play in
regulating ET on diurnal to interannual time scales across the Nile Basin. The ERA-interim is a global
atmospheric reanalysis product available from 1979 to the present and can be downloaded from the
ECMWF website [38]. The full description of the model and assimilation system is available online on
the ECMWF website. The detailed P and Rn data estimation procedure, data usage, and quality control
have been described by Uppala et al. [39] and Dee et al. [40], respectively. Daily P and Rn data were
obtained for the period of 1980 to 2014 and aggregated to monthly and annual values.
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2.2.3. FLUXNET Data

FLUXNET provides continuous measurements of carbon and water flux data for many parts of the
world and can be obtained from the FLUXNET website [41]. We retrieved the Level 4 measured daily
time series of latent heat flux (LE) data from three sparsely distributed AFRIFLUX eddy covariance
tower sites situated in the study area and operated in an open path eddy covariance system (Table 1).
Note that two of the sites located outside of the Nile Basin boundary were included because of the
local similarity in vegetation types and climate. A similar approach was used by Li et al. due to an
insufficient number of sites [42].

The sites are equipped with similar eddy covariance equipment. Details about the instrumentation
for each site are provided in the literature [42–46]. T and P denote mean annual near surface temperature
and mean annual precipitation, respectively. Due to the different horizontal resolutions of the GLEAM
ET and the FLUXNET datasets, we completed a coordinate matching process for each tower station
using their recorded date and Universal Transverse Mercator (UTM) coordinates of each tower station
to select the appropriate intersection point. We then compared each intersection point with the location
coordinates of the GLEAM datasets. Then, we chose the closest intersection point when an intersection
point overlaid the latitude-longitude 0.25◦ × 0.25◦ quadrangle.

2.2.4. Supplementary Data

The International Geosphere-Biosphere Program (IGBP) 16-class Moderate Resolution Imaging
Spectroradiometer (MODIS) Type 3 global land cover map available at a 0.05◦ resolution was masked
with the Nile Basin shapefile to obtain the Nile Basin land cover map (Figure 1b) [33]. The 16-class
land cover map was aggregated into four predominant vegetation types, namely, forest (8%), savanna
(36.8%), cropland (7.5%), and grassland (13.5%), and resampled to 0.25◦ resolution for the purpose of
this study. The data were downloaded from the National Aeronautical and Space Agency (NASA)
webpage [47]. The four different vegetation types cover about 66% of the total land area of the basin.
Although the basin has experienced significantly intensive human interference over the last 35 years,
the MODIS 2000 land cover product was used to represent the average vegetation condition for the
whole time period.

The study obtained the 30 m Shuttle Radar Topography Mission (SRTM) digital elevation map
(DEM) downloaded from the NASA (SRTM)/website [48]. NASA (SRTM) datasets have resulted from
a collaborative effort by NASA and the National Geospatial-Intelligence Agency (NGA) as well as
German and Italian space agencies. The SRTM DEM mission was launched February 11, 2000 and flew
for 11 days over the earth landmass between 60◦ N and 56◦ S latitude. For detailed information visit
NASA (SRTM).

2.3. Methods

2.3.1. Calculation of Tower ET

Each site measures latent heat (water vapor) fluxes by eddy covariance (EC) in half-hourly
intervals all year round. The half-hourly flux data were aggregated by us into daily, monthly, and
annual sets. For each site, we estimated the ET from the tower-measured LE based on the equation

ET =
LE
λ

(1)

where λ is the latent heat of vaporization (2.43 × 106 J·kg−1). Only sites with at least one year of
continuous flux measurements were used in this study (Table 1).
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Table 1. Site names and available number of years of the study sites used for evapotranspiration
(ET) validation.

Site Name ID Longitude Latitude Temperature
(T)

Precipitation
(P)

Vegetation
Type

Time
Span
Used

Flux (ET)
(mm/year)

GLEAM
(ET)

(mm/year)
Reference

Demokeya SD-Dem 30.478 13.283 26 320 Savanna 2008–2009 388.1 271.2 [42]
Skukuza ZA-Kru 31.497 –25.012 22 547 Savanna 2000–2010 496.9 609.5 [43]

Mongu ZM-Mon 112.150 32.031 25 945
Deciduous
broadleaf

forest
2008–2009 598.8 688.2 [40]

Legend: GLEAM, Global Land Evaporation Amsterdam Model; SD-Dem, Sudan-Demokeya, ZA-Kru, South
Africa-Skukuza; ZM-Mon, Zambia-Mongu (these latter three represent FLUXNET station codes).

2.3.2. GLEAM Data Evaluation Techniques

To evaluate GLEAM ET, we used FLUXNET data from three sites within/near the Nile Basin
(Table 1). Four commonly used performance indicators, the coefficient of determination (R2), bias
(mm·month−1), the BIAS, the (MAE), and the root mean square error (RMSE, mm·month−1) in Equations
(2)–(5), mean absolute error respectively, were used in the evaluation. The root mean square difference
(RMSD), BIAS, and MAE describe biases and errors, and were here used to quantify the differences
between the two datasets. R2 describes the degree of collinearity between the reference FLUXNET ET
data and GLEAM ET product. R2 describes the agreement between two datasets.

R2 =


∑n

i=1

(
Gi −G

)(
Fi − F

)
√∑n

i=1

(
Gi −G

)2
√∑n

i=1

(
Fi − F

)2


2

(2)

BIAS = n−1
n∑

i=1

(Gi − Fi) (3)

MAE = n−1
n∑

i=1

|Gi − Fi| (4)

RMSD =

√√
n−1

n∑
i=1

(Gi − Fi) (5)

where n represents the number of months of each site period and Gi and Fi represent the monthly
GLEAM ET product and the FLUXNET ET data at time i, respectively.

2.3.3. Mann–Kendall Trend Test

Trends in ET and its components were calculated using the Mann–Kendall (τ) nonparametric
technique. This approach is widely used for hydro-meteorological time series [11]. The tests were
calculated based on Equations (6)–(8).

S =
n−1∑
i=1

n∑
j=i+1

sgn
(
xi − x j

)
(6)

where S is the rating score (called the Mann–Kendall sum), x is the data value, i and j are counters,
n represents the number of data values in the series, and sgn is a function shown in Equation (7).
A positive value of S indicates an increasing trend, and a negative value indicates a decreasing trend.

The variance is calculated as

Var (S) =
n(n− 1)(2n + 5)

18
. (7)
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S is standardized as shown in Equation (8) by subtracting its expectation (zero) divided by its
standard deviation (σS).

ZS =


S−1√
Var( S)

, if S > 0

0, if S = 0
S−1√
Var(S)

, if S < 0
(8)

where
∣∣∣Z∣∣∣> Z∝/2 signifies that the time series data show a significant trend. A positive (negative)

S value denotes a significant increasing (decreasing) trend; ∝ is the significance level. We set the
significance level to 0.05, corresponding to Z∝/2 = 1.96. Thus, when the time series data produce
|Z|> 1.96, there is a significantly increasing or decreasing trend.

2.3.4. Theil–Sen Formula Slope

We used the Theil–Sen formula, a non-parametric method, to estimate and characterize the linear
trend slopes of annual ET and its components [49]. This approach is popular and unaffected by outliers
or extreme values (Equation (8)).

∆σ = median
(x j − xk

j− k

)
(9)

where ∆σ is the slope between two data points in the time series, median is a function, and xj and xk are
the data values for time points j and k (j > k), respectively. If ∆σ > 0, the trend is increasing; if ∆σ < 0,
the trend is decreasing.

Pearson correlation coefficients (R2) (Equation (2)) and partial correlation coefficients (r2)
(Equation (10)) were used examine the neutralized effects of either P or Rn on ET and its components:

r2
xy.z =


rxy −

(
rxyryz

)
√(

1− r2
xz

)
(1−r2

yz)


2

. (10)

3. Results

3.1. Validation of GLEAM ET

We used FLUXNET as a reference dataset to evaluate the GLEAM ET values. The daily values of
GLEAM ET and the daily FLUXNET ET observations at the three flux tower sites were aggregated
into monthly averages before evaluation. Due to unavailability of a runoff dataset (at the time of this
study) and the extremely low number of FLUXNET sites in the study region, two FLUXNET sites
located in Zambia and South Africa were selected based on their similarity in climate and vegetation
characteristics. Selecting these two FLUXNET sites allowed us to use reliable, consistent, and relatively
long-term FLUXNET ET data to evaluate the GLEAM ET estimates. For this purpose, data of unequal
lengths at the three sites were used for the metric performance test. Figure 2 shows a significantly
positive linear trend (y = 0.69x + 13.73) between GLEAM ET and FLUXNET ET. Our validation results
indicate that GLEAM ET accuracy is reasonable (R2 = 0.82 and RMSD = 21.33 mm·year−1), despite
slight overestimations (MAE, 14.73 mm·year−1 and BIAS, 0.96 mm·year−1).
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Figure 2. Comparisons of mean monthly ET observations between FLUXNET ET (mm/year) and
GLEAM ET for selected sites in Eastern and Southern Africa. The 1:1 line is depicted by a dashed blue
line. Red (SD-Dem), green (ZA-Kru), and black (ZM-Mon) dots represent scatterplots of monthly ET
for GLEAM and FLUXNET at selected FLUXNET locations.

3.2. Variations in Land ET

3.2.1. Seasonal Variations

To understand their seasonality and quantify their relative contribution to the hydrological budget,
the interannual and seasonal variations in ET over the Nile River Basin were computed. The daily
GLEAM data over 1980–2014 were aggregated to monthly and annual values for analysis. Figure 3
shows the long-term (1980–2014) annual (top panel) and seasonal (bottom panel) variations in terrestrial
ET. Figure 3a shows the annual ET and Figure 3b–e show those for spring, summer, autumn, and winter,
respectively. The Sahelian belt (i.e., the middle reach) showed a spatially distinct pattern of mean
annual ET (200–600 mm), gradually increasing toward the equatorial region (from ≥700 mm·year−1

to ≥900 mm·year−1 in the southwestern part of upper reach). In the lower reaches, the annual ET
amounts to ≤200 mm·year−1.

Figure 3b–e present strong seasonal variations in annual mean values for each season. For all
seasons, we observed similar spatial distinct patterns in ET to annual ET with high values observed in
boreal summer and autumn seasons. In all seasons, the lower reaches recorded ET values of ≤50 mm.
In winter and spring, the high ET in most parts of the upper basin, at 250–300 mm, may be explained
by wet winters (dry summers) in those regions in the Southern Hemisphere.
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Figure 3. The multiple-year annual and seasonal mean terrestrial ET from the period of 1980 to 2014
in the Nile Basin (unit: mm): (a) whole year, (b) spring, (c) summer, (d) autumn, and (e) winter.
The GLEAM_v3.1a. GLEAM ET climatology data presented are based on annual and monthly values.

The temporal distribution over the Nile River Basin was investigated. The monthly mean ET
climatology was computed for the period 1980–2014 to explain the seasonal changes (Figure 4).
The resulting strong temporal variations (19–69 mm·month−1) over the entire basin can be largely
explained by trends in P for the basin. The low ET values in February (19 mm) and peak in September
(69 mm) are consistent with tower-based eddy-covariance-measured ET in the region (not shown).
The peak in September is most probably linked to how vegetation assimilates available energy and
water across the different climate regions in the basin (Figure A1).
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Figure 4. Monthly ET climatology over the period 1980–2014 in the Nile Basin. Error bars represent
one standard deviation of uncertainty. The computation is based on the monthly mean distribution of
ET over the period. Data are based on GLEAM_v3.1a.

3.2.2. Long-Term Trends

We analyzed the interannual and linear trends in terrestrial ET and its components over the Nile
Basin. This analysis helped us to understand the implication of its changes in response to a warming
climate. Figure 5 presents the interannual variations in ET for the whole year and all seasons (for the
period 1980–2014). Figure 5a (green) shows the annual estimated ET with a multi-year average of 518
mm (range: 480 to 555 mm). The magnitude of the multi-year average agrees with LSM output [9].
The multi-decade trend (1980–2014) in ET from the Thiel–Sen slope method is negative (this indicates
a decreasing rate at 18.8 mm/10 years). These results indicate that ET in the Nile basin generally
decreased over the period of 35 years considered. This is in agreement with previous studies in the
region [8,24,28].

The annual ET trends for each season and their contribution to the land ET trend were also
investigated (Figure 5b). Our results showed that ET displayed a negative trend in all four seasons.
Figure 5 shows that dry season ET showed a higher negative trend than wet seasons, although with
varying magnitudes. We observed that spring and winter ET showed the strongest decreasing trend
(7.3 and 2.7 mm/10 years, respectively) as compared with summer and autumn (0.7 and 0.6 mm/10 years,
respectively). This indicates that the average dry season increases in ET are consistent with some
model studies [50]. The negative trend in dry seasons may be explained by trends in P, suggesting that
water availability may be a limiting factor for ET during dry seasons and vice versa.
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Figure 5. Interannual variations in total ET for (a) the whole year and (b) four seasons for the period
1980–2014 in the Nile Basin: a positive (negative) sign indicates an upward (downward) trend.

Figure 6 shows significant spatiotemporal distribution in the linear trends in annual ET in the Nile
Basin (at the 5% significance level). These results helped us to understand the spatial distributions of
pixel-wise linear trends in the ET in the Nile Basin for the period 1980–2014 (Figure 6a). We observed
a significantly decreasing linear trend at a rate of 20–30 mm/10 years in wet/humid areas in central
and eastern regions, small pockets in western regions of the middle reach, and areas north of Lake
Victoria. Similarly, increasing annual ET trends (>5 mm/10 years) in areas of the lower reach were due
to widespread irrigation and reservoirs to support crop expansion increasing the water availability for
ET [51,52].

Figure 6b–e show pixel-wise linear trends in the annual ET for individual seasons. Overall,
the spatial patterns for summer and autumn were similar and the patterns for winter and spring were
similar despite differences in their relative magnitudes for the trend values. In spring, the ET showed
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significantly decreasing trends (at a rate of 8–10 mm/10 years) in most areas from 5◦ to 15◦ N (middle
reach) compared with other seasons, whereas summer and autumn showed similar spatial patterns
but significant variations in the magnitude of linear trends in ET. The interannual variations in ET in
winter appear distinctly different from other seasons.
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Figure 6. Spatial distributions of linear trends of total ET in the Nile Basin for the period 1980–2014:
(a) whole year, (b) spring, (c) summer, (d) autumn, and (e) winter. The unit is mm/10 years. Positive
(negative) values indicate increasing (decreasing) trends in ET.

The role of vegetation was investigated to provide us with a better understanding of its effect on
interannual ET variability. Figure 7 shows the multiyear mean of ET for the four major biomes over the
region. Forest regions showed the highest annual ET (average of 1045 mm·year–1; annual range of 980
to 1100 mm) followed by savanna (annual average of 750 mm; range 700 to 800 mm) and cropland
(annual average 550 mm; range 490 to 610 mm). Grassland showed the lowest amount of land ET
(average 380 mm; range from 250 to 410 mm). The multiyear mean variations were consistent with
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those reported by Oliveira et al. [53] for forest, savanna, and cropland in Brazil and Ryu et al. [54] for
grassland in the U.S. [53,54]. Tropical forest and Savanna are biomes where a significant amount of ET
occurs [13].

All four major vegetation types showed negative ET trends (suggesting a decline in ET). Forest
showed the greatest decline in ET (31 mm/10 years) followed by savanna (16 mm/10 years), cropland (13
mm/10 years), and grassland (7 mm/10 years) for the period 1980–2014. Forest and savanna, as noted
by Sterling et al., have been classified as hotspots for reducing ET [51]. The magnitude of decline
may be explained by the response of each biome type to different transpiration rates (i.e., stomatal
resistance) to minimize water stress (or loss) in a regional warming climate [55].
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Figure 7. Interannual variations in total ET during 1980–2014 in four vegetation types of the Nile River
Basin. Positive (negative) signs indicates an increasing (decreasing) trend.

3.3. Variations in Different ET Components

3.3.1. Seasonal Variations

Spatial land ET distribution is associated with variations in the different ET components. Thus,
examining variations in the different ET components provides a better understanding of their
seasonality and quantifies their relative contributions to land ET and the underlying dynamics
of ET changes. Figure 8 shows the annual amounts of each component of ET in the Nile Basin, including
transpiration (Et), canopy interception (Ei), bare-soil evaporation (Eb), and open-water evaporation
(Ew). We estimated the annual amount of each ET component based on the multiple-year average of
35 years.

Eb (Figure 8a) shows a complex spatial pattern. Eb is mainly controlled by factors such as Rn, P,
vegetation density, and canopy cover. We observed the highest Eb loss (>50 mm·year–1) for the areas
below the Sahelian belt toward the equatorial regions. Ei loss (Figure 8b) was generally influenced
by types of tree species (or canopy cover) and P distribution. We observed high and varying annual
amounts of Ei (85–160 mm·year–1) in the Sahelian belt (10–15◦ N) as well toward the equatorial regions.
In areas slightly above the Sahelian belt to the arid region, we observed a distinct layer of Ei, as sparse
vegetation was prevalent and negligible P showed the least annual Ei loss (<50 mm).
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Figure 8c shows that the interannual variations in vegetation transpiration (Et) had similar
spatial heterogeneity to total ET. Generally, Et is controlled by soil water contents (essentially due
to P), vegetation, and Rn. We observed high Et loss in the middle and upper reaches, particularly
in southwestern areas in the middle-upper reaches, which had annual maximum P and vegetation
greenness. The lower reach shows that annual Et amounts of <50 mm·year–1 are consistent with the
annual P amount. There was little Ew in the region (Figure 8d) except for distinctly open water bodies
and the channel of the Nile River Basin.
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Figure 8. Annual amounts of different components of total ET in the Nile Basin for the period 1980–2014
(unit: mm): (a) bare-soil evaporation (Eb), (b) canopy interception (Ei), (c) vegetation transpiration (Et),
and (d) open-water evaporation (Ew).

Next, we computed the climatological monthly amounts of the different ET components for
the seasons to understand their long-term seasonal variations. Figure 9 shows the monthly amount
of different ET components in the basin for 1980–2014. Et showed a strong seasonality, gradually
increasing from February to a peak in September. However, the remaining components showed
different temporal patterns in magnitude and peak periods (i.e., in August). Similarly, Ei showed
a strong seasonality gradually increasing from February to a peak in August. Eb and Ew showed
relatively small variations and weak seasonality, respectively.
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Figure 9. Monthly amounts of different ET components in the Nile Basin during the study period of
1980–2014: (a) Et, and (b) Ei, Eb, and Ew.

3.3.2. Long-Term Trends

Figure 10 shows the spatial distributions of the linear trends of each ET component in the region
for the period 1980–2014 (expressed in unit mm/10 years). Generally, significant differences were
observed in spatiotemporal trends in each ET component. Figure 10a shows the trend in Et was
observed in most parts (at an increasing rate of 5 mm/10 years) and few areas showed increasing trends
≥15 mm/10 years (in the middle and upper regions).

Eb showed a slight increasing trend (2 mm/10 years), mostly in the lower reaches of the basin,
Northern Sudan, and portions of the middle and upper reaches (Figure 10b). However, a relatively high
decreasing trend was found in the southwestern part of the middle reach at a rate of 6 mm/10 years
(3–9 mm/10 years). Ei showed a complex and mixed pattern of trend in the upper and middle reaches
with a decreasing trend, while the lower reach showed an increasing trend (>2–8 mm/10 years)
(Figure 10c). Ew generally showed a significantly constant decrease (at a rate of −4 mm/10 years) in
the entire basin except for areas with open water bodies, which showed increases of 1 mm/10 years
(Figure 10d).
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Figure 10. Spatial distributions of linear trends of each ET component in the Nile Basin for the period
1980–2014: (a) Eb, (b) Ei, (c) Et, and (d) Ew.

3.4. Proportions of Each Component

We quantified the proportions of the different ET components to determine their respective
contributions to the terrestrial water cycle. This was able to improve our understanding of the
contribution amount of each component and the extent to which each component changes in space
(Figure 11) and time (Figure 12). Figure 11 shows the seasonal amount of the different ET components
in the region. The proportion of Et appears to be very high in areas below the Sahelian region toward
the equatorial region and has low values in arid areas (Figure 11a).

The proportions of the Ei spatial contribution were generally low across the entire basin, except
for small patches in the basin (Figure 11b). The proportions of Eb (Figure 11c) were very high in bare
soil areas in arid areas and very low in forested areas in the middle and upper reaches (Figure 11c).
The proportions of Ew were limited to large open water bodies and channels but had generally very
low contributions to total ET in the remaining basin (Figure 11d).
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Figure 11. Seasonal amounts of different components of total ET in the Nile Basin for the period
1980–2014 (unit: mm): (a) Et, (b) Ei, (c) Eb, and (d) Ew.

Figure 12 shows the monthly proportions of each component’s contribution to total ET in the
region. The proportions of Et appeared to dominate, with an average of 78.1% (68%–89%), and
exhibited strong seasonality. We observed a seasonal variation in Ei with a steady increase from 9.8%
to 21% in the summer months (with an average of 15.1%). The remaining proportion of ET components
(Eb and Ew) showed an average contribution of 3.9% and 2.9%, respectively. We further examined the
magnitude of each component’s contribution to total ET and their rate of change (1980–2014) in the
Nile Basin.

Figure 13 shows the interannual variations in ET and its components’ contributing proportions
to land ET for the period 1980–2014 over the Nile Basin. The proportions of Et and Ew showed a
slightly increasing trend for the 35-year period. By contrast, proportions of Ei and Eb revealed a slightly
decreasing trend over the same period. Et was the largest contributor to terrestrial ET, followed by Ei,
Eb, and Ew.
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3.5. Dynamic Mechanism

Environmental and biophysical controls play important roles in regulating terrestrial ET on
diurnal to interannual time scales. Often characterized by climatic variables of precipation and net solar
radiation, ET varies significantly with land surface variables [54]. Thus, to examine the underlying
factors that contribute to these variations in ET and its components, we investigated the relationship
between ET and climatic factors such as P and Rn. Here, we present two kinds of analysis. First, we
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studied the influence of P and Rn on the spatial pattern of ET and its components. For this purpose, we
analyzed the correlation between ET, its components, and the two climatic variables to understand
the spatial dynamics. To achieve this, P, Rn, ET, and its components’ data were contructed with the
multi-year mean on each pixel, upon which correlation analysis was performed. Since P and Rn

interactions with each other may lead to compounding effects, we also used partial correlation analysis
to eliminate these effects. Secondly, we performed pixel-wise correlation with each variable on an
annual scale to understand the temporal dynamics.

The correlation analysis (R) of ET and its components with P and Rn is presented in Table 2.
Overall, terrestrial total ET variability was mainly explained by changes in P in the region as the P
relationship accounted for 0.91 of ET variability (Table 2). This result is consistent with findings of
Zhang et al., who reported an R value of 0.85 [56].

Rn versus ET and its components was significant (p ≤ 0.05); however, their relationship was
considerably weaker (R ≤ 0.22) (Table 2). This indicates that Rn was not a limiting driver of ET
variability in the region. The negative correlation of Rn with ET occurred because of lower radiation
due to frequent cloud cover associated with wet seasons.

The correlation analysis of the ET components with P and Rn are presented in Table 2. Et and
Ei had a significant positve correlation coefficient (R) with P as they accounted for 0.92 and 0.74,
respectively. This results agrees well with Donohue et al.’s [57] findings that vegetation cover controls
and is correlated with interannual variability in ET in some regions of the world.

Table 2. Correlation coefficients and partial correlation coefficients between Et (and its components)
and P and net radiation (Rn) for 1980–2014.

Statistical Indices Variable P Rn

R

ET 0.9135** −0.2185**
Et 0.9146** −0.2146**
Ei 0.7415** −0.4385**
Eb 0.1420** 0.1802**
Ew 0.0829** −0.0161**

PR

ET 0.9182** 0.3298**
Et 0.9177** 0.2767**
Ei 0.7540** −0.2855
Eb 0.1676** 0.2478**
Ew 0.0861** 0.0138

Note: ** denotes significance at the 0.05 level. PR = Partial correlation.

We also computed the pixel-wise correlation coefficients with P and Rn using annual values over
the study period to understand the temporal dynamics of total ET and its components. Figures 14 and 15
graphically illustrate the pixel-wise correlation and significance between ET and the environmental
factors P and Rn. In Figure 14, the spatial correlations of P with ET and its components were positive
and significant (R ≥ 0.5, p < 0.05), mainly in the arid and semi-arid climates where P is a limiting
factor. Correlation coefficient values for Et and Eb with P were positive and significant (R ≥ 0.5). Soil
moisture availability in these dry regions mainly occurs due to irrigated crop fields and frequent
small rainfall. This result is consistent with Douglas et al. [58] who found that intensive irrigation in
the dry regions (in arid and semi-arid areas) introduces significant latent heat from transpiration Et

and physical evaporation from the adjacent bare soil. Positive and significant R values for Ei due to
increased foliage are consistent with the trend of greening in the Sahel region and arid climatic zones
and increased CO2 fertilization effects [57].

The humid regions (i.e., the upper reach) showing insignificant correlations with P was expected
as P plays a slightly weaker role in controlling ET variability. Conversely, in Figure 15, Rn shows a
similar magnitude but a negative correlation coefficient (R ≥ −0.5, p < 0.05) with ET and its components’
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variability except for Ew (Figure 15e) in arid and semi-arid conditions. These results are consistent
with eco-climatic conditions where the hydrologic cycle is dominated by the water supply [59,60].

Rn was expected to exert strong control on ET in the upper reach, that is, the humid/wet regions.
However, the results, which showed no correlation with Rn, are most probably explained by increased
cloud cover associated with wet years in the upper reach where radiation is strongly reduced in wet
seasons, as noted by Ukkola and Prentice [60].
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Figure 14. Pixel-wise correlation coefficients between total ET and its components with P in the
Nile River Basin for 1980–2014: (a) total ET, (b) transpiration, (c) canopy interception, (d) bare-soil
evaporation, and (e) open-water evaporation. The shaded areas denote areas where the tests were
significant at the 5% level.
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Figure 15. Pixel-wise correlation coefficients between total ET and its components and Rn observed
in the Nile Basin for 1980–2014: (a) total ET, (b) transpiration, (c) canopy interception, (d) bare-soil
evaporation, and (e) open-water evaporation. The shaded areas denote areas where the tests were
significant at the 5% level.

4. Discussion

In this work, we used the state-of-the-art process-based GLEAM ET product to analyze long-term
spatiotemporal variations in land ET and its components in the Nile River Basin. The introduction
of GLEAM v3a provided added value and highlights the importance of how updates in model
assumptions and different forcing input data impact models’ ability to represent the spatial and
temporal variability in ET and its components. Although this section does not seek to compare GLEAM
v3a with other GLEAM versions as that is beyond the scope of this paper, we highlight some of these
modifications in model assumptions and different forcing data inputs.
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Here, we have examined terrestrial ET and its components over the Nile River Basin to understand
their long-term variations and their relative contributions to the hydrological budget. We validated
GLEAM ET with FLUXNET as a reference dataset. Our validation results indicate that GLEAM ET
accuracy is reasonable (R2 = 0.82 and RMSD = 21.33 mm/year) despite a slight overestimation in
GLEAM ET (MAE, 14.73 mm/year and BIAS, 0.96 mm/year) (Figure 2).

Interannual variability analysis revealed that the magnitude and temporal variation are reasonable
and consistent with mean annual P over the region [9,24]. ET and its components in the Nile River
Basin followed a distinct seasonal cycle, with ET peaking in wet seasons and minima occurring in dry
seasons [24,28]. The ET peak in September, falling to the minimum in winter (February), explains
the distinct ET climatology of the region and indicates how different vegetation species assimilate
available energy and water across the various climatic regions [61]. Trend analysis (Figure 5) showed
ET decreases by 18.8 mm·year–10 for 1980–2014.

This decreasing trend is related to interannual P variability and agrees with previous studies in
the region [24,27,62]. Also, areas with slight increases in ET trends were mainly located in arid regions
and some parts of semi-arid regions (Figure 6a) where water availability is affected by large-scale
irrigation fields. The trajectories of spatially averaged ET with the four main vegetation covers in the
region (Figure 7) showed that high ET occurs in tropical forests, savanna, and cropland, with the least
amount of ET in grassland, which is consistent with Miralles et al. [13].

All four major vegetation types showed a decadal decrease in ET with forest and savanna showing
the largest ET decline. This agrees well with Sterling et al. [51], who concluded that tropical forest
and savanna are hotspots for decreasing ET. On an annual (Figure 8) and seasonal (Figure 9) basis,
the different ET components responded differently in the amount of ET to different environmental
and biological (vegetation) conditions. The different ET components showed strong seasonality over
the region, with high monthly values in wet seasons compared with dry seasons (Figure 9) across the
different climatic regions (Figure 10). The ET regime is a complex of both biological and physical fluxes.

Et in the humid-semi-humid areas largely depended on plant phenology and water use efficiency,
whereas Ei’s contribution was high in parts of humid regions with higher frequency rainfall and type
of vegetation species (Figure 11a,b). Eb in arid and semi-arid regions (Figure 11c) was mostly driven
by atmospheric demand for vapor, the amount of water in the soil, and vegetation cover.

Our analysis of ET components showed that Et accounted for 78.1% of ET, Ei for 15.1%, Eb for 3.9%,
and Ew for 2.9% (Figure 12). Et was a major contributor of total ET (78%) and its peak in September
provides insight into the total ET climatology of the region (Figure 4). These findings are consistent
with the literature that has reported Et dominance in terrestrial water fluxes [63,64] and indicates the
important role of biological processes in the water cycle response to climate change. These findings
further our understanding of Nile River Basin water dynamics and implications for future development
of hydrological models in the region.

The model artifacts and updates in forcing inputs may explain our findings from this study. GLEAM
v3a provides the added value of using multiple soil moisture and P input data and detailed specification
of vegetation phenology using VOD compared to older GLEAM versions [12,65]. The quality of the soil
moisture data applies both the improved drainage formulation and the optimized data assimilation
algorithm. Using VOD to quantify changes in vegetation phenology of both short and tall vegetation
improves the information from phenological controls of vegetation under cloudy conditions. Vegetation
phenology is a function of the stress function calculated from VOD, where a high VOD range implies
tall vegetation and a small value implies short vegetation.

Many studies have identified water (i.e., P) and energy supply (i.e., Rn) as two key variables that
limit ET variability. Therefore, the distribution of these variables in both space and time, together with
their strength of correlation with ET and its components, may significantly improve our understanding
of the annual and seasonal dynamics of ET in the Nile Basin. The results show that the variability
in ET and its components is closely controlled by variability in P (R2 = 0.91). This finding supports
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Teuling et al.’s [19] hypotheses and agrees with previous studies that P is the main limiting driver of
ET variability in a region [24,62], except for Ew (Table 2).

In most parts of the basin, the variability in ET and its components is explained by P dynamics
(0.5 ≤ R2

≤ 0.8), especially in arid and semi-arid regions of the basin that experience either occurrences
of short rainfall events or water availability from nearby irrigated crop fields in the Nile plain area
(Figure 14). This characteristic of the region (i.e., that the area is essentially driven by P) was possibly
more highlighted in the model due to the multiple satellite soil moisture inputs used, as these are
sensitive to precipitation events. The choice of VOD as a proxy for vegetation dynamics as input data
may further explain the results in semi-arid areas due to its superiority over NDVI as NDVI is prone
to saturation effects in areas where vegetation is sensitive to interannual P variations, specifically in
semi-arid areas. This finding complements previous studies in the region on the reliability, confidence,
and usefulness of updating remote sensing data products. Also, this information may provide
water resource planners or irrigation managers with two useful pieces of information: firstly, how to
quantify these changes, and, secondly, how these changes translate into long-term changes in ET and
its components.

Conversely, Rn was often found to be weakly and negatively correlated with ET and its components
(Table 2). This was expected as the basin lies in a region with a relatively ample and stable energy
supply with P changes determined by the movement of the ITCZ (Figure 15). Overall, this study
complements previous studies that have analyzed long-term annual and seasonal ET variations in
the area and provides a further extension with which to include and analyze ET components, which
improves our understanding of their relative importance in the total land ET as well as their trends in a
warming climate.

5. Conclusions

In this study, computed GLEAM ET estimates were successfully validated against eddy covariance
flux tower ET (FLUXNET ET) data with most places largely overestimating ET. The process-based
GLEAM product was used to produce a map of ET and its components in the Nile Basin. On annual
and seasonal bases, ET and its components showed strong variability in the region. The multi-year
mean ET was 500 mm·year–1 with a range of 200 to >900 mm·year–1, which agrees closely with the
values reported in the literature. The analysis showed strong seasonal and spatial ET variations,
with lowest values (19 mm) in winter and the highest (69 mm) in autumn.

GLEAM ET components showed that Et is a major contributor to total ET (78.1% of ET), with the
remaining accounting for 15.1% for Ei, 3.9% for Eb, and 2.9% for Ew. Et was shown to peak in autumn,
similarly to total ET, indicating how vegetation assimilates available energy and water in the region.
The long-term ET significantly decreasing at 18.8 mm·year–10 over the region probably suggests water
stress (a P deficit). The relative contribution of Et to ET is dominant, suggesting the significant role
played by biological fluxes in the region’s water dynamics.

Our analysis of the effects of ET indicated a significant relationship with P rather than Rn in the
region. High long-term mean annual ET values were found in forests, savanna, and cropland, signaling
the role of vegetation cover in ET trajectory. Variations in annual ET and its components showed a
negative trend with vegetation cover, indicating ET loss from vegetation. These findings further our
understanding of the water dynamics in the region and have important implications for future regional
water resources planning under the influence of both climatic and anthropogenic factors. The design
of GLEAM v3a experiments and using several static input data sets for describing the soil properties
and land cover suggest that the quality of input static data sets improves when optimized.

We have here demonstrated that ET and its components are important parts of the water balance
in the region, which complements previous studies on this area. Our analysis contributes information
on the reliability, confidence, and usefulness of remote sensing data products in capturing the water
dynamics of a region. Water resources planners may rely with confidence on remote sensing data for
hydrological modelling and water resource management strategies at a basin scale.
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Figure A1. Nile Basin: (a) Mean Precipitation for the Nile based on European Center for Medium-Range
Weather Forecasts (ECMWF) reanalysis (ERA-40) estimates (b) Annual mean Temperature distribution
over the Nile River Basin based on European Center for Medium-Range Weather Forecasts (ECMWF)
reanalysis (ERA-40) estimates.
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