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Abstract: The hydro generation scheduling problem has a unit commitment sub-problem which
deals with start-up/shut-down costs related hydropower units. Hydro power is the only renewable
energy source for many countries, so there is a need to find better methods which give optimal hydro
scheduling. In this paper, the different optimization techniques like lagrange relaxation, augmented
lagrange relaxation, mixed integer programming methods, heuristic methods like genetic algorithm,
fuzzy logics, nonlinear approach, stochastic programming and dynamic programming techniques
are discussed. The lagrange relaxation approach deals with constraints of pumped storage hydro
plants and gives efficient results. Dynamic programming handles simple constraints and it is easily
adaptable but its major drawback is curse of dimensionality. However, the mixed integer nonlinear
programming, mixed integer linear programming, sequential lagrange and non-linear approach
deals with network constraints and head sensitive cascaded hydropower plants. The stochastic
programming, fuzzy logics and simulated annealing is helpful in satisfying the ramping rate, spinning
reserve and power balance constraints. Genetic algorithm has the ability to obtain the results in a
short interval. Fuzzy logic never needs a mathematical formulation but it is very complex. Future
work is also suggested.
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1. Introduction

Over the years the world population has grown fast which has resulted in increased
industrialization, ultimately demanding more energy. There are two kinds of energy resources:
conventional and non-conventional. Conventional energy resources are limited and also cause
pollution while non-conventional renewable energy resources are environmentally friendly and
abundant. Among all resources, water is efficient, clean and utilized by hydropower plants for
electricity generation. The yearly power generation of a hydropower reservoir depends on annual
discharge management of reservoir scheduling. The planning of hydro power systems is complex
because it requires assuring the peak demand throughout the working process of the electric power
system efficiently. As human tasks follow regular, seasonal and yearly periods and due to changes in
peak demands, this becomes a difficult task. More energy is produced by good planning with the same
quantity of water, making considerable savings for the producer even with a slight computational
improvement [1,2]. The planning of electric power system is divided according to time horizon
i.e., for a day, week or year. The weekly planning is known as short-term scheduling; sometimes weekly
schedules are also named as medium term. For yearly planning it is considered long-term scheduling.
The long-term optimization approach usually follows a few years of planning horizon [3,4]. On a
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weekly basis, medium term optimization is used to plan the reservoir volumes [5]. The short-term
optimization approach follows the hours–ahead to day-ahead time horizon. In power system operations,
unit commitment is one of the central approaches [6–11]. For achieving accuracy in testing, all daily
operations and market clearing is done in advance. Independent system operators are responsible to
deal with hydropower systems operations and unit commitment schedules [12]. The unit commitment
problem deals with mixed integer and several stages decisions. The goal of unit commitment is to find
the optimal schedule on an hourly basis of ON-OFF units and it also determines the level of generation
for each generating unit of electric power system in a given time horizon. The hourly schedule is
determined for 24 h in short-term scheduling while it helps in minimizing the start-up/shut-down cost,
fuel cost, satisfying the multi-vibrational zones, up time/down time constraints, load balance equations
ramp rate constraints and spinning reserve constraints [13]. Moreover, spinning reserve makes hydro
scheduling a complex, nonlinear, high dimensional problem. In power system, spinning reserves are
estimated [14,15].

The considerable amount of money is saved during hydro scheduling, when the most appropriate
and profitable schedules are found. It also focuses on starting and stopping times for all units
in a system satisfying itemized loading schedules by turning units off when they are not in use.
This problem is very complex as it involves a large number of variables because the size of the system
is large as the decisions of starting and stopping the units consist of many constraints having integer
values. The decision making for optimal unit commitment is very complex because scheduling is
done on an hourly basis for multiple units to fulfill the predicted demand and all the constraints
are involved in this problem. As unit commitment is a wide-ranging, combinational and mixed
integer nonlinear programming problem [16–19]. Several optimization methods have been used to
solve this type of problem including priority listing [20,21], mixed integer programming [22–25],
dynamic programming [26–33], hierarchical optimization [34–39], lagrange relaxation method [40–45],
tabu search [46–48], non-linear programming problem [49,50] and branch and bound method [51].
There are two families of unit commitment, one is deterministic unit commitment problem and the other
is stochastic unit commitment problem. A lot of research focuses on deterministic unit commitment but
there are several studies which discuss the methodology and formulation of stochastic unit commitment
problem. Stochastic unit commitment problem deals with the uncertainty. In the literature, several
studies discuss the scenario based stochastic programming for solving unit commitment with different
methods like progressive hedging [52–56], dual decomposition [57–59], benders decomposition [60–64],
spatial decomposition [57], directly solved method [65–70], cutting plane [71], dynamic formulation [72]
and heuristic methods [73–75].

Hydro generation scheduling is one of the main aspects of producing energy by lowering the
total cost. There are many optimization techniques used to solve this problem but still researchers are
working on the methods for achieving the best optimal solution. This review paper helps to present
the different modeling and solution techniques which are supportive for current practical applications
and will also be helpful in proposing new methods. It will be beneficial for the researchers working on
hydro generation scheduling for unit commitment problem in terms of advantages and disadvantages
of different techniques. Solving the hydro scheduling problem is complex due to net head effect on
production of power and non-linearities in unit performance curves. Therefore, in order to deal with
these problems different modeling and solution techniques are reviewed in this paper. This review
paper focuses on the past studies carried out to solve the unit commitment problem for different
time horizon. It also discusses the hydro unit commitment-based constraints. Several studies present
different optimization techniques based on time horizon like short-term, long-term and medium
term, on constraints like security network constraints and price-based constraints; and stochastic
environment based constraints, time based constraints. The main purpose of this paper is to summarize
the various techniques which are the most suitable for solving hydro generation scheduling with a
special focus on different constraints for future implementation.
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2. Hydro Constraints

In hydro-based system, each unit is treated as a separate unit in plant. Some additional
constraints like startup/shutdown, minimum up/minimum down constraints are added in hydro unit
commitment [22]

These are constraints which fulfill the generation companies (GENCO’s) special criteria.
1. Load balance constraint ∑

K∈GN

∑
j∈k

Ut
j,k −
∑
k∈PL

∑
j∈k

Ut
j,k = Pt

D (1)

hydro power system consists of a set of generating units (GN) and a set of pumping units (PL). The sum
of these sets of units must satisfy system load demand.
2. Spinning reserve ∑

K∈GN

∑
J∈K

xt
j,kU j,k −

∑
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∑
j∈k

Ut
j,k +

∑
k∈PL

∑
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Ut
j,k ≥ SRt (2)

where U j,k is the high operating limits of generating unit, SRt is the system minimum spinning reserve
requirement in time t.
3. Network constraint

wl ( j, t)min
≤ wl( j, t) ≤ wl( j, t)max

Ql( j, t)min
≤ Ql( j, t) ≤ Ql( j, t)max (3)

4. Power generation of hydro plant

Ul( j, t) = C1, jwl( j, t)2 + C2, j Ql( j, t)2 + C3, jwl( j, t) ×Ql( j, t) + C4, jwl( j, t) + C5, j Ql + C6, j i ∈ Rl (4)

5. Constraint of availability of unit
Constraints of maximum and minimum number of online units in time t.

omin
k,t ≤

∑
j∈k

xt
j,k +

∑
j∈k

yt
j,k ≤ omax

k,t (5)

6. Unit startup constraint
The jth unit startup constraint for plant k is the function of startup and shutdown of units.

xt
j,k − xt−1

j,k = Pt
j,k − gt

j,t
gt

j,k + Pt
j,t ≤ 1

(6)

7. Unit Minimum up/Minimum down time constraint
Minimum up/down constraints for unit j of plant k.

Pt
j,k +

t+UPi−1∑
T−t+1

gT
j,k ≤ 1 (7)

gt
j,k +

t+DNi−1∑
T−t+1

PT
j,k ≤ 1 (8)

UPi, DNi shows minimum up and down time of jth unit.
8. Rate of change of water of hydro plant

Rate of change of turbine flow between two successive limits

∆Vk × ∆T ≤ Vt
k −Vt−1

k ≤ ∆Vk × ∆T (9)
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3. Different Modelling and Solution Techniques

Several modelling and solution methods have been introduced in the past for the optimal solution
of different time horizon for hydro unit commitment as shown in Table 1. These methods are divided
into groups and classified as heuristic (or stochastic) methods which depend on different parameters.
In order to obtain the optimum global solution, it needs proper tuning. The second group is of
mathematical approaches—it gives good results but it is also computationally extensive. The third
group contains hybrid techniques which are good at minimizing the time of execution. Hydropower
generation scheduling can be solved by different optimization techniques. In the literature, the same
methods were used by researchers for different problem formulations. In Sections 3.1 and 3.2, dissuasion
is based on results obtained from previous studies for different considered parameters used for the
unit commitment problem. Modelling techniques are used for simplification of real-world problems.
The first step of designing a solution technique is modelling, i.e., to propose a model for solution
of a problem. Several modelling techniques discussed in Section 3.1 are solved by various solution
techniques discussed in Section 3.2. This review paper is helpful in describing the most feasible
modelling and solution techniques for hydro scheduling.

Table 1. Different techniques for solving the unit commitment problem.

Groups Techniques

Heuristic

Genetic algorithm, differential evolution, bacterial foraging
algorithm, simulated annealing, artificial bee colony algorithm,

harmony search algorithm, particle swarm optimization and
imperialistic competition algorithm.

Mathematical programming

Mixed integer linear programming, priority list approach, branch
and bound approach, lagrange relaxation, linear programming,
successive quadratic linear programming, nonlinear approach,

bender decomposition, dynamic programming, stochastic
programming, model predictive control, value function

approximation, generation method, column-constraint, nested CG,
state-space approximation and stabilized LR.

Hybrid techniques Artificial neural network, genetic algorithm, tabu search and
dynamic programming.

3.1. Modelling Techniques

3.1.1. Mixed Integer Programming

Norouzi et al. [76] solved the short-term unit commitment problem while taking into account
the security constraints by using mixed integer programming modelling technique. The goal of their
work was to lower the overall cost and emissions. The ε-constraint and lexicographic optimization
solution approach was used as a solution technique. This strategy was implemented by introducing the
valve loading effect along with linear formulation and replacing the fixed ramp rate for thermal units
with the dynamic one. Before using the analytical technique, first mixed integer nonlinear problem
was linearized to mixed integer linear problem. To select the most desirable solution, fuzzy based
solution technique was implemented to select the appropriate solution. The result obtained from
these methods was efficient but the speed of these methods is slow. The future research will focus on
other security indices to the proposed problem. Ahmadi et al. [77] reported a new problem named as
self–scheduling of hydrothermal plant which was solved by the mixed integer programming model
while considering cost of valve loading, outages of generator, prohibited operating zones, services of
operating. The proposed method was solved by the same solution technique which Norouzi, Ahmadi,
Nezhad and Ghaedi [76] used. Ahmadi, Aghaei, Shayanfar and Rabiee [77] used arbitrary trade instead
of using fuzzy method because it was more economical and realistic. It gave more profit rather than
emission generation. Research work will rely depend on using the approximate stochastic dynamic
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programming method for this problem by considering financial risks. Esmaeily et al. [78] implemented
mixed integer linear programming on the stochastic self-scheduling issue. The main function was to
increase the profit rate. For ramping constraints, the scenario tree for characterizing the uncertainties of
price was implemented, and flexible technique by taking into consideration multi-performance curves
and prohibited operating zones. The practical constraints were considered beside the conventional
ones and the result showed that it takes more time to converge. Borghetti et al. [79] studied short-term
operation depending on head of the reservoir by using mixed integer linear programming approach.
This approach represented the electric power system application efficiently and was also efficient in
computations. The model was divided into a set of two constraints: linear and non-linear. After this
the linearization was enhanced through two dimensional considerations. This approach was highly
efficient because it gave accurate solution and time of computation was better. The main drawback
was its size which adversely affected its performance criteria. Future research involves the extension of
the model. Chang, Aganagic, Waight, Medina, Burton, Reeves and Christoforidis [22] described the
experiences to find optimal schedules with mixed-integer linear programming. The model was used
for both conventional and pumped storage. The system-based relational database management was
developed for mixed integer linear programming and short-term hydro scheduling function. AMPL is
named as Algebraic mathematical programming language or CPLEX, which is an optimizer and is
named for the simplex method based on C programming language, was used for modeling/optimization.
Combined modelling language formulated the problem easily and updated it with less programming
efforts. In the future this will also be checked on security constraints. Li et al. [80] implemented
the mixed integer programming model on Three Gorges project, China for optimizing the hydro
unit commitment problem. The main goal was to lower the objective cost by using iterative method
to obtain the water level of tail-race and then use interpolation technique. The net head and unit
performance curve were considered on a unit. This model was efficient for solving complex multi-unit
hydropower system and with constant penstock, the computational burden was lower. Penstock
head loss factors are difficult to model, so in the future researchers must focus on this factor. Carrión
and Arroyo [17] presented another mixed-integer linear approach for solving the unit commitment
problem of hydrothermal power plant. The objective was to present another way to reduce the time
of computation with the help of binary constraints and variables. This approach solved realistic
application. Minimization of overall cost was the main aim of solving unit commitment. The cost of
production in this method for the power output was presented as a function of quadratic and startup
cost was expressed as nonlinear. This method was tested on a realistic case study. This method was
computationally efficient but for large systems it is difficult to find the accurate solution by this method.
This approach should be applied to the new scheduling problems.

Teegavarapu and Simonovic [81] developed a model for optimal operation of cascaded hydropower
plants. The optimization tool adopted for this hydro-scheduling was mixed integer nonlinear
programming model. The curves of tail water elevation were used. The objective function was to
minimize the cost. The EMMA model was applied to a series of four reservoirs on the Winnipeg River
in Manitoba, Canada. This model provided the daily scheduling rules. The fixed flow transport delay
times were introduced in the formulation. The issue of unit commitment was also solved because
this approach also handles the integer variables. The global optimal solution from MINLP was not
guaranteed. The computational burden increases due to increase in binary variables. For real-time
operation a detail optimization problem is necessary to work together with this model.

3.1.2. Dynamic Programming

Dynamic programming follows a recursive relationship which is called Bellman’s Principle. It is
used to find the optimal policy which find the optimal policy for each state. By using backward
procedure, the feasible solution is found. This is done stage to stage until it reaches to starting stage.
Lowery [82] engendered the unit commitment problem solved by dynamic programming. The objective
was to find the feasibility of the method. The cost curve for a unit from minimum output to maximum
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capacity was constructed. The cost curve showed input function in dollars per hour and output
function in megawatts. The big advantage of this method was finding the feasible way of working
k + 1 unit instead of k units. The computational time was longer. The feasibility of this method needs
to be checked in the future by using more constraints.

3.1.3. Nonlinear Approach

Catalão et al. [83] reported on the deregulation environment of electric power system and proposed
an approach called nonlinear for solving this issue. The objective was to maximize the revenue and
water storage level. This problem was normalized with linear and nonlinear constraints and it was
named the quadratic programming issue, having quadratic function. The head sensitive cascaded
reservoir was considered. This approach was applied on Portuguese cascaded hydro systems. The main
asset of this technique was to examine the change in head as a single function of water storage and
discharge. Moreover, as this approach was differentiated with a linear one. Future recommendation is
to handle the problem with more constraints while considering the computational time.

3.1.4. Stochastic Modelling

Takriti et al. [84] solved a unit commitment problem by introducing a stochastic model. The scenario
analysis was used for modeling the uncertainty about future demand. The different starting penalties
and different updating strategies to get good policies were considered. The model was solved using
progressive hedging solution technique. The model was implemented in parallel to reduce the
computation time. This model was implemented on pump storage hydropower plant. It should
be tested for conventional one for further work. Wu et al. [85] presented the stochastic model for
random parameters like faults in calculating the loads, random generator outages and random flow
lines. Time of a generator and frequency was enhanced by assigning weight to each scenario and this
whole process was done with monte carlo simulation in this model. The advantage of this model was
reliability in decisions in terms of long-term application of units which were generated, consumption
of fuel and allocation of energy. Computational time was greater, therefore, to improve the calculation
time, further work will be required.

3.1.5. Successive Linear Programming

Fosso and Belsnes [86] addressed the demanding behavior of liberalized electric power system
and introduced successive linear programming for short time horizon operation. The goal of this paper
was to maximize the profit and minimize the cost. The successive linear programming was used to
obtain the solution which consists of iterations. Two modeling modes were used for dealing with plant
losses. Normally the method was to find the short-term boundary conditions and long-term policy for
scheduling. Later, these bids are calculated. Future research requires focusing on strategic bidding.

3.2. Solution Techniques

3.2.1. Lagrange Relaxation

This method focuses on finding the commitment schedules which satisfy all reserve and capacity
constraints. For this purpose, it is required to determine the lagrange multipliers set which helps in
searching for the most feasible solution. In order to satisfy the demand condition, this method used
economic dispatch measurements which consider the single unit having reserve constraints.

• First step is initialization; estimate the initial value of λ. For obtaining a better estimate,
time dependent constraints are neglected and for each hour there is a value of u and λ.

• Second step is minor iteration, which is used to find the optimal solution. The accurate solution is
obtained by fixing u as zero for the initial estimate. Implementation of two update schemes is
done. Initially the feasibility is obtained by a sub gradient method with step size control. The u’s
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are fixed after obtaining the optimal solution and they are fixed till a small change will make the
solution infeasible. The overall set of individual sub problems have to be solved for each set of u’s.

• Third step is of large major, it is known that whenever optimal solution is achieved, a new
measurement of economic dispatch is done, in this way λ is updated. After doing this, step (b)
is repeated.

• Fourth step focuses on the solution of the individual unit. Time is the state variable and for this
unit is adjusted to be on/off. This is termed as minimum up time which shows a positive value; it
means when unit is up it gives positive value and when unit is down it gives negative value and
it is called minimum. Down time is based on discretized hourly interval. The problem is with
down time as it takes a long time to cool the unit so it is compulsory to keep track of negative
values of unit. Further, the state space influences the time of execution so it is not required to
enhance the start-up costs, which depends on minimum up/down times.

• To confirm solution in general, several major iterations are done. The criteria which is used to
check the result is known as stopping and it is very crucial to understand it. The most influential
strategy is natural criterion, which is the distinction between dual and primal objectives as a
fraction. This is better for large systems as compared to small ones. However, a minute variation in
u gives the change in output between optimality and inaccuracy of the solution instead of knowing
this, consider that the result is obtained. However, meeting the criteria does not guarantee the
optimum solution.

• Sixth step deals with the same units and makes a group of similar units and places them in a given
set of λ, u. To ensure that such units are distinct, adjust heat rate data slightly.

• Seventh step deals with the generalization of start-up constraints related to system and plant by
unit groups. Basically, in a group all the units of the plants are placed and units in a group are just
placed randomly. One unit at a given hour is started and if units are require to be excluded from
the group are simply not assigned to that group. It is also possible that units can be grouped in
more than one group. In the algorithm of dynamic programming, unit is a member of a group
and is started up at any time. If at a given hour a unit of a group is committed, then the algorithm
does not permit another unit to be started up.

• Eighth step focuses on the reserve for security purpose, it is allowed with area reserve constraints
which do not affect the overall computational time because areas are sets of units which are
user defined.

• The last step emphasized the reserve constraint which must be satisfied in economic dispatch
calculation. There is enough strength committed to fulfill the reserve within the dynamic program.
On a strictly economic basis, the generation allocation is done but it cannot satisfy the total reserve
constraint because each unit gives maximum contribution to reserve. For fulfilling the need of
reserve requirement, a new step called post-dispatch is added in the economic dispatch. From the
most expensive unit to the cheapest unit, the post-dispatch works in transferring the generation
when it is required.

Wang et al. [87] studied a solution technique, lagrange relaxation, which further modified and
was named augmented lagrange relaxation for scheduling a generation in short-term horizon by
considering environmental, transmission conditions and to avoid oscillations related to piece-wise
linear cost functions while satisfying system constraints. To improve algorithm, unification quadratic
penalty terms are added to modify the objective function. These additional quadratic penalty terms
are also connected with power demand for improving the algorithm. Initial values were assigned to
lagrangian multipliers for different constraints of the system such as, for capacity of transmission line,
for emission purpose, for power balance and spinning reserve in order to solve a unit commitment.
After this environmental conditions are satisfied by using decomposition approach. The conclusion
was a new algorithm called augmented lagrangian relaxation method. This algorithm was efficient,
applicable, speedy and booming. It gives probable results in real time. The hourly generation cost was
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higher than the proposed approach. If this method will apply to more practical systems, it will be more
accurate in terms of cost savings. Frangioni et al. [88] solved short-term unit commitment problem
by sequentially applying solution and modeling techniques: lagrangian and mixed integer linear
programing (MILP). This sequential process was used for improving the efficiency. The lower bound of
lagrangian was computed for developing feasible solution without any heuristic approach. After this
MILP approach was started. This approach allowed accurate adjustment between the outcome and
the running time as compared to the original lagrange technique. The positive side of this sequential
approach was that it worked very well in giving accurate results in spite of the fact that it was a difficult
thing to do. One disadvantage of using the lagrangian bound was that increase in running time made
it less efficient. In the future, much work is needed to improve the lagrangian lower bound accuracy.

Orero and Irving [89] combined two solution techniques: genetic algorithm and lagrangian
relaxation decomposition technique, and made a new algorithm for solving short-term unit commitment.
The transmission line, ramping rate and pollution were considered as a constraint. This combined
method was used in alternative ways, while solving the UC problem this algorithm handles continuous
and discrete framework and benefits overall characteristics of genetic algorithm and it also gave output
to each separate unit sub-issues by using lagrange relaxation. The disadvantage of using LR was that it
did not guarantee an optimal solution. As there was no standard LR algorithm, presently heuristics and
other algorithms are used to for calculating the value of lagrange multipliers. Further research is needed
to find a standard LR algorithm. Beltran and Heredia [90] used a solution technique called augmented
lagrange relaxation and tested by block coordinated descent and auxiliary problem principle method
for short-term operation. This method was used to overcome the drawback of non-separable behavior
of the pure lagrangian. To minimize effect of non-separable augmented lagrangian, the problem
was divided into smaller sub problems. Auxiliary problem principle method used approximation
to augmented lagrangian while block coordinated descent method directly minimized augmented
lagrangian. In the first test the n-dimensional version of UC problem is taken and it compared the
auxiliary problem principle with block coordinated decent method (BCD). After this, a second test was
performed practically. It was concluded that the BCD method was faster theoretically and practically as
compared to auxiliary lagrangian method. The major drawback of this is quality and much research is
needed in improvement and quality of the solution. Virmani et al. [91] implemented lagrange relaxation
method on the unit commitment problem to explain the critical aspects related to the practical and
theoretical application of this method. This solution method found the optimal solution by determining
lagrangian multipliers set which was used to find the commitment. Initial estimate for lagrange
multiplier was obtained by ignoring the time dependent constraints. Feasible solution was obtained
by using step sub gradient method. After feasible solution, new economic dispatch calculation was
performed. Lagrangian multipliers were updated until the termination of solution by following specific
rules. The viability of this technique is improved when it is applied practically. The main advantage of
this technique is the linear behavior of execution time for units. The LR method was more suitable for
large systems operation. Research is needed for small systems. Gröwe-Kuska et al. [92] developed a
solution technique called lagrange relaxation which deals with uncertainties of inflows and of fuel.
The stochastic lagrangian relaxation method was used as a solution technique. The stochastic problems
of power management depend on lagrange relaxation schemes. Two types of lagrange had been
introduced which found nearly optimal solution for first stage. The deterministic lagrangian heuristic
named as lagrange heuristic 1 (LH1) gave nearly optimal decision only at nodes and it computed
the mean values of scenario based stochastic process. The stochastic lagrangian heuristic named as
lagrange heuristic 2 (LH2) was based on binary decisions and it gave nearly optimal solution at every
stage while the deterministic heuristic required short computing time as compared to the stochastic
one. The stochastic solution developed a guaranteed accuracy bounds while for the deterministic one
the case was different. The improvement of existing stochastic lagrange solution approach requires
further study still and finding a way of computing solution in a minimum time. Baldick [93] proposed
lagrangian decomposition for solving unit commitment in a generalized way. The objective is to



Water 2019, 11, 1392 9 of 26

lower the overall cost by considering generator minimum on/off time, ramping rate, voltage reserve,
transmission line, energy limit and fuel constraints. This problem was formulated as mixed integer
non-linear problem. To obtain the primal feasible solution, the lagrange multiplier was initialized
appropriately. The sub-problems which were solved at every redundancy were quadratic and separable.
Sparse matrix and interior point approaches were implemented for the solution of sub problems.
The central processing unit time increased quadratically because of non-sparse and non-separable
implementation. This approach was unique in the sense that it could solve generalized problems
directly but it did not give the quality of solution for special solutions. The future research should
focus on the quality while considering price-based constraints.

3.2.2. Bender Decomposition Approach

Zheng et al. [94] solved a stochastic unit commitment problem by using bender decomposition.
The benders decomposition approach was applied. The first stage consists of start-up/shut-down
cost while in the second stage electric power dispatches were decided. To ease the burden of too
many scenarios, the decision variables of the first stage were fixed and the next stage was divided into
separate sub-problems. The information based on the solution was in the feedback cuts. This algorithm
was efficient but it does not converge fast. Further work is required to consider faster convergence
while focusing on implementation of advanced and stronger benders cuts.

3.2.3. Linear Quadratic Penalty Approach

Franco et al. [95] presented a solution technique known as linear quadratic penalty which coupled
the electrical and hydro variables. The objective is to minimize the three terms load, cost, transmission
losses and reservoir targets. The non-linear constraints of hydraulic and electric sub-problems were
indirectly considered through a linear quadratic penalty technique. It had the advantage of augmented
lagrange and exact-penalty procedures. Electric sub-problem was solved with side constraints
algorithm via non-linear network flow. Hydro sub-problem was solved via dedicated algorithm.
The advantage of this method was that it handles multi-objectives in a flexible way. However, it takes
time to solve the problem—parallel processing can be used to improve the time.

3.2.4. Genetic Algorithm

The basic procedure of genetic algorithm is given below [96].

• In initial population, production of genotypes (initial binary coded solutions) like SM (say M = 500)
is done by binding all units. After this, units are turning away from commitment by some
probability in an irregular manner. Checking of schedules for demand, minimum up and down
unit of time, and spinning reserve constraints should be done. While fulfilling the requirement
of all constraints, a term fitness score is introduced which specified the main aim of solution.
Lambda iteration technique economically dispatches the hourly load; in this way it calculates
the main goal related with every solution. The ranking of solution is done in descending order
and it depends on the fitness values for every solution and solutions which are best are known as
parents. Moreover, each solution is concerned with fitness score. D (SM) = whole cost of fuel +

cost of shut down/start up.
• Reproduction is a prime selection operator. Roulette wheel parent selection algorithm is used to

select two genotypes. The specialty of this algorithm is that while remaining in the population it
chooses a genotype which corresponding to relative fitness of genotypes. A two primary genetic
operator’s mutation and crossover are helpful in producing a new offspring genotype.

• The current samples of genetic strings are obtained throughout the process of evolution. Crossover
operation has two stages, i.e., unit stage and population stage. With fixed probability of 0.7,
both types of crossover are done.
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• For better planning, it is required to exchange the scheduling periods within the genotype. There is
no fitness function value of partial string of genotype, the selection process is accomplished in an
irregular manner with some certain probability. There are two stages of unit crossover and they
are dealing with strings first half and second half with randomly chosen units in order to find
suitable planning, therefore, the first stage is about maintaining the first half and interchanging
the second half of the strings. While the second stage is about maintaining the second half and
interchanging the first half of the strings.

• Certain probability is implemented on this operator. The implementation of this certain probability
has some advantage, the combination of the parent genotypes results in a new genotype which
inherent the properties of both parents. The offspring are an identical replication of their parents.
Roulette wheel parent selection gives parent genotypes and there is crossover between these
parent genotypes. The scheme of crossover is using single point crossover.

• The other step is mutation which deals with producing a new genetic material into gene at a low
rate. The bits of genotypes’ offspring change from ‘0’ to ‘1’ because they are randomly selected
with a minute probability.

• In this manipulator, based on the overall load, units are ranked and arranged in descending
order. Here, the net heat rate of fuel cost is calculated at full load times. To calculate the average
production cost of full load, the status of ith and jth units are exchanged. The units give status
of ON and OFF, if the production cost of ith unit is lesser than the production cost of jth unit at
full load. To avoid local convergence and reducing overall cost, this process is done by some
probability for every scheduled hour.

• Repairing up/down time manipulator indicate is concerned with repairing the solution which is
not optimal related to constraints of minimum up and down time. It explains the state of a unit for
hour ‘0’. The state ON and OFF is updated and revised when constraint of minimum up/down
time in a given time t is violated.

• Concerning spinning reserve and demand constraints, this manipulator approximates the solution
which is not optimal. These constraints are checked every hour and if the schedule is not satisfied
for that special hour it is maintained from the last generation which is also an optimal result.

• In descending order, the whole population is organized and it includes parents and offspring.
The basis of the next generation is formed when the best k solutions are transcribed. In order to
obtain the best scheduling results of UC, it is necessary to calculate fuel cost for every interval
including flow line losses.

Kazarlis et al. [97] presented a heuristic technique called genetic algorithm in a different way.
The operators were added which were specific for each problem and a varying technique related to
quality function. To form the initial population, genotypes were produced at random. The operating
schedule was for nth-unit and after random production of genotype, it was then decoded. After
this fitness, value was assigned to genotype and cost of fuel was calculated. In genetic algorithm,
the UC problem was not divided by time or by unit. GAs can be easily transformed to computation
at the same time. The drawback in this method is optimality of the solution which is not certain
and it had high execution time. Future research needs to focus on progress in the hardware of
parallel computing. Ahmed and Sarma [98] introduced a genetic algorithm for multipurpose reservoir
operation. The objective was to determine optimal operating policy. This method used piece-wise
linear function for connecting all the end points of coordinates. For handling constraints, strings were
randomly generated. To fix the best parameter, sensitivity analysis was taken. Genetic algorithm was
efficient but was more specific because of piece-wise linear function. Leite et al. [96] used genetic
algorithms aiming to find more efficient solution of the operation planning. The main goal was to
minimize the generating cost. Nonlinear network flow algorithm (NNFA) algorithm for defining the
volume for each set of plants was used. These volumes were used as initial population by genetic
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algorithm. The implementation of technique did not become more complex but it was argued that it
cannot reach to efficient solution in a shorter computation.

3.2.5. Enhanced Simulated Annealing

Wong [99] solved the unit commitment problem by using enhanced simulated annealing solution
method as shown in Figure 1 because this technique was easy to implement and did not need large
memory. In this method, iteration number was equal to temperature level. For every trial of iteration
number, a candidate solution was generated then a probabilistic test helped the solution to jump out of
the local optimal. In this way all the accepted solutions were used to generate another candidate new
solution. The solution process continued until the desired cost was found. However, the computational
speed was improved by adopting parallel version but still it needs more improvement.
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3.2.6. Genetic Algorithm, Tabu Search and Simulated Annealing

Mantawy et al. [100] solved power system operation by combining three techniques integrating
tabu search (TS), simulated annealing (SA) and genetic algorithms (GA) as shown in Figure 2. Basically,
this method consisted of genetic algorithm but for the generation of new offspring’s tabu search
technique was helpful. For accelerating the convergence of GA, SA was used. They solved three
examples and compared with other methods. The result obtained was better than Integer programming,
lagrange relaxation and separately used SA, TS, and GA. This algorithm gave high speed of convergence
but did not give high quality of solution. For reducing computation time and finding wider solution
space, further work is required.Water 2019, 11, x FOR PEER REVIEW 13 of 26 
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3.2.7. Heuristic Algorithms

Kjeldsen and Chiarandini [101] solved the yearly power system operation with combined heat
and power plants by using heuristic solutions. The objective was to reduce the cost of electricity
while taking constraints on electricity, heating and biomass consumption. The four heuristic orithms
relax-and-fix, LP-fix heuristic, lagrangian relaxation and heuristic dispatching were contrived heuristic
for making the solution at initial stage of the program. For reducing the size of the problem, they used
relax-and fix by restricting time horizon while using time as subsets. Dispatching heuristic sorted
the units and satisfied the heating and electricity demands for all regions. The LP-fix approach
solved the overall LP-relaxation by considering all the constraints. Lagrangian relaxation technique
was good in solving the constraints which were good in binding the units together for the main
purpose. The solution was improved by two local search methods, i.e., stochastic and mixed integer
programming Solver as sub-procedure and economic dispatcher was also used as improvement method.
The good quality solution results and better computational times were obtained but this method did
not consider security and head-dependent constraints. This method will implement for short term
while considering strategic decisions and new investments.

3.3. Combination of Modeling and Solution Techniques

3.3.1. Combined Method

Johannesen et al. [102] combined heuristic techniques and the iterative network linear
programming model to find optimal short-term hydro scheduling. The demand and water level were
considered as constraints and their major goal was to lower the cost at the end of the planning cycle.
This problem was divided into a two-stage process. In the first stage, optimal production schedule was
established and the problem was decomposed in sub problems and solved iteratively by using network
flow algorithm. The hydro and electrical sub-problems were solved for initial solution stage without
including security constraints. By using this optimization method, 0.3–0.4% increased utilization of
available volume was obtained but this method takes a lot of time. Further work is needed to improve
the quality of solution in terms of time.

3.3.2. Dynamic Programming with Heuristic Techniques

Patra et al. [13] combined the dynamic programming with fuzzy and simulated annealing.
The objective was to solve the major drawback of dynamic programming called obscenity of dimensions.
To predict the startup/shutdown cost, fuzzy approach was used and dynamic programming approach
needs a lower number of policies to be kept at every step of multistage decision. The computation
time of this method was fast and quality of solution was better. This method did not consider the load
forecast uncertainty. The recommended algorithm will be suitable in the future for finding the solution
of UC problem while taking security constraints and head-sensitive constraint into consideration.
Su and Hsu [103] introduced a mixed technique which was a combinatorial of dynamic programming
and fuzzy approach for power system operation. This method considered the faults in the calculation
of load on an hourly basis and expressed it in fuzzy set notations. The objective function was to
minimize the cost. In this approach, constraints were divided into two groups. This model includes
crisp constraints and crisp state variables. The aim was to reach the optimal decision by using a
membership function. Sensitivity analysis was taken to examine the effect of different membership
functions. The major drawback of this approach was it took more time in contrast to conventional
dynamic programming. Future research is needed to make it easy computationally.

3.4. Advantages and Disadvantages

Lagrange relaxation approaches are still the applicable method of working in the operational state,
when a very extensive situation and very speedy running times are demanded [104,105]. The lagrange
relaxation uses sub-gradient method to solve the dual problem [106]. In practice, to make the
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commitment decision effective, it is mandatory to implement more and more precise models of the
actual operating ways of generating units. The deep-rooted rigor of lagrange relaxation rationalizes
the interest towards the methods that are more buoyant to changes of the mathematical model of the
generating units [7,23,107–109]. It makes it additionally multiplex which results in more difficulty to
solve the optimization problem. However, this method usually engenders solution to be moderately
infeasible since the linking constraints are scarcely satisfied with the first solutions [1]. The Lagrange
decomposition algorithm is also suitable for dealing with the hydrothermal scheduling problem with
uncertainty in load [110].

The mixed-integer linear programming (MILP) has tempted more heed [22,25,111–115]. This is
owning to the fact that MILP deals with the non-linearities using piecewise linear approximation,
adding constraints and the introduction of discrete nature of the problem via including integer variables
or constraints. In power system, limits of power output depend on the net head and similarly in unit
performance curves. The power output non-linearly depends on the unit total head and turbine jet.
It is still very challenging to model non-linear characteristics through MILP techniques. In real time
MILP mechanism, immense mathematical measures are involved. The MILP technique is limited in its
implementation and applied on some turbine units. To combine two relatable problems, one economic
dispatch and other unit commitment, research was conducted in the 1960s. Garver [116] proposed
optimization model of mixed integer for scheduling of system while considering thermal units only.
Despite the fact that this approach was uncomplicated to a certain extent, this method established
intuition to the implementation of branch-and-bound algorithm which is used as application of mixed
integer programming method for scheduling of electricity generation. Mixed integer programming
method combined with other algorithms later and were presented more appropriate models [117].
The optimal unit commitment problem with probabilistic reserve determination preferred a mixed
integer programming technique. The scheduling of hydropower plants was not only discussed in
the past but also emphasized on scheduling of hydrothermal systems [118–130]. The addition and
restriction in branch and bound algorithm is considered as the central key in the development of
integer programming approach [131]. The problem of mixed integer programming was discussed;
it was reported that mixed integer programming algorithm is worse in this case as it did not take the
edge of special structure problems which results in a larger size of the system; and it also rapidly wore
out computer measures. The mixed integer programming uses the reduction of the solution space by
dismissing the infeasible subsets and by doing this it can solve the unit commitment problem [117].
Based on benders method, unit commitment is further divided into two different sub problems: one is
an integer non-linear and the second is a non-linear economic dispatch sub problem.

The primary approach which is used to solve a unit commitment is dynamic programming
(DP) [132]. Although DP performed good for small scale systems and is very effective, this technique
gives the problem for large scale systems as it experiences the curse of dimensionality. The curse of
dimensionality limits its direct implementation for cascaded reservoirs of hydro systems. However,
DP is good at handling non-linear and non-convex features of the hydro and hydrothermal model.
The short-term unit commitment experiences more difficulty in using DP as compared to long
term optimization problem. The curse of dimensionality has restricted its application to large scale
systems, otherwise it is an effective technique. The DP was used to solve unit commitment in a
way that it represents the decision stages and is treated as a sequentially static optimization with
generation units [133]. The unit commitment problem is also solved by many heuristic techniques.
Kothari and Ahmad [35] proposed a method which combines dynamic programming with expert
system and a rule-based system for solving the unit commitment problem and named this method as
hybrid approach.

The artificial neural network (ANN) is a favorable method for solving the short-term unit
commitment problem. However, one problem arises while using artificial neural networks (ANNs) in
practical application for reinforcement of ANN, i.e., the computer takes more time for execution [134].
A very famous heuristic method is genetic algorithm (GA) which is introduced by [37,97,135]. It is a
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robust technique and is better for non-convex problems. However, one disadvantage of using this
method is its surety related to attainment of optimal solutions while solving the unit commitment
problem. The GA can also be used for multi-reservoir system operation and can be helpful for finite
horizon deterministic related problems. This technique is simply suitable for complex systems and
non-linear problems [38]. In spite of the advantages of GA, there are the flaws of genetic algorithm
technique [136]. The GA method take a lot of time while solving the real-world problems and also
creates some hurdles in the implementation of other heuristic programming approaches. Benders
decomposition algorithm is efficient but does not converge fast. The advantage of this linear quadratic
penalty approach is that it handles multi-objectives in a flexible way. However, it takes time to solve
the problem. The main asset of the nonlinear technique is to examine the change in head as a single
function of water storage and discharge. The advantage of stochastic programming is reliability in
decisions in terms of long-term application of units, consumption of fuel and allocation of energy.
The disadvantage is that it has more computational time.

4. Discussion

There has been rich literature on solving hydro unit commitment problem while considering
different constraints. The algorithms and models are different even if they lie within the same category.
Wang, Shahidehpour, Kirschen, Mokhtari and Irisarri [87], Frangioni, Gentile and Lacalandra [88],
Orero and Irving [89], Beltran and Heredia [90], Virmani, Adrian, Imhof and Mukherjee [91] and
Gröwe-Kuska, Kiwiel, Nowak, Römisch and Wegner [92] used augmented lagrange relaxation,
sequential lagrange and MILP, lagrange relaxation decomposition and genetic algorithm, augmented
lagrange relaxation, decomposition techniques (block coordinate descent and auxiliary problem
principle), lagrange relaxation, stochastic lagrange relaxation methods, respectively. The different
modelling and solution techniques are summarized in Tables 2 and 3, respectively.

4.1. Summary of Modelling Techniques

Non-linear method takes the change of head as an individual function. Catalão et al. [83] used the
nonlinear modelling approach for solving hydrogenation scheduling and results obtained show that it
gives feasible and good computationally solution. Patra et al. [13] implement dynamic programming
with heuristic techniques and results show that it is very efficient during imprecise hourly loads.
The mixed integer linear programming (MILP) method gives efficient results and it is more capable
in precision and execution time for large scale systems. The MILP model gives more profit rather
than emission generation but less programming efforts are required because of the use of combined
programming language. The MILP model is effective for solving large scale complex multi-unit
commitment. Esmaeily, Ahmadi, Raeisi, Ahmadi, Nezhad and Janghorbani [78] implemented MILP for
solving unit commitment problem, results obtained show that the computational time was rationale.

4.2. Summary of Solution Techniques

Augmented Lagrange Relaxation is fast, efficient and robust in practical size systems.
The augmented lagrange relaxation, decomposition techniques (auxiliary problem principle and
block coordinate descent) reported a global optimizer, Beltran and Heredia [90] used this solution
technique for solving unit commitment problem and found that results obtained were not clear.
The sequential lagrange and MILP is also efficient and lagrange relaxation decomposition handles both
discrete and continuous parameters. The execution time and number of time stages varies linearly in
lagrange relaxation. Frangioni, Gentile and Lacalandra [88] implemented this sequential approach
and found that it was more effective as compared to standard mixed integer linear programming.
The enhanced simulated annealing improved the speed by using parallel version, Wong [99] used this
technique and results obtained were satisfactory. Zheng et al. [94] used benders decomposition and
found that results obtained were efficient but the convergence was not faster.
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Table 2. Summary of different modeling techniques by researchers.

Modelling Techniques Authors Remarks

Mixed Integer programming-constraint method Ahmadi, Aghaei, Shayanfar and Rabiee [77] This method gives more profit rather than emission generation

Mixed integer linear programming Borghetti, D’Ambrosio, Lodi and Martello [79] This method is effective for solving large scale complex multi-unit commitment.

MILP Li, Li, Wei, Wang and Yeh [80] By adopting parallel version speed is improved

Stochastic programming Gröwe-Kuska, Kiwiel, Nowak, Römisch and Wegner [92] It gives guaranteed accuracy bounds

Nonlinear Approach Catalão, Mariano, Mendes and Ferreira [50] As the Binary variables are large, Computational burden increases.

Mixed integer nonlinear programming Teegavarapu and Simonovic [81] This method is computationally efficient.

Stochastic dynamic programming Archibald et al. [137], Borges and Pinto [138], Stedinger et al.
[139]

It focused on energy availability and reliability with random inflow and availability of generating
the units. It is also good in solving the problem easily as it divides the original problem into

independent, low dimensional sub-problems. Stochastic dynamic programming models, either
stationary or non-stationary, are good in finding the policies which are helpful in operating the

reservoirs.

Mixed integer programming Aghaei et al. [140], Norouzi, Ahmadi, Nezhad and Ghaedi [76]
and Ahmadi, Aghaei, Shayanfar and Rabiee [77]

It controls the emissions of Hydrothermal plants. It also helps in computational requirement. This
method deals with security constraints effectively. It also studies the effect of prohibited operating

zones and valve loading effect

Nonlinear programming Barros et al. [141] For better operation of real time nonlinear programming, this is the better choice.

Stochastic programming Soares and Carneiro [142] This method deals with both cascaded and single reservoirs with high head for optimal operation.

Linear programming Shawwash et al. [143], Yoo [144] It finds the generation on hourly basis. It is computationally fast.

Simulation model Le Ngo et al. [145] For increasing the production of hydropower plant, it maintains the level of reservoir high.

Stochastic dual dynamic programming Mo et al. [146] It focused on price as well operation of plant.

Sensitivity analysis, Dynamic programming
SIMULINK

Aslan et al. [147]
Mahmoud et al. [148]

It finds the ideal configuration by using the flow rates when they are higher and also finds the key
element of plant efficiency is head loss.

Differential dynamic programming Chang et al. [149] It works better for small tail and high head reservoir plants.

Mixed integer linear programming Carrión and Arroyo [17] It minimizes the curse of dimensionality

Dynamic programming Lowery [82], Mariño and Mohammadi [150], [151,152]
It is good in determining the optimum way of k + 1 units instead of k unit. It is also worthy in giving

maximum power, when head and discharge changes. Multi-reservoirs have no impact on DP.
It works in investigating the optimization models analytically.
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Table 3. Summary of different Solution Techniques by researchers.

Solution Techniques Authors Remarks

Augmented Lagrange Relaxation Wang, Shahidehpour, Kirschen, Mokhtari and Irisarri [87] New algorithm was developed which is fast, efficient and robust in practical size systems.

Sequential Lagrange-mixed integer linear
programming Frangioni, Gentile and Lacalandra [88] Efficiency is improved by the sequential process of these two techniques. Here, mixed integer

programming is a modelling technique and sequential lagrange is a solution technique.

Lagrange Relaxation decomposition, Genetic
Algorithm Orero and Irving [89] This combined method handles both discrete and continuous parameters.

Augmented Lagrange relaxation ALR,
Decomposition techniques (Auxiliary problem

principle APP and Block coordinate descent
BCD)

Beltran and Heredia [90]
Augmented Lagrange Relaxation method becomes a local and global optimizer by using Auxiliary

problem principle (APP) and Block coordinated descent (BCD).
The comparison of APP and BCD shows that BCD is faster as compared to APP.

Lagrange relaxation Virmani, Adrian, Imhof and Mukherjee [91], Norouzi, Ahmadi,
Nezhad and Ghaedi [76] and Finardi and Scuzziato [153]

The linear variability is involved between the time of execution and time stages. This method gives
efficient results and it is more capable in precision and execution time for large level systems.

It also considers the turbine losses.

Combined LP and heuristic technique Johannesen et al. [102] It handles multi-objectives more easily.

Linear-quadratic penalty approach Franco et al. [150] It solves general problems directly, but it does not give good quality results.

Lagrangian decomposition Baldick [95] It considers the effect of head change in single function.

Fuzzy and simulated annealing with dynamic
programming Patra, Goswami and Goswami [93] The computation time is good.

Artificial Neural network Naresh and Sharma [134] This approach deals with the optimization of hydropower system which is interconnected

Multi objective optimization Duckstein and Opricovic [154], Kuby et al. [155] This helps in decision making process and also evaluates the trade-offs based on economics and
ecology.

Regression method Singal et al. [156] The correlations are developed for finding the project cost and compare it with current project cost

Genetic Algorithm Sharif and Wardlaw [157]
Oliveira and Loucks [36] This is used for any reservoir and it also considers the real vectors.

Ant-colony, multi-colony Ant algorithm Jalali et al. [158,159] The work of ant colony method is to provide good results while multi colony deals with probability
of reducing the domain of global optimality.

Different optimization techniques Iqbal et al. [160] Suggested different optimization techniques for different users.
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5. Conclusions and Prospective Outlook

5.1. Conclusions

The current review has been initialized to study the prior research work for hydro scheduling by
considering various constraints and different solutions and modelling techniques. It has been found
that the hydro generating units deal with different constraints like head dependent, demand, discharge,
security constraints, cascaded reservoirs, etc. The preceding studies emphasized the different time
horizon unit commitment operation of hydropower plants by using various optimization methods.
The centralized analysis of different mathematical models which are refined for different time horizon
unit commitment of hydropower plants have been discussed in this paper. The most commonly
used modelling and solution techniques for hydro scheduling are dynamic programming, lagrange
relaxation and mixed integer linear programming (MILP). The dynamic programming is adapted easily;
lagrange relaxation gives good results. However, for large scale complex problems, mixed integer linear
programming model is effective because it handles the non-linearity and accurate solution. Moreover,
MILP is computationally efficient and minimizes the curse of dimensionality; it also supports bidding
strategies in market. Scheduling generation by optimizing the use of water resource helps in lowering
the cost of electricity but due to scarcity of water, energy produced from hydropower plants becomes a
critical issue. There is a need to implement these methods which save water and give more profit in
terms of power generation. The methods discussed in this paper are helpful in meeting the energy
goals while considering challenges of power generation from water. These modelling and solution
techniques are helpful in consuming less water with high generation efficiency.

5.2. Prospective Outlook

In the future, lagrange relaxation needs to be modified to improve the quality of small-scale
systems and to upgrade the lower bound accuracy of lagrange. The mixed integer linear programming
needs to be considered for further improvement in terms of model extension and also attention should
be given to penstock head loss function. The feasibility of dynamic programming is necessary to
be examined in the future while considering more constraints such as security constraints and head
sensitive cascaded reservoirs. To get good results while solving unit commitment problem, the center
of interest for non-linear approach is computational time. Future work is required in stochastic
programming for better quality of solution in terms of time. It is recommended for linear quadratic
penalty approach to use the parallel processing to achieve better time. The bender decomposition
requires faster convergence while focusing on implementation of advanced, and strong bender cuts is
still a research gap. For genetic algorithm, it is necessary to handle the parallel computing, as genetic
algorithm is more specific with piece-linear function. Therefore, it is necessary to check the policy by
doing further tests.
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Abbreviations

Ut
j,k Output of electric power of unit j in plant k at time t (MW)

Vk Flow of water in hydro plant k (m3/s)
xt

j,k ON/OFF generating status of unit j at time t in plant k (binary)
yt

j,k ON/OFF pumping status of unit j in time t within plant k (binary)
Pt

D Load demand at time t (MW)
U j,k High operating limits for unit j in plant k (MW)
SRt Spinning reserve requirement in time t
wl( j, t) Volume of water in jth reservoir in time t
Ql( j,t) Water discharge rate jth reservoir
omax

k,t Maximum number of online units in plant k in time t
omin

k,t Minimum number of online units in plant k in time t
gt

j,k Shutdown status of hydro unit j of plant k in time t
pt

j,k Startup status of hydro unit j of plant k in time t
C j Cost function of unit j (Rs/h)
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