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Abstract: A Multi-Resolution Weakly Compressible Moving-Particle Semi-Implicit (MR-WC-MPS)
method is presented in this paper for simulation of free-surface flows. To reduce the computational
costs, as with the multi-grid schemes used in mesh-based methods, there is also a need in particle
methods to efficiently capture the characteristics of different flow regions with different levels of
complexity in different spatial resolutions. The proposed MR-WC-MPS method allows the use
of particles with different sizes in a computational domain, analogous to multi-resolution grid in
grid-based methods. To evaluate the accuracy and efficiency of the proposed method, it is applied
to the dam-break and submarine landslide tests. It is shown that the MR-WC-MPS results, while
about 15% faster, are in good agreement with the conventional single-resolution MPS results and
experimental results. The remarkable ability of the MR-WC-MPS method in providing robust savings
in computational time for up to 60% is then shown by applying the method for simulation of extended
submarine landslide test.

Keywords: MPS; mesh-free methods; particle methods; multi-resolution simulation; free-surface flow;
dam-break; landslide

1. Introduction

It is well known that the complexity of free-surface flows differs significantly depending on
the flow region. Specifically, flow in regions close to the free surface is usually more complex than
the flow in regions far enough from the free surface. Therefore, having the same spatial simulation
resolution across the entire computational domain is not computationally efficient. Alternatively,
to increase the computational efficiency while keeping the simulation accuracy at a desired level,
multiple discretization resolutions may be used. Besides the efficiency of multi-resolution simulation
of fluid flow, it is sometimes necessary to make the Computational Fluid Dynamics (CFD) codes
capable of handling the boundaries or external objects in an extremely higher resolution compared to
the resolution of fluid flow; for instance, this often happens in simulations of fluid-structure interaction
and flow in vegetated channels (e.g., [1]). In these problems, there are restrictions in thickness of
the boundaries or external objects such that the thickness might be extremely small compared to
the size of the computational domain. Therefore, if the simulation is performed in single resolution,
to model the boundaries or external objects in their actual dimensions, extremely fine discretization
of the entire spatial domain is necessary. This demands massive use of computational resources,
which is often not affordable. By using a multi-resolution technique, the restrictions on the size of the
particles representing objects or boundaries could be satisfied while the fluid flow is simulated in a
manageable resolution.
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The Moving-Particle Semi-Implicit (MPS) method is a mesh-less method proposed by Koshizuka
and Oka [2–4] for simulation of free-surface flows. In this method, Navier–Stokes equations are solved
in a fully Lagrangian form using a fractional step method which consists of splitting each time step
in two steps of prediction and correction. The fluid is represented with particles. The motion of each
particle is calculated through interactions with neighboring particles by means of a kernel function.
Stability of the simulations, efficiency and ease of free-surface tracking using Lagrangian particles,
straightforward boundary treatment, ease of coding, and capability to adopt the computations to
Graphical Processing Units (GPUs). architectures (e.g., [5]) are among the advantages of using this
method in modeling of free-surface flows. The MPS method has gained a lot of interest among
numerical modelers in the past two decades and has been successfully applied to a variety of complex
free-surface problems such as sediment transport (e.g., [6–8]), dam-break (e.g., [9,10]), fluid-structure
interaction (e.g., [11]), flow over porous bed (e.g., [12]), liquid sloshing inside a tank (e.g., [13]),
breaking waves on slopes (e.g., [14]), submarine landslide (e.g., [7,15,16]), and oil spilling (e.g., [17]).
In addition, the MPS method has been applied to a wide range of engineering applications including
coastal and ocean engineering (e.g., [8,18,19]), environmental hydraulics (e.g., [6,20,21]), mechanical
engineering (e.g., [22]), structural engineering (e.g., [11,23]), chemical engineering (e.g., [24,25]) and
bioengineering (e.g., [26,27]).

Despite the success of the MPS method in different applications, the method still has limitations
in terms of efficiency and robustness [28]. The original MPS method is fully incompressible,
where the pressure is calculated implicitly by solving a Poisson equation of pressure at each
time step. This incompressibility modeling is among the most computationally expensive and
memory-consuming components of the MPS method. Thus, when many particles are used, the MPS
method will suffer from computational issues as well as computer memory issues. To alleviate
the computational issues with the original MPS method, the authors in [28,29] proposed a weakly
compressible variation of the MPS method. The Weakly Compressible MPS (WC-MPS) method is a
simplified form of the MPS method that replaces the incompressibility model in the standard MPS
method with a weakly compressible model. This method is explicit and uses an equation of state to
calculate the pressure field. The WC-MPS method, compared to the standard MPS method, requires less
computer memory and potentially can speed-up the simulations. The WC-MPS method is validated
through the simulation of several free-surface problems including flow over spillways [30] and flow
over the sills and in trenches [28].

In this paper, a method called MR-WC-MPS method hereafter is proposed for multi-resolution
simulation of free-surface flows based on the WC-MPS method. Recently, several research studies have
introduced multi-resolution forms for the incompressible MPS method (e.g., [31,32]). In this paper,
however, we aim to extend the WC-MPS formulation for a multi-resolution simulation of fluid flow to
benefit from the WC-MPS advantages over the MPS advantages also in the multi-resolution settings.
To evaluate the accuracy and stability of this multi-resolution form of WC-MPS (MR-WC-MPS) ,
comparative tests are performed against two well-known test cases, namely dam-break and submarine
landslide tests. Simulation results are compared with experimental and conventional MPS results.
The ability of the proposed method in providing robust computational time savings is also shown
by applying the method for extended submarine landslide simulation. The dam-break test has
been used extensively in the literature as a bench-mark problem for verifying free-surface flow
simulation methods (e.g., [2,33]). Moreover, due to the importance of water waves generated by
landslides, researchers have conducted vast empirical (e.g., [34,35]), analytical (e.g., [36]) and numerical
(e.g., [37,38]) studies on this phenomenon.

The remainder of this paper is organized as follows. Fundamentals of the MPS method are
described in Section 2. Next, the proposed MR-WC-MPS method is introduced in detail in Section 3.
Results for simulations of dam-break and landslide-induced water waves using the MR-WC-MPS
method are presented in Section 4. Section 5 concludes the paper.
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2. Fundamentals of the MPS Method

In this section, the MPS method is introduced in brief. For detailed description of the MPS method
see [2,4,17,39].

2.1. Governing Equations

The Navier–Stokes equations are a set of coupled nonlinear partial differential equations that
describe how the velocity, density, pressure, and other quantities of a moving fluid are related.
For incompressible fluid, and in Lagrangian form of fluid description, the Navier–Stokes equations are
expressed as  1

ρ
Dρ
Dt +5.u = 0,

Du
Dt = − 1

ρ 4 P + ν42 u + f,
(1)

in which ρ is the fluid density, t is time, u is the velocity vector, P is pressure, ν is kinematic viscosity
of fluid and f is the gravity acceleration.

2.2. MPS Interpolations

In the MPS method, the motion of each particle is calculated based on the interactions with
neighboring particles covered by a kernel (weight) function. The third-order spiky kernel function [28]
is used for the simulations presented in this paper, which is expressed as

w (r, re) =

(
1− r

re

)3
, (2)

in which w (r, re) is a kernel function, r is the distance between two fluid particles, and re is the
kernel size. The value of this kernel function out of the kernel size (r > re) is zero. As stated in [28],
implementation of this kernel function, compared to the other alternatives common in the literature,
will improve the stability of the simulations as it avoids particle inter-penetration and improves the
momentum conservation [28].

In the MPS method, particle number density is defined as

〈n〉i = ∑
j 6=i

w
(
rij, re

)
(3)

The subscripts denote a specific particle.
Koshizuka and Oka [2] expressed the particle interaction models for differential operators.

The gradient operator is given as

〈5φ〉i =
d
n0

∑
j 6=i

[
φj − φ̂i

r2
ij

(
rj − ri

)
w
(
rij, re

)]
(4)

in which φ is an arbitrary scalar, φ̂i s the minimum value of that scalar among the neighboring particles
of a reference particle i , d is the number of space dimensions, r is the position vector, and n0 is the
constant particle number density.

The Laplacian operator is modeled in a transient diffusion problem and expressed as〈
52φ

〉
i
=

2d
n0

∑
j 6=i

[(
φj − φi

)
w
(
rij, re

)]
(5)

with some constant λ.
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2.3. Solution Method

A fractional step method is used in the MPS method which consists of splitting each time step
in two steps of prediction and correction [4]. At the prediction step, the viscous and gravitational
forces are explicitly calculated without enforcing the incompressibility to the fluid and an intermediate
velocity and position is obtained for each particle. At the correction step, the fluid incompressibility is
enforced, resulting in the following Poisson equation of pressure

〈
52Pn+1

〉
i
= − ρ

dt2
〈n∗〉i − n0

n0
(6)

in which n∗ is the particle number density at the prediction step. This Poisson equation of pressure
can be turned to a system of linear equations by replacing the left side of the equation by the Laplacian
model expressed in equation . Once the system is solved and the pressure is calculated, it is replaced
into the gradient model (Equation (4)) to calculate the pressure gradient. The velocity correction is
then calculated using the pressure gradient.

2.4. Weakly Compressible Model

Shakibaeinia and Jin [28] adjusted the equation of state given by Monaghan [40] to be used in the
MPS formulation. This equation of state has the form of

Pi =
ρ0C2

γ

[(
〈n∗〉i

n0

)γ

− 1
]

(7)

with γ = 7. C is the numerical sound speed. To keep the fluid density variation less than 1% of the
reference density, the Mach number (Ma) should be smaller than 0.1. In other words, the numerical
sound speed should be ten times higher than the maximum fluid particle velocity. Using this equation
of state, the pressure can be obtained explicitly without solving the Poisson equation of pressure.
This explicit method is known as Weakly Compressible MPS (WC-MPS) method.

2.5. Boundary Treatment

In the MPS method, a fluid particle is considered on the free surface if it satisfies the
following condition

〈n∗〉i < βn0. (8)

Parameter β is called the free-surface parameter. The reference pressure is applied to free-surface
particles as a boundary condition. Close to solid boundaries, the particle number density of particles
will decrease and accordingly, they may satisfy the free-surface boundary condition and be considered
on the free-surface. To avoid this issue, a few layers of so-called “ghost particles” are simulated outside
the solid boundaries to take part in particle number density calculations. The first layer of solid
boundaries will take part in pressure calculations. As a result, there is always a repulsive force between
fluid particles and solid boundary particles to avoid sticking of fluid particles to the solid boundaries.

3. Multi-Resolution MPS Method

In this section, the particle interaction mechanism in a multi-resolution representation of
computational domain is illustrated. For simplicity and with no loss of generality, we choose
to illustrate the mechanism in a two-scale computational domain consisting of two regions
represented in two different resolutions. The subsequent generalization to multiple resolutions will be
straightforward.
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In a computational domain represented in two different resolutions, the low-resolution and
high-resolution regions are called, respectively, coarse and fine regions hereinafter. Particles representing
the coarse and fine regions are referred to as large and small particles, respectively. The initial particle
spacing for large and small particles are α`0 and `0, respectively. α is therefore defined as the ratio of
large particles spacing to small particles spacing. The initial particle spacing between a pair of a small
and a large neighboring particles is consequently α+1

2 `0. Figure 1 shows a sample particle configuration
in a two-resolution domain. In this configuration, α is set to 2.

Figure 1. Sample particle configuration in a multi-resolution domain.

3.1. Calculation of Kernel Function

Figure 2 describes the four possible scenarios of particle interaction in a two-resolution
computational domain. Kernel function calculation in scenarios 1 and 2 (w1 (r, re) , w2 (r, re)) is
straightforward as the kernel size is clearly specified. The difficulty arises in calculation of kernel
function in absence of a specified kernel size (i.e., scenarios 3 and 4). The solution rests in the
splitting of large particles. Precisely, when a small particle interacts with a large particle, the large
particle will split into fictitious particles. Therefore, interaction between a large and a small particle is
considered possible if and only if there exists at least one fictitious particle within the kernel size of the
small particle.

Figure 2. Description of the four different scenarios of particle interaction.

The properties of fictitious particles are determined as follows: (1) Size of these particles is
the same as the size of small particles, (2) Fictitious particles do not carry any physical variables;
the density, velocity, and pressure of their host is assigned to these particles, (3) Kernel size for the
fictitious and small particles are equal, (4) Given the position of the host particle (x, y), position of
the fictitious particles is (x + α`0/4, y + α`0/4), (x− α`0/4, y + α`0/4), (x− α`0/4, y− α`0/4), and
(x + α`0/4, y− α`0/4).
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The kernel function in scenario 3 is calculated as

w3 (r, re) =
α2

∑
i=1

w (ri, re) , (9)

in which r is the distance between the small and large particles, re is the kernel size for the small
particle, and ri is the distance between the small and ith fictitious particle.

In scenario 4, two different cases should be considered. The first case is when at a time step,
a reference large particle interacts only with neighboring small particles. The kernel function in this
case is calculated as

w(1)
4 (r, re) =

∑α2

i=1 w (ri, re)

α2 , (10)

which is an arithmetic mean over the interactions of individual fictitious particles with the neighboring
particles. The second case happens when the reference large particle is interacting with both small
and large neighboring particles. In this case, the interaction between the reference large particle and
the neighboring small particles is modeled similar to the first case (Equation (10)). However, when
the reference large particle is interacting with another large particle, both particles will be split into
fictitious particles. The kernel function for interaction of two large particles in this case is calculated as

w(2)
4 (r, re) =

∑α2

j=1 ∑α2

i=1 w
(
rij, re

)
α2 , (11)

in which rij is the distance between the fictitious particles i and j, belonging to two different hosts.
In this model, both reference and neighboring large particles are being split. Then interaction intensity
for individual fictitious particles corresponding to the reference host is calculated. Finally, an arithmetic
mean is taken over the interactions of these fictitious particles. Figure 3 depicts a sample particle
interaction mechanism in each scenario.

Figure 3. The particle interaction mechanism in each of the four scenarios. Small and large reference
particles are shown in red and blue colors, respectively. Neighboring particles are shown in green.
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3.2. Calculation of Particle Number Density

When a reference small particle interacts with both neighboring small and large particles at a time
step, particle number density is calculated as

〈n〉i = ∑
j 6=i

[
w2
(
rrj, re

)
+ w3

(
rrj, re

)]
, (12)

the first term on the right-hand side of the equation can be calculated using the interaction model in
scenario 2 (standard interaction model in the MPS formulation) and the second term can be calculated
using the interaction model introduced in scenario 3.

When a reference large particle interacts only with neighboring large particles at a time step,
particle number density is calculated as

〈n〉i = ∑
j 6=i

w1
(
rrj, re

)
, (13)

where the right-hand side of the equation can be calculated according to the interaction model
introduced in scenario 1, which is the standard interaction model in the MPS formulation. Similarly,
when a reference small particle interacts only with neighboring small particles at a time step, particle
number density is calculated as

〈n〉i = ∑
j 6=i

w2
(
rrj, re

)
, (14)

where the right-hand side of the equation can be calculated according to the interaction model
introduced in scenario 2.

When a reference large particle interacts with both neighboring small and large particles at a time
step, the particle number density is calculated as

〈n〉i = ∑
j 6=i

[
w(1)

4
(
rrj, re

)
+ w(2)

4
(
rrj, re

)]
+ ŵ (r, re) , (15)

in which both the first and second terms on the right-hand side of the equation can be calculated
using the interaction models introduced in scenario 4. The term ŵ (r, re) corresponds to the interaction
between the reference fictitious particles with each other. More precisely, when for instance a large
particle is being split into four fictitious particles, in order to calculate the particle number density for
each of these fictitious particles, in addition to the contribution of the neighboring small and large
particles, the contribution of the other fictitious particles corresponding to the host large particle should
be also taken into account, as shown in Figure 4. This term is calculated as

ŵ (r, re) =
∑α2

i=1 ∑α2

j=1,j 6=i w2
(
rij, re

)
α2 . (16)

Figure 4. Calculation of the kernel function for inner particle interaction.
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3.3. Solution Method

The solution method for the MR-WC-MPS is similar to the MPS with adjustments to the calculation
of particle number density, as discussed earlier. The pressure gradient term (Equation (4)) can be
calculated in a similar way the particle number density is calculated. Precisely, for a reference particle,
each term in the summations (Equations (12)–(15)) is multiplied by another term which is a function of
the distance between the reference and a neighboring particle, minimum pressure within the kernel
size of the reference particle, and pressure at the location of a neighboring particle. Position of the
fictitious particles is calculated according to the position of the reference particle and the initial particle
spacing. This will result in big savings in computer memory as opposed to the single-resolution
simulation. Size of the time steps should be calculated by the CFL stability condition using the smallest
particle spacing in the entire computational domain.

In this algorithm, the constant particle number density n0 remains the same in both fine and
coarse regions. Similar to most of the common kernel functions in MPS method, the third-order spiky
kernel function used herein (Equation (2)) is a function of one variable (i.e., the ratio of initial particle
spacing to kernel size). For all the computational regions (coarse or fine), as the value of this variable
is kept the same, the constant particle number density will remain the same.

4. Results and Discussion

4.1. Dam-Break-Induced Water Waves

The idealized 2D problem of the instantaneous removal of a barrier holding a water column at
rest in a water tank with fixed beds is known as the dam-break problem [2]. This problem has been
used as a bench-mark problem for verifying free-surface flow simulation methods [2,33]. In this part,
the experimental results for dam-break [2,41] are reproduced numerically using the WC-MPS and the
proposed MR-WC-MPS methods. To check the accuracy and efficiency of the proposed MR-WC-MPS
method, results are compared with the WC-MPS and standard incompressible MPS methods and the
experimental results. Figure 5 shows the dam-break experimental setup.

Figure 5. Geometry of the dam-break experiment.

In the present WC-MPS simulation, the initial particle spacing is 0.1825 cm, corresponding to
14,734 particles including fluid, wall, and ghost particles. Free-surface parameter and kernel size are
set to 0.99 and 0.365 cm, respectively. The fluid is considered inviscid. The Courant number is set to
0.5. The third-order spiky kernel function (Equation (2)) is used. Two layers of ghost particles are
considered. No turbulence modeling is used in this simulation. It is assumed that the barrier holding
the water column at rest is removed instantly. Figure 6 shows the computed particle configuration at
different times using the WC-MPS method.
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Figure 6. Particle configuration for dam-break computed by the WC-MPS method.

In simulation of the same dam-break problem using the proposed MR-WC-MPS method,
calculation parameters are kept similar to those of the WC-MPS simulation. The only difference
between the two simulations is that in the MR-WC-MPS simulation, part of the computational domain
is represented with large particles with initial particle spacing of 0.365 cm (α = 2). This reduces the
total number of particles to 8975 particles, 40% less than the total number of particles in the WC-MPS
simulation. Figure 7 shows the initial setup for the coarse and fine regions in the computational domain.
A rectangular region far from the free surface is selected to represent the coarse region. The fluid in
this region is expected to have less complex behavior compared to the region with finer resolution.
Figure 8 shows the computed particle configuration at different times by the MR-WC-MPS method.

Figure 7. Configuration of the coarse and fine regions in computational domain of the dam-break problem.
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Figure 8. Particle configuration for dam-break computed by the proposed MR-WC-MPS method.

To confirm the accuracy of the proposed MR-WC-MPS method, Figure 9 is depicted. This figure
shows a comparison between the experimental, MPS, WC-MPS, and MR- MPS results for the position
of dam-break wave front at different times, which has been widely used in the literature for validation
purposes (e.g., [2,33,42]). Results of the MPS and WC-MPS simulations are in good agreement with
each other and the few discrepancies in the results are due to the use of different compressibility
assumptions and calculation parameters. The MR-WC-MPS is in good agreement with both WC-MPS
and MPS simulations, showing the accuracy of the proposed method.

Figure 9. Comparison for the dam-break wave front position between the experimental, MPS, WC-MPS,
and MR-WC-MPS results.
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The total computational time for the WC-MPS simulation is 373.8 min. The computational time is
dropped by about 15% to 321.0 min in the in MR-WC-MPS method. The computer is equipped with
Intel R© CoreTM i7-2600 3.40 GHz CPU and a system memory of 16.0 GB. Although the calculation of
the interactions between large and small particles adds up to the total computational time compared
to WC-MPS computational time, the total computational time is reduced.

4.2. Landslide-Induced Water Waves

Landslides, usually caused by slope failures or liquefaction of sediments, can generate water
waves and small-scale tsunamis in coastal areas. Once the landslide-induced water waves reach
the coast or structures, they can cause disasters including loss of life and collapse of facilities and
infrastructures. Therefore, it is of importance to predict the damage of landslide-generated water
waves in flood hazard assessment of coastal zones [43].

In this part, the experimental results for rigid submarine landslide [44] are reproduced numerically
using the WC-MPS and the proposed MR-WC-MPS methods. Results for the free-surface profile are
compared with each other to evaluate the accuracy of simulations. Geometry of the problem is shown
in Figure 10.

Figure 10. Geometry of the submarine landslide problem.

Grilli and Watts [45] have formulated the vertical velocity of the sliding rigid mass in a body of
water. During the acceleration phase which lasts for 0.4 s, vertical velocity of the mass is described as

V (t) = c1tanh(c2t), t 6 0.4s, (17)

where V (t) is the vertical velocity of mass at time t. c1 and c2 are constant values and are set to 86 cm/s
and 0.0175 s−1, respectively, following [37]. After the acceleration phase, the vertical velocity of the
sliding mass reaches a terminal value of 0.6 m/s. At each time step the velocity of the sliding mass is
known; thus, it is straightforward to calculate the position of the sliding mass.

In the present WC-MPS simulation, the third-order spiky kernel function (Equation (2)) is used
and the kernel size is set to twice the initial particle spacing. Free-surface parameter is set to 0.99.
The fluid is considered inviscid. The solution domain is represented by 6242 particles, in which the
initial distance of particles is 2.5 cm. The Courant number is set to 0.5. The numerical value of sound
speed is set to 1800 cm/s. Two layers of ghost particles are considered in addition to one layer of
solid boundary particles. The simulation is performed for 2.5 s. No turbulence modeling is used in
this simulation. Particle configuration at different times is presented in Figure 11. As the mass slides
along the inclined wall, the water is heaved up and a wave is formed. At t = 0.6 s, water strikes the
right inclined wall. The wave moves toward the left vertical wall and around t = 1.5 s, it reflects from
the wall.

Next, the similar landslide problem is simulated using the proposed MR-WC-MPS method.
A 292 cm × 60 cm rectangular region at the bottom left side of the tank is initially discretized with
large particles with initial particle spacing of 5 cm (α = 2). This region will have less complex behavior
because the particle initially located in this region will not reach the free surface during the simulation
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time (2.5 s), as shown in [20], and moreover, these particles will move far enough from the vortex
generated by the motion of the submerged mass. Thus, this region may be discretized at a lower
resolution to improve the computational efficiency of the simulation. The rest of the computational
domain is represented by particles of the same size as of the WC-MPS simulation. The total number
of particles representing the computational domain is 4242, which is 68.0% of the total number of
particles in the WC-MPS simulation. Other calculation parameters are kept the same as those of the
WC-MPS simulation. Figure 12 shows the computed configuration of particles at different times using
the proposed MR-WC-MPS method.

The computational time for the WC-MPS simulation is 176.97 min, while it is about 15% less, i.e.,
150.33 min, for the MR-WC-MPS simulation. Figure 13 shows a comparison between the WC-MPS,
MR-WC-MPS, and experimental results for the water surface profile. It is evident that the discrepancies
between the WC-MPS and MR-WC-MPS results are minor. Therefore, by keeping the accuracy at
almost the same level, the computational time is decreased.

Figure 11. Particle configuration for submarine landslide computed by the WC-MPS method.
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Figure 12. Particle configuration for submarine landslide computed by the MR-WC-MPS method.

Figure 13. A comparison between the WC-MPS, MR-WC-MPS, and experimental results for the water
surface profile in submarine landslide simulation.
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4.3. Landslide-Induced Water Waves over Extended Tank

The aim of this part is to show the capability of the proposed MR-WC-MPS method in providing
substantial computational time savings when the scale of the simulations is relatively large. To this end,
the previous submarine landslide problem is revisited here with a change in the setup; the length of the
water tank is extended from the left side by factors of 2, 4, 6, 8, and 10, and in each case, two simulations
using the WC-MPS and MR-WC-MPS methods are performed for 1 second and the computational
time is recorded.

In the MR-WC-MPS simulations, we set the resolution of the extended region equal to the coarse
region resolution in the previous example. Figure 14 shows a comparison between the WC-MPS and
MR-WC-MPS computational time. Numbers in the parentheses show the total number of particles used
in each WC-MPS and MR-WC-MPS simulations, respectively. The substantial savings in computational
time using the proposed technique is evident from this figure. The computational time decreases
exponentially with the increase in the factor of length extension. In this example, although a portion of
course particles stay near-idle, still it is necessary to model these particles to cope with the geometry
of the computational domain. With standard WC-MPS method, the computational domain will be
filled with particles of the same size, which can be computationally very expensive, whereas with
the proposed MR-WC-MPS method enables us to fill the computational domain partially with coarse
particles which can significantly contribute to computational time savings.

Figure 14. A Comparison between the WC-MPS and MR-WC-MPS computational time for simulation
of landslide-induced water waves over extended tank.

5. Conclusions

A new technique, called MR-WC-MPS method, has been introduced for multi-resolution
simulation of fluid flow based on the MPS method. As a demonstration, the proposed technique
has been shown to improve the computational efficiency of three sample simulations of dam-break,
submarine landslide, and extended submarine landslide, with similar levels of accuracy compared
to the single-resolution simulations. By performing the submarine landslide test in an extended
water tank, it has been shown that the proposed technique offers an accelerated yet accurate way of
simulation of fluid flow in medium or large scales.

The proposed method is expected to perform well in problems that involve interaction of fluids
with elastic structures, such as flow in vegetated channels, and wind turbine flow simulation. In this
type of problems, it is necessary to handle the elastic structures in an extremely higher resolution
compared to the average resolution of the fluid flow, as there are sometimes strict restrictions in the
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thickness of these structures. Therefore, an interesting avenue of research in the future is to evaluate
the performance of the MR-WC-MPS method in simulating such multi-phase problems. As another
suggestion for future studies, the proposed method can be improved to handle multi-resolution
multi-time-scale simulation of free-surface flow, which enables the use of different time-stepping
algorithms in different regions of the flow represented in different resolutions. The integration
algorithm on the computational domain can be performed in a procedure in which coarse regions
are advanced in time, while fine regions are advanced multiple steps to reach the same time as of the
coarse regions and the data at different levels are then synchronized.
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