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Abstract: The release of heavy metals and metalloids (HMs), including Pb, Zn, Cd, As, and Cu, from
two typical contaminated soils with different properties, namely red soil and limestone-dominated
soil, was characterized through simulated-rainfall experiments in order to investigate the effects of
soil properties on HM release. Significant differences in the HM concentrations between the two
soils resulted in various concentrations of dissolved and particulate HMs in the runoff. Differences
in the dissolved HM concentrations in the runoff were inconsistent with the HM concentrations in
the soils, which is attributed to the variable solubilities of HMs in the two soils. However, the HM
enrichment ratios were not significantly different. The strong correlation between dissolved organic
carbon and dissolved HMs in the runoff, and between the total organic carbon and particulate HMs
in sediments, were observed, especially in the limestone-dominated soil. The specific surface area
and HM concentrations in sediments were weakly correlated. Acid-rainfall experiments showed that
only the limestone-dominated soil buffered the effects of acid rain on the runoff; the concentrations
of dissolved Pb, Zn, Cd, and Cu increased in the red soil under acid rainfall and were 60, 29, 25,
and 19 times higher, respectively, than under the neutral conditions. The results contribute to the
understanding of HM behavior in the two typical soils in southern China, exposed to frequent storms
that are often dominated by acid rainfall.
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1. Introduction

Anthropogenic activities (e.g., application of fertilizers, mining, and ore processing) often result in
the contamination of heavy metals and metalloids (HM) in soils [1]. During rainfall, HMs are released
and transported from the upland contaminated soil to riverine systems, resulting in deterioration of
water quality, which is a major environmental problem worldwide [2,3]. Hence, understanding the
rainfall-derived release of HMs from the topsoil and its subsequent mobilization and transport are
essential not only for the sustainable management of contaminated areas, but also important for the
conservation of the surrounding water resources and ecosystems.

Heavy metals and metalloid transport in water is conventionally classified into dissolved-HM
and particulate-HM transport. The concentration of dissolved HMs is usually defined as HMs passing
through a 0.45-µm filter, and it is strongly influenced by the solubility of metal species under specific
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physicochemical conditions [4]. Dissolved HM species are generally limited compared with particulate
HM in natural systems. Extraction and leaching processes of dissolved and particulate HMs have
been the key objectives in previous studies on HM mobilization, and this information has been further
related to the bioaccessibility of dissolved HMs to various ecological issues in the environment and the
potential risks to groundwater contamination [4–7]. Eroded soils, particularly fine particles, increase
the potential for adsorption of contaminants during transport [8]. It is well documented that hydrologic
and hydraulic factors (e.g., the intensity of rainfall, raindrop energy, depth and rate of water flow, and
stream power) control the detachment, transport, and deposition of soil particles [9–13]. Therefore,
knowledge about soil erosion and transport processes indirectly aid in the understanding of soil-bound
HM transport processes. Researchers have attempted to analyze the effects of rainfall on HM transport
based on simulated-rainfall experiments [14,15]. In addition, these studies analyzed the grain-size in
soil samples, which was assumed to be a key factor controlling the physical and chemical transport of
HMs during flooding events. Generally, HM concentrations in eroded soils are higher than in parent
soils, because soil erosion is a highly size-selective process that enriches the detached HMs in finer
particles [16]. However, Huang et al. indicated that the enrichment of cadmium (Cd) in fine particles
was absent. Instead, Cd levels increased in the macroaggregates of eroded sediments [15]. In a study
focusing on the transport of mercury (Hg) and soil organic matter (SOM), Zheng et al. found that the
heavy fraction of SOM has a dominant influence on the enrichment and transport of Hg, whereas the
minerogenic clay-rich fraction exhibited a significant indirect influence [17]. These studies highlight
that further detailed analyses of the chemical properties in soil are warranted to explain HM behavior
during storm events. Although previous studies have shown that chemical properties in the soil
such as pH, soil organic matter, and HM species affect the solubility and mobility of HMs [18], it is
necessary to examine the effects of these properties on HM release from contaminated soils during
rainfall, and thereof, into the runoff. In addition, previous studies on HM release were either based on
leaching experiments [14,19] or in artificially polluted soils to understand the mobilization of HMs [15].
Review of current literature indicates that release of HMs from the soil matrix into runoff has not been
investigated sufficiently and very little is known about this complex process, which plays an important
role in the distribution of HMs in sedimentary environments.

Soil pollution by toxic HMs due to mining, especially cadmium (Cd), lead (Pb), and arsenic (As)
has become extremely problematic in China [20]. Acid rain has also been recognized as a serious
environmental problem in southern China [21]. The Dabaoshan mine in Guangdong Province is the
largest multi-metal mine in southern China which has been operating for several decades (Figure 1).
Acid mine drainage from the metal-sulfide ores and tailings ponds have caused severe acidification in
nearby soils and streams [22,23]. Furthermore, several areas with high concentrations of HMs (e.g., Pb,
Cd, Cu, Zn, and As) have been identified [24]. Recently, soil remediation has been implemented in
contaminated agricultural land where concerns persist about the uptake and bioconcentration of HMs
in crops grown in these polluted soils. There are two typical contrasting soil types in the contaminated
areas, namely red acid soil (equivalent to Ultisol) which has a low pH and abundant Fe oxides [25],
and the other is limestone-dominated alkaline soil. Using indoor simulated-rainfall experiments, the
present study investigated the release of multiple HMs from two soil samples with different properties
contaminated by the mining activities. The main objectives of this study were: (1) to characterize HM
release under simulated-rainfall experiments in two contaminated soil types with different chemical
properties, and (2) to identify the effects of various soil properties on HM release from the soil matrix
during acid- and neutral-rainfall events. Investigations of the release of HMs from the two common
types of soil will be beneficial for understanding HM behavior and remediation strategies that can be
implemented in the contaminated soils.
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Figure 1. Locations of soil-sampling sites in Guangdong Province, southern China (the limestone-rich 
and red soils were collected from sites A and B, respectively). 

2. Materials and Methods  

2.1. Soil Samples for Experiments 

Soil samples were collected from two agricultural areas where mulberry was planted in the 
vicinity of mining/smelting locations (Figure 1). The limestone-rich soil (soil A) with a slightly high 
pH was collected from site A, located close to the mine site. The strongly acidic red soil sample was 
collected from site B near the river, located downstream from the mine site and contaminated by acid 
mine drainage (Table 1). Both sites were polluted due to irrigation [24]. Using a stainless-steel grab 
sampler, the soil samples were collected from the top 0‒20 cm layer at 10 different locations covering 
an area of ca. 200 m2 at each site. The samples were mixed and homogenized to represent the soil 
types at both sites. After returning to the laboratory, the samples were air-dried. Plant matter and 
large debris was removed from the air-dried soil samples, and later sieved through a 2-mm nylon 
filter, and stored in plastic containers prior to the experiments. Grain-size distribution in the soils was 

Figure 1. Locations of soil-sampling sites in Guangdong Province, southern China (the limestone-rich
and red soils were collected from sites A and B, respectively).

2. Materials and Methods

2.1. Soil Samples for Experiments

Soil samples were collected from two agricultural areas where mulberry was planted in the
vicinity of mining/smelting locations (Figure 1). The limestone-rich soil (soil A) with a slightly high
pH was collected from site A, located close to the mine site. The strongly acidic red soil sample was
collected from site B near the river, located downstream from the mine site and contaminated by acid
mine drainage (Table 1). Both sites were polluted due to irrigation [24]. Using a stainless-steel grab
sampler, the soil samples were collected from the top 0-20 cm layer at 10 different locations covering an
area of ca. 200 m2 at each site. The samples were mixed and homogenized to represent the soil types at
both sites. After returning to the laboratory, the samples were air-dried. Plant matter and large debris
was removed from the air-dried soil samples, and later sieved through a 2-mm nylon filter, and stored
in plastic containers prior to the experiments. Grain-size distribution in the soils was evaluated with a
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laser particle size analyzer (Mastersizer 2000, UK). The saturated hydraulic conductivities in soils (Ks)
were measured using the constant head method permeability test [26].

Table 1. Physical and chemical properties of experimental soils.

Soil
Type

Grain
Size Ks (m/s) TOC(mg/g) pH Cu(µg/g) Cd(µg/g) Pb(µg/g) Zn(µg/g) As(µg/g) Fe(mg/g)

Soil A 2:24:74 0.6 × 10−5 18.98 7.4 31.1(200) 2.80(0.60) 94.1(140) 333(250) 37.3(25.0) 27.8
Soil B 3:34:63 0.8 × 10−5 13.72 4.5 371(150) 0.39(0.30) 330(80) 269(200) 153(40.0) 56.0

Note: Grain size: %clay:silt:sand in a soil sample; Ks: saturated hydraulic conductivity; TOC: total organic carbon.
Values in parentheses are the safe limit for soil contamination in agricultural land (land use is classified other than
paddy fields and pH ≤ 5.5 for acid soil, pH > 7.5 for alkaline soil) [27]. Values in bold exceed the risk values. The
detection limitations were 0.02 µg/g for Cd, 0.2 µg/g for Cu and As, 2 µg/g for Zn, and 5 µg/g for Pb.

2.2. Rainfall Experiment

Simulated-rainfall experiments were conducted using an experimental system composed of a
water tank, peristaltic pump, rainmaker, and the soil column as shown in Figure 2. The polymethyl
methacrylate soil column had an interior diameter of 19 cm and a height of 8 cm with holes (d = 1 µm)
at the bottom to facilitate leaching. Clean and dry coarse sands (d > 2.5 µm) were first placed at the
bottom of the column to a height of approximately 2 cm. The soil sample was then stored in the column
(bulk density of ~1.2 g/cm3). There was no inclination in the packed soil column. When rainfall cannot
infiltrate quickly enough into the soil column, excess water on the surface flowing out of the column
was collected in the container (S1 Figure 2). The soil column was placed in another container with
a slope at the bottom to receive the leachate (L1). To prevent soil and water from splashing out of
the column, one more container was placed on top of the soil column. The rainmaker was fixed on a
stainless-steel shelf, 3 m above the soil column. The location of the soil column was adjusted to ensure
that rainfall was evenly distributed. Raindrops fell from stainless steel syringe needles with an internal
diameter of 0.34 mm. Different rainfall intensities were simulated by varying the delivery rate from
the pump to the water head. Prior to each experiment, water was pumped at a high rate through the
needles for certain time to clear any obstructions (e.g., air bubbles). A container was placed over the
soil box for estimating the rainfall intensity (= total volume of precipitation/area/time). The result was
used to manually adjust the delivery rate of the peristaltic pump to the desired intensity. The rainfall
intensity was checked for > 2 h at an interval of 10–30 min in order to ensure that the intensity was
stable. Once the rainfall intensity stabilized, the precipitation volume per second was assumed to
be same for the experiment. Set-up of the delivery rate was fixed to ensure a stable rainfall intensity
during the different experiments.

In previous studies, rainfall with high intensities e.g., 60 mm/h [28], 90 mm/h [17,29], and
100 mm/h [15] have been used during simulated rainfall experiments. The high rainfall intensity
ensures delivery of enough sediments for various analyses. In this study, the rainfall intensity was kept
constant at ≈ 90 mm/h for approximately 100 min. Approximately 4.2 L of water dripped from the
needles and percolated into the soil column. To prevent any chemical reactions deionized water (pH =

7) was used during the simulation experiments. Water samples were collected from the semi-circular
outlet using acid washed 100-mL centrifuge tube (S1), starting at 6 and 13 min after the simulated
rainfall commenced for soils A and B, respectively and surface runoff was observed. Water samples
were collected sequentially, and the times (3–5 min/sample) were recorded. The surface-runoff water
collected during the experiment was filtered using 0.45-mm glass filter paper. Two or three samples
were combined to obtain a sufficient amount of sediment for chemical extraction. The leachate was
also collected during the rainfall simulation experiment for geochemical analyses.
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Figure 2. Schematic of the simulated-rainfall experimental setup.

Because the two experimental soils were acid and alkaline soil types, two additional acid-rainfall
experiments were conducted to understand the effects of local acid rainfall on HM release during
the storm. The acid rain was produced by adjusting the pH of the deionized water to pH 4 with a
mixture of H2SO4, HCl, and HNO3 ([SO4

2−]/[Cl−]/[NO3−] = 6.1:1:0.7, molar ratio) [30]. The replication
of rainfall-runoff events is usually not the main consideration in rainfall-runoff studies [17]. Instead, as
suggested in previous studies, a typical way to improve the reliability of results is by maintaining a
time-series during the sampling procedure. The consistency reflected by the time-series sampling can
be an alternative to the consistency expected from replicating the experiment [17,31]. In the current
study, we followed a time-series sampling protocol with rainfall simulating different pH conditions.

2.3. Chemical Analysis

The pH of water and soil (in a 1:2.5 soil-to-water suspension) was measured with a calibrated
pH meter (IQ150, Scientific Instruments, USA). Following the standard procedure, the total organic
carbon (TOC) in the soil and collected sediment and dissolved organic carbon (DOC) in the water
samples were measured using a TOC analyzer (Shimadzu 5000A, Japan). The specific surface area
(SSA) of soils and sediments was determined by using an ASAP 2460 system (Micromeritics, USA).
A 0.5-g soil/sediment sample was digested with a HCl–HNO3–HF–HClO4 mixture. Inductively
coupled plasma–mass spectrometry was used to determine the HM concentrations in the water and in
the digested samples [32]. Soil samples were analyzed using a modified BCR sequential extraction
procedure to assess the association of HMs in different fractions of the soil [33]. The HM fractions were
divided into (i) exchangeable/acid-extractable fraction (F1), (ii) reducible fraction (F2), (iii) oxidizable
fraction (F3), and (iv) residual fraction (F4) [34]. For quality control, standard reference soil (GBW07406)
from the National Research Center for Certified Reference Materials in China was used for the recovery
test. The recovery for HMs ranged from 91.5% to 103% with a relative standard deviation of less than
7.2%. The detection limits of HM analysis are listed in Table 1.
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2.4. Data Analysis

The enrichment ratios (ERs) of different soil components were calculated during the
simulated-rainfall. Since multiple runoff samples were taken in sequence during each simulated-rainfall
event, ERs were calculated as [17]:

ER =
C′

C
(1)

where C denotes the concentration of the target compound (i.e., HM, TOC, and SSA) in the original
soil and C’ represents the concentration in the collected sample [17]. Thus, there were three types of
enrichment ratio, i.e., ERHM, ERTOC, and ERSSA.

Statistical and regression analyses of the experimental data were performed using the SPSS v.10.0
software (SPSS, USA) and Excel (Microsoft, USA) to establish the potential relationships between
controlling factors and HM released in the experiments. The correlation was performed using Pearson’s
correlation test. A t-test for two groups of samples was also used to compare their differences.

3. Results and Discussion

The physical and chemical properties including the concentration of HMs in the experimental
soils are presented in Table 1. The concentrations of Cu, Pb, and As in soil B, and mainly Cd in soil A
were several times higher than the screening values for Chinese risk assessment in soils with same pH
and land use (Table 1, [27]). Zinc concentration in both soils was comparable and slightly above the
designated safe level in Chinese soils. The collected total surface runoff volumes from soils A and
B were 2.87 and 2.37 L, respectively, and the total sediment masses collected were 9.10 and 5.00 g,
respectively (Figure 3). The relative lower soil hydraulic conductivity of soil A (Table 1) resulted in
less infiltration, and consequently more surface runoff and sediment yield during the experiments.
The collected runoff water and sediments in the acid-rainfall experiments were similar to those of the
neutral-rainfall experiments.
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Figure 3. Accumulative (a) runoff (mL), and (b) sediment (g) collected from soil A and soil B during
the simulated-rainfall experiments under acid (pH = 4) or neutral (pH = 7) rainfall.

3.1. Characterization of HMs Release from Soils under Neutral Rainfall

The concentrations of dissolved Zn, Cd, Cu, Pb, and As released from both soils throughout the
rainfall simulation are shown in Figure 4. Dissolved Zn had the highest concentration (6.16–19.3 µg/L;
Figure 4d), indicating that Zn had the highest solubility in the runoff experiment irrespective of the
soil pH. The lowest dissolved HM concentration was that of Cd (Figure 4b), possibly because of its
poor enrichment in both soil samples, which means there is a limited supply of Cd released from the
soils to water (Table 1). However, the differences in the dissolved concentrations of HM released from
soil A and soil B were inconsistent with the differences in the initial HM concentrations in each soil.
For example, Cd in soil A was approximately seven times higher than soil B, but Cd released from soil
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A was only 2–3 times higher than Cd levels in the runoff from soil B. This implies that the acidic red
soil facilitated the release of Cd into the runoff, although the mobile fractions (i.e., F1+F2+F3) were
lower in soil B (Figure 5). The dissolved Cu concentration in soil B was higher than soil A after 40 min
of simulated rainfall (Figure 4a). Conversely, the concentration of dissolved Pb in soil B was lower after
40 min of simulated rainfall (Figure 4c), although the initial concentrations of both Cu and Pb in soil A
were considerably lower than those in soil B (Table 1). It was evident that the higher enrichment of
Cu in soil B resulted in higher dissolved Cu in the runoff. The exchangeable/acid-extractable fraction
(F1) in soil B was more dominant than in soil A, and the reducible and oxidizable fractions (i.e., F2
and F3) in the two soils were comparable (Figure 5). However, the concentration of Pb in soil B was
approximately 3.5-times higher than soil A (Table 1). Thus, the differences of dissolved Pb in the runoff

(Figure 4c) may be a result of other factors, such as TOC, which could affect its distribution.

Water 2019, 11, x FOR PEER REVIEW 7 of 16 

7 
 

For example, Cd in soil A was approximately seven times higher than soil B, but Cd released from 
soil A was only 2‒3 times higher than Cd levels in the runoff from soil B. This implies that the acidic 
red soil facilitated the release of Cd into the runoff, although the mobile fractions (i.e., F1+F2+F3) were 
lower in soil B (Figure 5). The dissolved Cu concentration in soil B was higher than soil A after 40 
min of simulated rainfall (Figure 4a). Conversely, the concentration of dissolved Pb in soil B was 
lower after 40 min of simulated rainfall (Figure 4c), although the initial concentrations of both Cu and 
Pb in soil A were considerably lower than those in soil B (Table 1). It was evident that the higher 
enrichment of Cu in soil B resulted in higher dissolved Cu in the runoff. The exchangeable/acid-
extractable fraction (F1) in soil B was more dominant than in soil A, and the reducible and oxidizable 
fractions (i.e., F2 and F3) in the two soils were comparable (Figure 5). However, the concentration of 
Pb in soil B was approximately 3.5-times higher than soil A (Table 1). Thus, the differences of 
dissolved Pb in the runoff (Figure 4c) may be a result of other factors, such as TOC, which could affect 
its distribution.  

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 4. Concentrations of dissolved: (a) Zn; (b) Cd; (c) Cu; (d) Pb; and (e) As from soil A and soil B 
during the simulated-rainfall. (The red dash lines represent HM level in water classified as Class V in 
the Surface Water Environmental Standards in China (GB3838-2002)). 

0

5

10

15

20

25

0 20 40 60 80 100 120

C
on

c.
 (μ

g/
L)

Rainfall duration (min)

Zn
Soil A
Soil B

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100 120

C
on

c.
 (μ

g/
L)

Rainfall duration  (min)

Cd Soil A
Soil B

0

5

10

15

0 20 40 60 80 100 120

C
on

c.
 (μ

g/
L)

Rainfall duration   (min)

Cu
Soil A
Soil B

0

0.2

0.4

0.6

0.8

0 20 40 60 80 100 120

C
on

c.
 (μ

g/
L)

Rainfall duration  (min)

Pb
Soil A
Soil B

0

1

2

3

4

0 20 40 60 80 100 120

C
on

c.
 (μ

g/
L)

Rainfall duration  (min)

As Soil A
Soil B

Figure 4. Concentrations of dissolved: (a) Zn; (b) Cd; (c) Cu; (d) Pb; and (e) As from soil A and soil B
during the simulated-rainfall. (The red dash lines represent HM level in water classified as Class V in
the Surface Water Environmental Standards in China (GB3838-2002)).



Water 2019, 11, 1339 8 of 16
Water 2019, 11, x FOR PEER REVIEW 8 of 16 

8 
 

 
Figure 5. Fractions of Cd, Cu, and Pb in soil A and soil B; F1 = exchangeable acid-extractable fraction, 
F2 = reducible fraction, F3 = oxidizable fraction, and F4 = residual fraction. 

The solubility of As increases with pH [35], which may explain the higher As concentration 
released from the limestone-dominated soil A than from the more acidic soil B (Figure 4e). Overall, a 
decreasing trend in the dissolved HM concentrations was observed during the rainfall (Figure 4a–e) 
although there were some outliers, possibly due to the experimental uncertainty. This is however 
consistent with the “first flush” phenomenon, which is an episodic discharge of acidic metal-rich 
fluids caused by the quick dissolution and flushing of soluble salts built up on the surface of mine 
wastes and soils when the first major rainfall occurs [36]. At the beginning of the experiment, HM 
concentrations from soil A were higher in all cases than those from soil B, implying that soil 
properties in the limestone-dominated soil B had a greater effect on HM concentrations during the 
“first flush.”  

With the exception of Zn, the HM concentrations in soils A and B differed considerably (Table 
1), resulting in large differences in the concentrations of particulate HMs in sediments during the 
experiment (Figure 6). The enrichment ratios of HMs (ERHM) were in the range of 1.21‒2.44, as shown 
in Figure 7. The average ERHM values were 1.64 and 1.63 for HMs derived from soils A and B, 
respectively. Although the HM concentrations in the soils varied, the difference in HM enrichment 
ratios was not significant (t-test, p > 0.05). The HM concentrations in the soils decreased slightly at 
the beginning of the experiments and fluctuated thereafter (Figure 7). However, the decreases in the 
HM concentrations in this study differed from observations in other rainfall experiments (e.g., 
[17,31]) in which the HM concentrations in the first sample were reported to be the highest. This may 
be a result of combining several samples in the present study, whereby the peak concentration of the 
initial sample was averaged. This trend was more obvious in soil B, for which the first measurement 
was obtained 15 min after the runoff was observed (Figure 3); less runoff and particulate matter was 
produced by this sample.  

  

(a) (b) 

0
100
200
300
400
500
600

0
100
200
300
400
500
600
700

0 20 40 60 80 100 120

So
il 

B 
C

on
c.

 (μ
g/

g)

So
il 

A
 C

on
c.

 (m
g/

g)

Rainfall duration (min)

Zn

Soil A
Soil B

0.0

0.2

0.4

0.6

0.8

1.0

0

1

2

3

4

5

6

0 20 40 60 80 100 120

So
il 

B 
C

on
c.

(μ
g/

g)

So
il 

A
 C

on
c.

 (μ
g/

g)

Rainfall duration (min)

Cd

Soil A
Soil B
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F2 = reducible fraction, F3 = oxidizable fraction, and F4 = residual fraction.

The solubility of As increases with pH [35], which may explain the higher As concentration
released from the limestone-dominated soil A than from the more acidic soil B (Figure 4e). Overall, a
decreasing trend in the dissolved HM concentrations was observed during the rainfall (Figure 4a–e)
although there were some outliers, possibly due to the experimental uncertainty. This is however
consistent with the “first flush” phenomenon, which is an episodic discharge of acidic metal-rich
fluids caused by the quick dissolution and flushing of soluble salts built up on the surface of mine
wastes and soils when the first major rainfall occurs [36]. At the beginning of the experiment, HM
concentrations from soil A were higher in all cases than those from soil B, implying that soil properties
in the limestone-dominated soil B had a greater effect on HM concentrations during the “first flush.”

With the exception of Zn, the HM concentrations in soils A and B differed considerably (Table 1),
resulting in large differences in the concentrations of particulate HMs in sediments during the
experiment (Figure 6). The enrichment ratios of HMs (ERHM) were in the range of 1.21-2.44, as shown
in Figure 7. The average ERHM values were 1.64 and 1.63 for HMs derived from soils A and B,
respectively. Although the HM concentrations in the soils varied, the difference in HM enrichment
ratios was not significant (t-test, p > 0.05). The HM concentrations in the soils decreased slightly at
the beginning of the experiments and fluctuated thereafter (Figure 7). However, the decreases in the
HM concentrations in this study differed from observations in other rainfall experiments (e.g., [17,31])
in which the HM concentrations in the first sample were reported to be the highest. This may be
a result of combining several samples in the present study, whereby the peak concentration of the
initial sample was averaged. This trend was more obvious in soil B, for which the first measurement
was obtained 15 min after the runoff was observed (Figure 3); less runoff and particulate matter was
produced by this sample.
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3.2. Impact of Soil Chemical Properties

Chemical properties such as pH, organic matter content, and total metal burden in the soils affect
the partitioning coefficients (Kd) in metals. Kd is defined as the total contaminant bound to the soil
particles relative to that found in the soil solution [37,38]. In the present study, pH was relatively stable
(± 0.1) throughout the experiment. Thus, pH was not a decisive factor that affected the release of HMs
during the simulated-rainfall event.

The dissolved organic carbon (DOC) in the runoff decreased exponentially with rainfall, possibly
resulting in the first flush of dissolved HMs during the experiments. A strong correlation between
DOC and dissolved HMs was observed in soil A (p < 0.05). However, in soil B (which had less organic
matter content; Table 1), DOC correlated strongly only with dissolved Cu and Cd (Table S1). Dissolved
organic matter forms strong complexes with HMs including competition for available adsorption
sites, formation of aqueous complexes, and/or changes in the redox potential of surface sites [39–41].
However, these factors can vary for different HMs and soil types. Hence, further studies should focus
on factors which control the release of dissolved Zn, Pb, and As from the acidic red soils. Although
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there was a slight temporal variation in particulate HM concentrations during the runoff (Figure 6),
dissolved HM concentrations were probably unaffected because the correlation coefficients were low
(Table S1). The enrichment ratio of TOC (ERTOC) of the sediments from soil A in the runoff was a useful
variable for predicting ERHM (excluding the outliers with the highest ERTOC and low ERHM) as shown
in Figure 8 (R2

≥ 0.89). Unlike ERTOC, the correlation between ERSSA and ERHM was relatively weak
(0.73 ≥ R2

≥ 0.25).
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Based on the equations listed in Table S2, ERHM values in the runoff in soil A can be estimated via
the two dependent variables (i.e., ERTOC and ERSSA). In contrast, the results for soil B were inconclusive
(R2
≤ 0.55), implying that more complicated factors affected the HM release during rainfall, and

further studies are recommended to ascertain these relationships. Red soils in south China feature
an abundance of Fe and Al oxides [21], and transformations in Fe-bearing minerals can significantly
affect the mobility of Cd in soils [42]. The HMs released from soil B can, therefore, be attributed to the
high Fe levels in red soil (soil B), which was twice the concentration in the limestone-dominated soil A
(Table 1).

The total metal content in the soil samples resulted in differences in HM concentrations in
the particulate fraction in the runoff from soils A and B (Figure 6). The value of logKd during
the experiments, which were mainly determined by ERHM in the experimental soils (Table 2), are
comparable with those reported in previous studies [37,43]. The high logKd values indicated that
particulate HMs were dominant in HM released during rainfall. The results of accumulative mass
indicated that >90% of HMs were released from the soil in particulate form during both experiments.

Table 2. Average value of heavy metal and metalloid (HM) partition coefficients (logKd; L/Kg). The
standard deviations are listed in the parentheses.

Soil Type Cu Cd Pb Zn As

Soil A 3.87 (0.21) 4.55 (0.09) 5.47 (0.07) 4.72 (0.15) 4.36 (0.04)
Soil B 4.86 (0.06) 3.99 (0.08) 6.26 (0.15) 4.63 (0.03) 5.15 (0.05)

3.3. Effect of Acid Rainfall on Heavy Metal and Metalloid Release from Soil

The pH buffering capacity in soils is an intrinsic property that quantifies the ability of a soil to resist
pH changes [44]. Following acid rainfall, it has been reported that the pH of leachate could increase
because of the soil buffering capacity [45,46]. In this study, we found that the pH values of the leachate
were 7.1 and 6.7 for soils A and B, respectively, after the acid-rainfall (pH = 4) event. This implied that
both these soil types could absorb/complex H+ and increase the pH, and thereby neutralize some of
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the effects of acid rainfall. Furthermore, the pH of the surface runoff in these experiments with soil A
were in the range of 6.7–7.2 and 5.9–6.3, respectively, under the neutral and acid-rainfall conditions. In
contrast, the pH of surface runoff in the experiments with soil B was in the range of 6.7–7.1 and 4.2–4.7,
respectively. These results indicate that the limestone-dominated soil (soil A; pH = 7.4) had a high
buffering capacity that was sufficient to offset the effects of acid rain on the runoff acidity. However,
such a buffering capacity was less in the red soil (soil B; pH = 4.5). Consequently, the Kd values of HMs
in runoff from the experiment using soil B was more sensitive than the experiment using soil A by
comparing the experiments using neutral and acid-rainfall events (Figure 9).
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Figure 9. Comparison of heavy metal and metalloid (HM) partition coefficient (log Kd) calculated for
soil A and soil B under neutral (pH = 7) and acid (pH = 4) rainfall conditions.

Previous leaching studies found that acid rain may break down the red soil aggregates and
decrease soil infiltration [47,48], resulting in the release of HMs. In this study, however, the effect
of acid rain on the runoff and sediment yield was negligible (Figure 3). Only a slight increase in
particulate HM concentrations was observed after acid-rainfall (Figure 10). However, the dissolved
HMs released from soil A and soil B varied significantly (Figure 11). The buffering effect in soil A
resulted in a slight increase in dissolved HM concentrations. In contrast, with the exception of As,
HM concentrations released in the runoff increased considerably for soil B because of the substantial
decrease in pH from 6.7–7.1 to 4.2–4.7.
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Figure 10. Comparison of concentrations of particulate heavy metals and metalloids (HMs) from soil A
and soil B under the neutral (pH = 7) and acid (pH= 4) rainfall conditions.

It is well known that metals such as Cd, Pb, Cu, and Zn become more soluble under acidic
conditions [49,50]. Sukreeyapongse et al. reported that with the decrease in pH, a pronounced increase
in release rates was observed in the order of Cd > Pb > Cu [51]. In the present study, the concentrations
of dissolved Pb, Zn, Cd, and Cu from soil B under the acid-rainfall condition were 60, 29, 25, and
19 times higher, respectively, than those under neutral conditions. It has been established that Pb has a
high affinity for iron-oxides [52]. In this study, the Fe-Mn oxide fraction (F2) for Pb (37%) in the acidic
red soil (soil B) was readily released under low-pH conditions. Consistent with this trend, Cd in the
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F2 fraction was low (11%). Moreover, it was reported that the effect of acidification on leaching of
Zn was more significant than for Cu, and the release of Zn commenced when pH was <6.0 [53]. The
solubility of Zn and Cu increased exponentially at pH values of 4.5–3.8 and 6.5–6.2, respectively [19].
Thus, in this study, the solubility of Zn increased much more than Cu at pH 4.2–4.7.
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Figure 11. Comparison of concentrations of dissolved heavy metals and metalloids (HMs) under
neutral (pH = 7) and acid (pH = 4) rainfall conditions.

3.4. Potential Implications

The study sites located in southeast China are subjected to a sub-tropical monsoon climate. Heavy
rainstorms as typhoons occur very frequently from April to September. According to the measurements
taken during the period 2009–2015 at the long-term ecological observatory in Mt. Nanling which is not
far from this study area, the recorded maximum 15-min rainfall can be up to 24 mm. During such heavy
precipitation events, concentrations of all dissolved HMs in the runoff in the present study were higher
than the levels of the most polluted water (i.e., Class V) according to the Surface Water Environmental
Standards in China (GB3838-2002) [54] as shown in Figure 4. Although the simulated runoff is not
completely representative of real conditions, the outcomes highlight the urgency to be aware of the
potential environmental risks of HM release from contaminated soils during such short episodic
high-impact events. The results of the experiments suggest that different remediation strategies are
needed for treating the contaminated soils. For example, decrease in DOC following the application
of a coagulant for DOC can decrease the phytoavailablity of HM concentrations because the humic
and fulvic acids in DOC are very active in binding ions, organic molecules, and solid surfaces [55].
However, in the present experiments, the correlation coefficients of DOC and dissolved HMs released
from the red soil were low, suggesting that the efficiency of DOC coagulant on soil remediation
might be different for soils A and B. Water-derived soil erosion dominated HM release from the
contaminated soils in the present rainfall-simulation experiment, implying that further investigations
about particulate contaminant transport combined with the chemical and physical properties of soil are
vital. The limitation of this laboratory experiment with disturbed soils cannot provide a comprehensive
picture about the release and transport of HMs. Nevertheless, field observations coupled to model
simulations help to identify the critical areas prone to intense soil erosion and likely occurrences of
‘hot spots’ for HM contamination [13]. Hence, further investigations will be a good way to understand
the environmental problems about HMs release and transport from contaminated soil types around
mining areas.
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4. Conclusions

The release of HMs from two soil types with different chemical properties under simulated-rainfall
was investigated in this study. A comparison of the HM concentrations in the two experimental
soils and its runoff exhibited significant differences between them. The two soils exhibited various
concentrations of dissolved and particulate HMs in the runoff. Differences in the concentrations of
dissolved forms of HMs released from the two soils in the runoff were inconsistent with differences in
the HM concentrations in soils. Although the HM concentrations in both soils varied, the differences in
ERHM in the soils were not statistically significant. The average ERHM values of the experiments with
the two soils were approximately 1.63. The “first flush” of dissolved HMs occurred for both soils at
the beginning of the simulated-rainfall. The HM concentrations in the soils decreased slightly at the
beginning of the experiments and then fluctuated for the remaining period. Significant correlations
were found between DOC and dissolved HMs, as well as between the TOC and particulate HMs,
especially in the experiments using soil A (R2

≥ 0.53). Thus, the organic matter content in soils could
possibly be a useful variable to predict HM release. Acid-rainfall experiments showed that soil A
(limestone-dominated soil) could offset the effects of acid water on the runoff acidity. However, no
buffering effect was observed for soil B (red soil). Consequently, with the exception of As, HMs released
in the runoff increased substantially for soil B. For soil B, the concentrations of dissolved Pb, Zn, Cd,
and Cu under the acid-rainfall conditions were, respectively, 60, 29, 25 and 19 times higher than those
under neutral conditions. These results provide valuable information that aids our understanding of
HM behavior and release from two typical soil types in southern China, impacted by mining, frequent
heavy storms, and acid rainfall.
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