
water

Article

Algal Morphological Identification in Watersheds for
Drinking Water Supply Using Neural Architecture
Search for Convolutional Neural Network

Jungsu Park 1, Hyunho Lee 2, Cheol Young Park 3 , Samiul Hasan 4 and Tae-Young Heo 5

and Woo Hyoung Lee 4,*
1 Water Quality & Safety Research Center, Korea Water Resources Corporation, 200 Sintanjin-Ro, Daedeok-Gu,

Daejeon 34350, Korea
2 Water Data Collection and Analysis Department, Korea Water Resources Corporation, 200 Sintanjin-Ro,

Daedeok-Gu, Daejeon 34350, Korea
3 The C4I & Cyber Center, George Mason University, MS 4B5, Fairfax, VA 22030, USA
4 Department of Civil, Environmental and Construction Engineering, University of Central Florida,

12800 Pegasus Dr., Suite 211, Orlando, FL 32816-2450, USA
5 Department of Information & Statistics, Chungbuk National University, Chungdae-Ro 1, SeoWon-Gu,

Cheongju, Chungbuk 28644, Korea
* Correspondence: woohyoung.lee@ucf.edu; Tel.: +1-407-823-5304

Received: 25 May 2019; Accepted: 24 June 2019; Published: 28 June 2019
����������
�������

Abstract: An excessive increase in algae often has various undesirable effects on drinking water
supply systems, thus proper management is necessary. Algal monitoring and classification is one of
the fundamental steps in the management of algal blooms. Conventional microscopic methods
have been most widely used for algal classification, but such approaches are time-consuming
and labor-intensive. Thus, the development of alternative methods for rapid, but reliable algal
classification is essential where an advanced machine learning technique, known as deep learning, is
considered to provide a possible approach for rapid algal classification. In recent years, one of the
deep learning techniques, namely the convolutional neural network (CNN), has been increasingly
used for image classification in various fields, including algal classification. However, previous
studies on algal classification have used CNNs that were arbitrarily chosen, and did not explore
possible CNNs fitting algal image data. In this paper, neural architecture search (NAS), an automatic
approach for the design of artificial neural networks (ANN), is used to find a best CNN model for
the classification of eight algal genera in watersheds experiencing algal blooms, including three
cyanobacteria (Microcystis sp., Oscillatoria sp., and Anabaena sp.), three diatoms (Fragilaria sp., Synedra
sp., and two green algae (Staurastrum sp. and Pediastrum sp.). The developed CNN model effectively
classified the algal genus with an F1-score of 0.95 for the eight genera. The results indicate that the
CNN models developed from NAS can outperform conventional CNN development approaches,
and would be an effective tool for rapid operational responses to algal bloom events. In addition, we
introduce a generic framework that provides a guideline for the development of the machine learning
models for algal image analysis. Finally, we present the experimental results from the real-world
environments using the framework and NAS.
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1. Introduction

The overgrowth of algae, known as algal blooms, has been a continuous global issue in the
management of freshwater systems for several decades. It is affected by various physical factors
(e.g., temperature and sunlight) [1–4] and other natural or anthropogenic factors (e.g., nutrient input,
seasonal changes in water flow, and climate change) [5–7]. Particularly, the excessive growth of
harmful algal species, such as cyanobacteria (e.g., Microcystis sp. and Oscillatoria sp.), often causes
undesirable effects on drinking water quality due to algal toxins and an unfavorable odor or taste,
while overgrowth of diatoms such as Synedra sp. causes clogging of filtration systems in drinking water
utilities [3,8–10]. Various physical, chemical, and biological methods (e.g., algaecides, nano-materials
such as TiO2, barley straw, and ultrasonication) [11–14] and the reduction of nutrients in water bodies
by utilizing a wetland or a natural predator of algae, such as Daphnia, [15] have proven effective for
the control of algal blooms. While the control and mitigation of algal blooms in freshwater systems is
important for safe drinking water supply, proper monitoring of the occurrence and physiological status
of the algal bloom is imperative for developing effective water resource management strategies [16].
Aerial monitoring from multi-spectral or hyper-spectral images obtained from aircrafts, drones or
satellites is known to provide an effective approach for identifying algal bloom events over a wide
area [17–19]. However, direct and continuous monitoring is essential for rapid and effective operational
responses in water management districts and utilities for processing drinking water against undesired
algal bloom events. Although visual investigation using a microscope is one of the most conventional
and widely accepted methods for algal species identification, this method is time-consuming and
requires considerable labor. Furthermore, the results may be subjective and can be affected by an
experimenter’s proficiency. Thus, the development of a novel technique is urgent for a rapid and
un-biased identification of algal status in bloom events.

A digital imaging flow cytometer and microscope (FlowCAM) is a representative technique that
has previously been widely used for the identification and classification of zooplankton [20], and
its use has been extended to other microbiological classification, including phytoplankton [21–23].
Generally, FlowCAM identifies the morphological characteristics of algal cells and classifies algae
based on measured morphological parameters, such as the shape, length, width, and area [22,24].
However, there exist many poorly characterized algal species that remain taxonomically ill-defined
or conceptually debated [25] and more efficient observation techniques using relatively bigger data
are required for effective monitoring of algal blooms in natural systems. Recently, various machine
learning techniques (e.g., artificial neural networks, support vector machine, and random forest) have
been applied extensively in data management of water resources for the analysis and prediction of
water quality or water flow in freshwater systems [26–31]. More recently, deep learning has been
considered as one of the most promising machine learning techniques for image identification and
analysis [32–34]. Particularly, the convolutional neural network (CNN) is one of the deep neural
networks that has been widely applied in image identification and analysis due to its ability to extract
and represent high-level abstractions in data sets [33,35–37].

For algae image classification, only a few studies were reported in monitoring of algal blooms
using CNNs [25,33,38]. For example, Medina et al. [33] applied CNN for algal detection in underwater
pipelines which accumulate sand and algae on their surface, hiding damages. They used two classes of
algae and non-algae (e.g., sand) and classified the non-algae group with more than 99% accuracy. More
recently, Lakshmi and Sivakumar [38] used a CNN model for the classification of Chlorella with 91.82%
accuracy. However, the study used CNN architectures that were arbitrarily chosen by researcher’s
experience, and did not explore possible CNN architectures which may better fit algal image data.

In this paper, a neural architecture search (NAS), an automatic approach for the design of artificial
neural networks (ANN), is used to automatically examine possible CNN architectures and yield a
more accurate CNN architecture for algal classification. Ordinary machine learning of ANN is a
technique to find weight parameters that fit data, whereas NAS is a technique to find best structural
elements (e.g., convolution layer and pooling layer) of ANN. A diverse set of solutions have been
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developed for NAS [39–41]. A recent review paper introduces various techniques for NAS [42].
Such techniques include grid search, random search, evolutionary algorithms, reinforcement learning,
and Bayesian optimization. Grid search explores the best parameters among parameter spaces that
were manually selected at regular intervals or grids, whereas random search uses random selection for
the parameter spaces. Evolutionary algorithms [43] are widely used for any optimization problems
to find a best solution. For ANN, comprehensive research [44–47] of NAS using the evolutionary
algorithms have been conducted. Another adaptable method, reinforcement learning [48], has recently
taken over from the evolutionary algorithms. Zoph and Le [39] used a controller that constructs
candidate architectures of ANN and is updated according to the performance score (e.g., accuracy
(see Equation (3) in Section 3.3)) of the previously selected candidate architectures. The controller is
another machine learning model in the framework of the reinforcement learning approaches. Zoph
and Le [39] used recurrent neural networks [49] as the controller model to estimate the candidate
architectures. Baker et al. [50] applied reinforcement learning to CNN models for image classification.
One of the most popular approaches for parameter optimization under unknown functions is Bayesian
optimization. Recently, Jin et al. [41] introduced NAS for CNN models using Bayesian optimization.
In this paper, we use the Bayesian optimization based NAS from Jin et al. [41] and introduce it in
Section 2.3.

Along with this NAS approach, we introduce a framework which contains three steps (acquisition,
preprocessing, and analysis) in order to support the algae image classification based on NAS.
In addition, we conduct an experiment in the real-world environment to evaluate the proposed method
in this paper. First, several tens of thousands of algal images are collected using FlowCAM from
various natural water bodies that store run-off during the summer flooding season and provide water
supply for domestic, agricultural, and industrial purposes [51]. Then, a CNN model is constructed
by NAS and is used to identify eight major algal genera including Microcystis sp., and Oscillatoria sp.
found in harmful algal blooms (HABs) events in the major rivers in South Korea. The applicability
of the model is verified from two model simulation (experiment) scenarios; (1) using original images
only, (2) using augmented images by rotation or mirroring for training and validation. For testing the
developed model, original images are used.

In this paper, our contributions are threefold: (i) introducing the neural architecture search
approach for algal classification, (ii) suggesting the algal image analysis framework using of machine
learning, and (iii) presenting the experimental results from the real-world environments.

2. Background

2.1. CNN Model

A CNN model is composed of input, hidden, and output layers, where the hidden layers
are composited with convolution, pooling, and fully-connected layers [33,37,52,53]. Theoretical
backgrounds and detailed information regarding CNN can be found elsewhere [36–38]. In general, the
deep learning for CNN consists of two processes: feature extraction and classification (Figure 1).

Figure 1. An illustrative example of a convolutional neural network (CNN) architecture.

In the feature extraction process, the image data is represented as a matrix consisting of M ×
N, and the image characteristics (or features) are extracted in the convolution and pooling layers
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(Figure 2). CNN is characterized by the convolution layer, which performs as a filter sliding over the
image data and produces filtered data. The convolution layer contains various types of filters (e.g.,
a vertical edge filter and a horizontal edge filter), which filter out features from the image data. Then,
the features are taken as the outputs of the convolution layer. For example, in Figure 2a, the input
image data in the matrix form of 7× 7 is filtered out using a 3× 3 matrix filter. The filter slides over
the input data as shown in Figure 2a and an output value in the output matrix is mapped by the
Hadamard product (or the entrywise product) [54], followed by adding up the results to obtain the
output value. Equation (1) shows an illustrative convolution mapping.

O[u, v] =
M−1

∑
m=0

N−1

∑
n=0

I[u + m, v + n]F[m, n], (1)

where, (1) O, I, and F are the matrices output, input, and filter, respectively, (2) u and v denote the row
and column index of O, (3) m and n denote the row and column index of F, and (4) M and N denote the
number of rows and columns of F, respectively. After the convolution process, the filtered data can be
computed by an activation function to apply the non-linearity, so that the model can reflect non-linear
aspects of the data. The outputs from the convolution layer can be inputs to a pooling layer. In the pooling
layer, the size of an input is reduced by a pooling rule (e.g., max and average), so that the time of machine
learning can be reduced and significant features can be detected among noise (i.e., to develop more robust
model). The pooling rule is a simple function that maps a portion of the input data to a value of the
output data. For example, a max pooling rule maps from a set of input data {[3, 2], [2, 1, 7]} to a set of
output data {[3], [7]}. Figure 2b shows an illustrative example of the max pooling rule in CNN. In Step 1,
the max value of seven is selected and mapped to the output matrix. A pair of convolution and pooling
processes is repeated several times in the CNN model. Illustrative examples of image outputs in the
feature extraction process using microscopic algal images are shown in Figure 3. An overfitting problem
often occurs when a trained CNN model fits training data but not test data. A dropout process is then
applied to avoid the overfitting problem, in which nodes or units in the network are randomly dropped
and trained, so that the trained model can be more generalized [55].

Figure 2. A schematic of convolution and pooling processes in CNN: (a) convolution process and (b)
max pooling process.
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In the classification process, the fully-connected layer is a multi-layer neural network [56] in
which all input nodes are connected to all hidden nodes, and the hidden nodes are connected to all
output nodes. The output nodes in the fully-connected layers are used to represent classification
results (e.g., 85% probability of Microcystis sp. and 15% probability of Fragilaria sp.)

Figure 3. Examples of image outputs in the feature extraction process.

2.2. CNN Architecture for Algal Image Classification

In this subsection, an illustrative example of a CNN architecture for algal image classification is
introduced. Note that the example CNN architecture will be used in Section 3 as the name of Manual
Model 1. The CNN architecture is composed of four pairs of convolution-pooling layers. The first
convolution layer filters the input image with a 150× 150 pixel size using 32 filters, and the number of
filters in the second, third, and fourth convolution layers are 64, 128, and 128, respectively. The filter
sizes are the same for the four convolution layers, as 3× 3, and a rectified linear unit activation function,
ReLU (Equation (2)), is applied, which overcomes the vanishing gradient problem in conventional
artificial neural network and allows faster machine learning [57].

f (x) =

{
0 x < 0

x x ≥ 0
(2)

The overall schematic diagram of the CNN architecture is illustrated in Figure 4. The strides
(specifying the strides of the convolution along the vertical and horizontal direction at each calculation
step) in the convolution layer are defined as 1× 1; thus, the model computes the input data by sliding
one step aside at a time horizontally and vertically, as indicated in the diagram in Figure 2a. In each
pooling layer, the spatial dimension of input image was reduced by a 2× 2 filter. After the feature
extraction process, the dropout with the probability of 50% is applied to avoid overfitting. The number
of nodes (input pixel size) for the classification layer is 6272 (7× 7× 128) and the final output size is
five, as the model is developed for eight different algal genera. The classification is processed by a
softmax function, a normalized exponential function which reports each output in the range between 0
and 1, and all the output is added up to one [58].
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Figure 4. A schematic of a CNN architecture (manual model 1) used in Section 3.

2.3. Bayesian Optimization Based Neural Architecture Search

Bayesian optimization based Neural Architecture Search (BO-NAS) is a Neural Architecture
Search that automatically searches the best architecture of artificial neural networks (ANN) using
Bayesian optimization. Bayesian optimization can be used to estimate a black box function, F, in which
its expressions and derivatives are unknown. To do that, Bayesian optimization uses two processes: (1)
Exploitation and (2) Exploration. Exploitation is a process for modeling an objective function (i.e., the
probable black box function) and Exploration is a process for deciding the next investigating point.

In the assumption of the multivariate Gaussian distribution for the black box function, Gaussian
process (GP) can be applied in the Exploitation process. Equation (3) shows the Gaussian process [59].

P(F(x)|D, x) = N(µ(x), σ2(x)), (3)

where D denotes observed data {x1:n, F(x1:n)}, x denotes an independent value for F(.), µ(.) denotes
a mean function of x, and σ2(.) denotes a variance function of x. These µ(.) and σ2(.) are shown in
Equations (4) and (5), respectively.

µ(x) = kTK−1F(x1:n) (4)

and

σ2(x) = k(x, x)− kTK−1k, (5)

where k = [k(x, x1), k(x, x2), ..., k(x, xn)] denotes a set of kernel functions k(., .) and K denotes a kernel
matrix as shown in Equation (6).

K =

k(x1, x1) ... k(x1, xn)

... ... ...
k(xn, x1) ... k(xn, xn)

 (6)

In GP, the kernel function performs the important role of representing the black box function [59]. For
the GP model, BO-NAS from [41] introduces a specialized kernel function in Equation (7).

k(Na, Nb) = e −ρ2(d(Na ,Nb)), (7)

where function d(., .) denotes the distance of two neural networks Na and Nb, and ρ denotes a mapping
function between the distance in the original metric space and the distance in the new space [41].

The process of BO-NAS consists of three iterative steps (Update, Generate, and Observe) as
shown in Figure 5. In the beginning, default ANN architectures are given to the process. The ANN
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architectures are trained and validated using training and validation data, respectively. In the step
Update, the architectures and the accuracy scores from the validation are used to construct a Gaussian
process model (Equation (3)), the generalization of the Gaussian probability distribution [59]. In the
step Generate, using the Gaussian process model, potential architectures with its estimated score are
generated and an ANN architecture with the highest estimated-score is chosen. Then, the best ANN
architecture is trained and validated in the step Observe. These three steps continue until a predefined
running time (e.g., 2 h). After this, the best ANN architecture in the history of the ANN architectures
is selected as a final output.

Figure 5. Illustrative Example of Bayesian Optimization Process for NAS.

3. Framework of Machine Learning Analysis for Algae Images

Developing classification models (e.g., CNN models) can be greatly facilitated by the use of a
generic framework, which provides a guideline for the development of the classification models and
especially focuses on analysis of algal images. In this section, we introduce a framework of machine
learning analysis for algal images (Figure 6). The framework consists of three main processes: (1)
acquisition, (2) preprocessing, and (3) analysis. The inputs of the framework are the water collecting
sites (e.g., the stream or reservoir), and the outputs of the framework are the evaluated results from
the algal image analysis.

Figure 6. Framework of machine learning analysis for algae image.

3.1. Acquisition

The acquisition step defines water collection sites and performs the collection of water samples.
In this step, one should define purposes of the algal image analysis (e.g., algal image classification,
harmful algae detection, and algal quantity analysis). Then, one should select major places where
the target algae inhabit. This step outputs water samples by means of water collection techniques
(e.g., [60,61]).

3.2. Preprocessing

The preprocessing step aims at generating proper image data for analysis (i.e., machine learning
and prediction) in the next step. The water samples from the acquisition step are captured as image
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data. Then, the image data are segmented according to the purpose of analysis. These sub-steps
can be automated by using FlowCAM, which includes image capturing and segmentation capability.
The preprocessing step contains image transformation (e.g., augmentation). Image data augmentation
is the process of generating more data from the original data. In deep learning, a large dataset is crucial
for model generalization, fitting well on unseen data. For image data augmentation, it is possible to
apply several data transformation techniques (e.g., mirroring, rotating, scaling, and adding noise) to
the original data.

3.3. Analysis

The analysis step consists of three sub-steps: (1) perform machine learning, (2) perform prediction,
and (3) evaluate prediction results. In the sub-step “perform machine learning”, machine learning
models (e.g., random forests [62], Gaussian naive Bayes [63], and support vector machine [64]) are
developed. Note that in this paper, we focus on the CNN model, a state-of-the-art deep learning model
for image classification. To measure the performance of such analysis models, performance metrics are
required. We introduce some performance metrics for classification.

As a classification performance metrics, the accuracy Acc of Equation (3), the sum of correct
classification divided by the total number of classifications, can be used.

Acc =
The number o f correct classi f ication
The total number o f classi f ication

=
∑N

i=1 xij

∑N
i=1 ∑N

j=1 xij
, (8)

where N denotes the number of class and xij denotes the total number of the case in which values of
i-th prediction and j-th observation are identical. Except the accuracy score Acc, we can use precision
(Equation (4)), recall (Equation (5)), and F1-score (Equation (6)). These metrics can be easily calculated
by using the following four indicators (TP, FP, FN and TN).

• True positive (TP): the amount of the observed positive values which were correctly predicted,
• False positive (FP): the amount of the observed positive values which were wrongly predicted,
• False negative (FN): the amount of the observed negative values which were wrongly predicted,
• True negative (TN): the amount of the observed negative values which were correctly predicted.

These four indicators can be used to define the equations of Precision and Recall as shown.

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
. (10)

Precision is commonly used to measure the influence of false positives, while Recall is used to
measure the influence of false negatives. F1-score is defined as the weighted average of Precision
and Recall.

F1− score =
2× (Precision× Recall)

Precision + Recall
. (11)

Precision, Recall, and F1-score have a score of one when the prediction is perfect. For the total
prediction failure, they yield a score of zero.

After the sub-step Perform Machine Learning, the learned machine learning models are stored in
a database. The database is activated to output the learned machine learning models, when inputting
the request of prediction and input data in the sub-step Perform Prediction. Then, prediction results
(e.g., classification results) are output from the sub-step Perform Prediction and evaluated using the
purposes of the algal image analysis defined in the step Acquisition.
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4. Experiment in the Real-World Environments

In 2015, Korea Water Resources Corporation (K-water) conducted a project regarding algal species
identification to support direct and continuous monitoring in water management districts and utilities
for processing drinking water. In this project, a novel approach combining the CNN and NAS
technologies were used to identify harmful algae where input algal images data were collected using a
FlowCAM. Thus, the novel technique can support a rapid and unbiased identification of algal status in
bloom events. Our experiment follows the framework of machine learning analysis for algae images
introduced in Section 3.

4.1. Acquisition

4.1.1. Select Water Sample Collection Sites

Ten sites in natural rivers or reservoirs were selected for water sample collection (Figure 7). These
sites were located in the three major rivers (Han River, Geum River, and Nakding River) of South
Korea, where algal bloom events occurr frequently.

4.1.2. Water Sample Collection

For four years between 2015 and 2018, water samples were arbitrarily collected in the ten sites we
chose (Figure 7 and Table 1) when algal bloom occurred.

Table 1. Sampling sites in South Korea for the convolutional neural network (CNN) model development.

Watershed Site Collected Algal Genus

Han River
Namyangju, Gyeonggi-do (Site 1) FS, OS, PE, AU, ST

Hoengseong Dam (Site 2) SY
Jaecheon Stream (Site 3) OS, AN

Geum River Daecheong Dam (Site 4) MS

Nakdong River

Dalsung Weir (Site 5) MS
Hapcheon-changnyeong Weir (Site 6) MS

Changnyeong-haman Weir (Site 7) MS
Bonpo, Gyeongsangnam-do (Site 8) SY

Busan (Site 9) MS
Namgang Dam (Site 10) FS

Figure 7. Algal species sampling sites in South Korea for CNN model development.
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4.2. Preprocessing

4.2.1. Segment Algal Images

To segment algal images, a FlowCAM (Flow Cytometer and Microscope, Fluid Imaging
Technologies, Yarmouth, ME, USA), ×40 microscope with a commercial particle image analyzer,
was used. A total of 1922 photographic morphological images of eight different algal genera were
detected from the water samples using the FlowCAM (Table 2). The eight algal genera included
three cyanobacteria (Microcystis sp. (MS), Oscillatoria sp. (OS), and Anabaena sp. (AN)), three diatoms
(Fragilaria sp. (FS), Synedra sp. (SY), and Aulacoseira sp. (AU)), and two green algae (Staurastrum sp.
(ST) and Pediastrum sp. (PE)) as shown in Figure 8. Microcystis sp., Oscillatoria sp. and Anabaena sp.
as common cyanobacterial species were selected as they are typically observed in freshwater HABs.
These three species release toxins that have adverse effects on drinking water quality. Synedra sp. was
selected as it causes clogging problems in the filtering system of drinking water treatment plants.

Table 2. The number of images for each algal species captured by the FlowCAM.

MS OS AN FS SY AU ST PE

360 270 120 360 360 50 42 360

Figure 8. Algal images used for a CNN model development.

4.2.2. Preprocess Algal Images

In this step, we transformed the algal images for the image analysis. Some algal images from the
FlowCAM contained border lines that can affect the analysis. So, the border lines were trimmed.
The various formats of the images, then, were converted to one image format (PNG (Portable
Network Graphics)).

For the image analysis, two groups of data were used: (1) the original image data and (2) the
augmented image data, so that we could compare the effects of data augmentation and would be able
to improve the model accuracy. Also, for CNN machine learning, the images data were classified into
three categories (training, validation, and test). The details of the data settings are as follows.

• Original data 1158 (60%), 382 (20%), and 382 (20%) original images were used for the training, the
validation, and the test, respectively.

• Augmented data 5790 and 1910 images augmented from the original images by mirroring, rotating,
and top-down flipping were used for the training and the validation, respectively. The 382 original
images were used for the test.

4.2.3. Perform Machine Learning for Algal Image

Three machine learning experiments were conducted for each data group (original and
augmented). For each experiment, a different CNN architecture was used. The two architectures were
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manually developed as in the previous research [25], while the last architecture was generated from
NAS. The details of the architecture settings are as follows.

• Experiment 1 (manual model 1): one CNN model was manually developed by trial and error. The
model was developed from scratch and was used in Experiment 1.

• Experiment 2 (manual model 2): one CNN model was also manually developed by trial and error.
The model was developed based on the popular model (LeNet [65]) and was used in Experiment 2.

• Experiment 3 (NAS model): two CNN models, simply called NAS models, were developed by
using neural architecture search in Section 2.3. NAS model 1 used the original data, while NAS
model 2 used the augmented data.

Each experiment required parameter settings to perform machine learning. Table 3 shows the
machine learning parameter settings that we used for the experiments.

Table 3. Machine learning parameter settings for CNN.

Experiment Learning Rate Max Epochs Running Time

Manual Model 1 0.001 12 -
Manual Model 2 0.001 12 -

NAS Model 1 0.001 12 1 h
NAS Model 2 0.001 12 1 h

The experiments were run on a 3.40 GHz Intel Core i7-3770 processor. For NAS, the total searching
time was 1 hour. The validation data proportion, denoting the proportion of the validation data from
the training data, was 0.05. The maximum number of epochs to train the CNN architectures was 12.
The training would stop when this number was reached. The learning rate of the training was 0.001.

Table 4 shows the layer information of the architectures used for the experiments. Manual 1 and 2
denote the architectures in Experiment 1 and 2, respectively. NAS 1 denotes the architecture found
by neural architecture search using the original data, while NAS 2 means the architecture from the
augmented data.

Table 4. The architectures used for the experiments.

Layers Manual Model 1 Manual Model 2 NAS Model 1 NAS Model 2

Convolution 4 4 6 3
Pooling 4 2 5 3

Fully Connected 2 2 4 2

4.2.4. Perform Prediction for Algal Image

In this step, the trained CNN model in Section 4.2.3 was used to predict the class of an algal image.
For this, the test data prepared in Section 4.2.2 were used.

4.2.5. Evaluate Prediction Results

In this paper, the three-performance metrics precision (Equation (4)), recall (Equation (5)), and
F1-score (Equation (6)) were used to show the performance of the algal image classification. Tables 5–10
show the experiment results of the classification using the four CNN architectures (manual model 1,
manual model 2, NAS model 1, and NAS model 2). For example, Table 5 shows the classification results
using the manual model 1 and the original data. In this case, the average precision and the average
recalls were 0.6238 and 0.6425, respectively. As another example, Table 10 shows the classification
results using the NAS model 2 and the augmented data (the average precision: 0.94 and the average
recall: 0.9363).
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Table 5. Manual model 1 (the original data).

Type F1-score Precision Recall #

AN 0 0 0 24
AU 0 0 0 10
FS 0.9 0.83 0.99 72
MS 1 1 1 72
OS 0.7 0.56 0.92 52
PE 0.92 1 0.85 72
ST 0.46 0.6 0.38 8
SY 1 1 1 72

Avg. 0.6225 0.6238 0.6425 47.75

Table 6. Manual model 2 (the original data).

Type F1-score Precision Recall #

AN 0.57 0.47 0.71 24
AU 0.18 1 0.1 10
FS 0.96 1 0.92 72
MS 1 1 1 72
OS 0.81 0.8 0.83 52
PE 0.99 0.99 1 72
ST 0.75 0.75 0.75 8
SY 1 1 1 72

Avg. 0.7825 0.8763 0.7888 47.75

Table 7. Neural architecture search (NAS) model 1 (the original data).

Type F1-score Precision Recall #

AN 0.86 1 0.75 24
AU 0.95 0.91 1 10
FS 0.98 0.96 1 72
MS 1 1 1 72
OS 0.95 0.9 1 52
PE 0.98 1 0.96 72
ST 0.93 1 0.88 8
SY 1 1 1 72

Avg. 0.9563 0.9713 0.9488 47.75

Table 8. Manual model 1 (the augmented data).

Type F1-score Precision Recall #

AN 0.57 0.56 0.58 24
AU 0.13 0.2 0.1 10
FS 0.82 0.91 0.74 72
MS 1 1 1 72
OS 0.82 0.69 1 52
PE 0.96 1 0.92 72
ST 0.67 0.71 0.62 8
SY 0.99 0.97 1 72

Avg. 0.745 0.755 0.745 47.75
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Table 9. Manual model 2 (the augmented data).

Type F1-score Precision Recall #

AN 0.26 0.57 0.17 24
AU 0.8 0.8 0.8 10
FS 0.97 0.97 0.97 72
MS 1 1 1 72
OS 0.85 0.73 1 52
PE 0.99 1 0.97 72
ST 0.88 0.88 0.88 8
SY 1 1 1 72

Avg. 0.8438 0.8688 0.8488 47.75

Table 10. NAS model 2 (the augmented data).

Type F1-score Precision Recall #

AN 0.94 0.96 0.92 24
AU 0.82 1 0.7 10
FS 0.94 0.98 0.9 72
MS 1 1 1 72
OS 0.93 0.88 0.98 52
PE 0.98 0.97 0.99 72
ST 0.84 0.73 1 8
SY 1 1 1 72

Avg. 0.9313 0.94 0.9363 47.75

All F1-Score results are summarized in Table 11. Generally, we noticed that the results from the
augmented data outperformed the result of using only original data in the case of manual model 1 and
manual model 2. This indicates that the image augmentation partially helps the performance of image
classification. However, the image augmentation did not always lead to higher performance results,
since in some cases unobservable images could be generated by augmentation, thus hindering proper
classification. Through several repeated experiments, we confirmed that the NAS model 1 using only
the original data performed better than the NAS model 2 using the augmented data.

The F1-Scores from the experiment using neural architecture search were fairly higher than the
results by using only the manual modeling approach. Consequently, neural architecture search always
led to higher performance.

Table 11. F1-Scores.

Data Manual Model 1 Manual Model 2 NAS Models 1 and 2

Original 0.6225 0.7825 0.9563
Augmented 0.745 0.8438 0.9313

Figure 9 shows six confusion matrices for each CNN model evaluation (corresponding to
Tables 5–10), where the the X axis denotes the predicted class using the trained CNN model, the
Y axis denotes the observed class in the test data, and each numbered cell denotes the total number
of the case in which the predicted class and the observed class are identical. When looking at the
visualization of these confusion matrices, we can clearly notice which algal species was misclassified.
The manually developed CNN models especially misclassified the three algal species (Anabaena sp.,
Aulacoseira sp., and Oscillatoria sp.) with similar linear shapes.
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(a) Manual Model 1 (the Original Data) (b) Manual Model 2 (the Original Data) (c) NAS Model (the Original Data)

(d) Manual Model 1 (the Augmented Data) (e) Manual Model 2 (the Augmented Data) (f) NAS Model (the Augmented Data)
Figure 9. Confusion matrices for each CNN model evaluation.
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5. Discussion for the Algal Image Classification

In this study, four CNN models were developed for the classification of representative algal
genera of HABs from algal images obtained using FlowCAM. The NAS models developed in this
paper classified the eight algal genera effectively in comparison to the manually developed models.

The results verified the applicability of the NAS technology for the analysis of algal cells at the
genus level. The average F1-Score for the NAS model 1 was 0.9563 to classify the eight algal classes.
This result indicated that the NAS technology can outperform the conventional CNN modeling
approach. Also, the developed CNN model may be further optimized depending on the algal image
library, which is used for the classification, as we can see the performance improvement of using the
augmented data.

In this paper, we focused on algal image classification based on the NAS technology and its
framework to lead and guide one to efficient research and applications. However, there are several
future research topics. First, the CNN model developed in this study classified eight algal genera
commonly found in HABs events, with no interference effect from the additional images which were
not included in our model library. CNN models can misclassify images which are not included in
the model library, thus reducing the reliability of the CNN model. For this, we can consider an
image library platform for algal species. Obviously, the CNN model applicability can be improved by
increasing the number of microscopic algal images with different algal species. Secondly, in the current
development of the CNN model, there was no consideration of microalgal colonies. However, for
example, a Microcystis sp. colony typically consists of hundreds to thousands of individual algal cells.
Counting individual algal cells in a colony is important to determine the physiological status of the
algal bloom in freshwater systems, and is included in guidelines for general algal management [66,67].
To the best of our knowledge, no studies have been reported for developing automated algal cell
counts. It seems that recent deep learning techniques may provide a possible approach. For example,
one of the recent deep-learning techniques, U-net, is used for the segmentation of images and has been
applied in the medical field [68–70]. This may provide a possible solution for individual cell counting
in the Microcystis sp. colonies. As this method is still in the early stages of research, further studies are
suggested to extend the possible application of deep learning techniques as a novel method for algal
bloom monitoring.

6. Conclusions

In this paper, our research showed that the well-defined CNN model generated from the neural
architecture search technology can be an alternative technique to replace conventional manual CNN
modeling methods for algal classification for HABs monitoring in watersheds. In practice, the
presented approach can rapidly and accurately classify algal species for the effective management
of drinking water treatment processes. The presented models classified the eight algal genera with
up to the F1-score of 0.95, thereby suggesting the possible applicability of CNN and NAS for algal
classification in practice. It was expected that this new procedure using the CNN model would provide
a rapid and reliable algal classification method, and also enable real-time monitoring and early warning
of HABs in their watersheds. In addition, we introduced the novel framework of machine learning
analysis for algal images to guide researchers and data analysts. The framework was applied to the
real-world situations in South Korea. Further extension on developing algal image libraries with
more algal species in various field sites would improve the applicability of the model in real-world
simulations and is left for future research.
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