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Abstract: Water quality data cleaning is important for the management of water environments. A
framework for water quality time series cleaning is proposed in this paper. Considering the nonlinear
relationships among water quality indicators, support vector regression (SVR) is used to forecast
water quality indicators when some indicators are missing or when they show abnormal values at
a certain point in time. Considering the time series of water quality information, long short-term
memory (LSTM) networks are used to forecast water quality indicators when all indicators are missing
at a certain point in time. A parallel model based on particle swarm optimization (PSO) and LSTM is
realized based on a microservices architecture to improve the efficiency of model execution and the
predictive accuracy of the LSTM networks. The performance of the model is evaluated in terms of
the mean absolute error (MAE) and root-mean-square error (RMSE). Inlet water quality data from a
wastewater treatment plant in Gaobeidian, Beijing, China is considered as a case study to examine the
effectiveness of this approach. The experimental results reveal that this model has better predictive
accuracy than other data-driven models because of smaller MAE and RMSE and has an advantage in
terms of time consumption compared with standalone serial algorithms.

Keywords: LSTM; particle swarm optimization; data cleaning; microservices architecture; support
vector regression

1. Introduction

Accurate and effective forecasting of water quality is important for water environment management
and for properly studying aqueous ecological systems. With the development of water quality
assessment, increasingly more water quality time series must be effectively analyzed and processed.
Water quality data cleaning is an indispensable task before water quality data mining, as it provides a
guarantee for people to obtain complete and high-quality datasets. The main task of data cleaning is to
find abnormal values and fill in missing values.

Machine learning models have proven to be useful tools because they offer relatively high efficiency
and accuracy when dealing with complicated water quality forecasting problems. For example, artificial
neural networks (ANNs) and support vector machines (SVMs) are representative machine learning
models [1]. In addition, several other machine learning methods have been used, including Bayesian
networks [2], logistic regression [3] and wavelet neural networks [4]. Long short-term memory (LSTM)
networks, which are a class of recurrent neural networks, are suitable for processing and predicting
important events with relatively long intervals and delays in the corresponding time series [5]. These
networks have been successfully applied in the field of water time series prediction. For example,
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Jian Zhou used an LSTM network to predict dissolved oxygen [6] and Chen Liang used an LSTM
network to predict the Dongting Lake water level variation [7]. However, the prediction accuracy of
the LSTM algorithm used in these studies is influenced by the parameter selection. Therefore, this
paper uses a PSO algorithm to optimize the parameter selection in LSTM networks (referred to as
a parallel PSO-LSTM model for short). PSO is a computational method of solving an optimization
problem by iteratively attempting to improve a candidate solution with regard to a given measure of
quality. For example, the results of applying a PSO-based optimal SVR model for the prediction of
ammonia nitrogen and a PSO-based optimal ANN model for the early detection of dengue disease
suggest that PSO algorithms can accelerate the training of machine learning models and improve the
training accuracy [8,9].

With the development of water data collection, the high complexity of computations in machine
learning and optimization algorithms leads to high requirements for single-node computing. In this
paper, this problem is resolved by using a microservices architecture. A microservices architecture
is a type of technology architecture to realize a distributed environment, which is mainly realized
by network programming [10]. For example, Michael Schmidt used a microservices architecture to
improve the fault tolerance of Ambient Assisted Living (AAL) systems [11] and Marc Dalmau used a
microservices architecture to reduce the energy consumption of network devices [12]. In this paper,
the microservices architecture is realized by using Java and Python web technology.

Based on multivariate correlations among water quality information and time series characteristics,
a framework for water quality data cleaning based on a parallel PSO-LSTM model is proposed in this
paper. First, the original data are cleaned by calculating Z-scores. Then, SVR is used to fill in data when
some indicators are missing or when they show abnormal values at a certain point in time. Second,
LSTM is used to forecast water quality indicators when all indicators are missing at a certain point in
time. Finally, using the constructed model, the mean absolute error and the root-mean-square error
model execution time are compared and the efficiency and accuracy of the method are evaluated.

The contributions of this paper are as follows: (1) a data cleaning automation process is established
for water quality time series; (2) a parallel PSO-LSTM model based on a microservices architecture is
proposed to handle complex calculations in less time and increase predictive accuracy.

The remainder of this paper is structured as follows. Section 2 introduces the algorithms and
model used in this paper. Section 3 presents the parallel PSO-LSTM model based on the microservices
architecture. Experimental results are discussed in Section 4. Finally, the conclusions of this article and
future work are discussed in Section 5.

2. Materials and Methods

2.1. SVR

The SVM method was first proposed by Vapnik in 1995. The SVM method is theoretically based on
statistical learning theory, namely, an approximate implementation of structure risk minimization [13,14].
In 1995, SVMs were widely used for classification and regression [15]. SVR can be used to solve
problems involving small samples with high dimensionality and nonlinearity; it can effectively
overcome the disadvantages of traditional ANNs.

The SVR method is mainly based on the following concept. A nonlinear mapping function Φ(x) is
selected to map an n-dimensional sample vector x ∈ χ = Rn from the input space to a high-dimensional
feature space. A linear interval decision function is constructed in this high-dimensional feature
space via the maximum interval method [16]. In this paper, the training set is denoted by T, where
T =

{
(x1, y1), (x2, y2), (x3, y3), . . . ., (xl, yl)

}
∈ χ × Y, with xi ∈ χ = Rn and yi ∈ R for i = 1, 2, . . . , l. A

regression function formula can be obtained by using the SVR method as follows:

f(xi) = ω × Φ(xi) + b (1)
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whereω ⊂ Rn and b ⊂ R. The objective of the SVR method is to find the regression function f(x) and
minimize the following formula:

Rreg(f) = C
l∑

i=1

Γ(f(xi) − yi) +
1
2
‖ω‖2 (2)

where Γ(∗) is a loss function and C is a penalty factor, which represents the punishment for error. If C is
equal to infinity, then no error is allowed in the SVR solution, which complicates the model. In contrast,
the smaller the value of C is, the larger the allowable error and the stronger the generalization ability.

An equivalent form of f(x) can be obtained by adopting Equation (3) and combining it with
Equation (1) as follows:

ω =
n∑

i=1

(αi −α
∗

i ) × Φ(xi) (3)

f(x) =
n∑

i=1

(αi −α
∗

i )(Φ(xi) × Φ(x)) + b =
n∑

i=1

(αi −α
∗

i )kernel(xi, x) + b (4)

In Equation (4), the kernel function kernel(xi, x) replaces the dot product Φ(xi) ×Φ(x).
The kernel function can transform the inner product operation in the high-dimensional feature

space back into the input space to avoid the “curse of dimensionality”. The ε-insensitive loss function
is the most commonly used loss function; its specific form is as follows:

Γ(f(xi) − yi) =

{ ∣∣∣f(xi) − yi

∣∣∣; ∣∣∣f(xi) − yi

∣∣∣ ≥ ε
0;

∣∣∣f(xi) − yi

∣∣∣ < ε (5)

where ε is the system error. Equation (6) can be obtained from the above quadratic programming
problem as follows:

min

1
2

n∑
i=1

n∑
j=1

(αi −α
∗

i )(αj −α
∗

j )kernel(xi, xj) + ε

n∑
i=1

(α∗i + αi) −
n∑

j=1

yj(α
∗

j −αj)

 (6)

s.t.


n∑

i=1
(αi −α

∗

i ) = 0

αi,,α∗i ∈ [0, C](i = 1, 2, . . . .n)
(7)

where (αi − α
∗

i )(αj −α
∗

j ) is the Lagrange multiplier pair corresponding to each sample. Then, the
sequence minimization optimization (SMO) algorithm is used to solve Equation (6) to obtain αi and
α∗i [17]. Finally, the training data corresponding only to nonzero values of a and b is called the
support vector.

Introducing the values of αi and α∗i into Equation (3) yields ω. Then, only b must be found to
obtain the prediction function f(x). According to the Karush-Kuhn-Tucker (KKT) conditions [18],
several Equations are obtained as follows:

αi(ε + ξi − yi + ω × xi + b) = 0 (8)

α∗i (ε + ξ∗i − yi +ω × xi + b) = 0 (9)

(C−αi)ξi = 0 (10)

(C−α∗i )ξ
∗

i = 0 (11)
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where ξi and ξ∗i are slack variables. If αI and α∗i are equal to 0, then ξi and ξ∗i are also equal to 0. For
other values of αi and α∗i (αi,,α∗i ∈ (0, C)), the following expressions are obtained:

b =

{
yi + ε − ω × xi; αi ∈ (0, C)

yi − ε − ω × xi; α∗i ∈ (0, C)
(12)

As seen from the above analysis, using the SVR method to solve the regression problem requires
only knowledge of the specific kernel function, C and ε. C and ε are random numbers in the range
(0, +∞). Four types of kernel functions are commonly used, including linear functions, polynomial
functions, the radial basis function (RBF) and the sigmoid function. Among them, the RBF often
performs well and has the widest variety of applications [19]. Therefore, this paper uses the RBF, which
is given as follows:

kernel(xi, xj) = exp (−γ‖xi − xj‖
2), (γ > 0) (13)

2.2. LSTM Neural Networks

LSTM networks are a class of recurrent neural networks, in which the structure of the memory
cells is modified by transforming the tanh layer in a traditional recurrent neural network into a
structure containing a memory unit and a gate mechanism [20]. This mechanism determines how
the information in the memory unit should be utilized and updated, thus alleviating the problem of
gradient diffusion and explosion. A standard LSTM network consists of multiple memory blocks, as
illustrated in Figure 1.
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Each rectangular box shown in Figure 1 represents a memory block, which mainly includes a
memory unit and three gates: a forget gate, an input gate and an output gate. The horizontal line at the
top of the box represents the cell state, which is similar to a conveyor belt that can control the transfer
of information to the next moment in time.

The first step of processing in an LSTM network is to determine what information can be passed to
the cell state. This decision is controlled by the sigmoid function in the forget gate layer, which assigns
a value between 0 and 1 to ft based on the previous output ht−1 and the current input xt. The value of
ft is used to determine whether to pass on the information Ct−1 learned at the previous moment, either
completely or partially [21]. The logistic sigmoid function and ft are expressed as follows:

sigmoid(x) =
1

1 + e−x (14)

ft = δ(Wf × xt + Uf × ht−1 + bf) (15)

where ft represents the forget gate and takes values in [0,1], δ is the logistic sigmoid function, Wf ∈ RH×d,
Uf ∈ RH×H, ht ∈ RH and bf ∈ RH.

The second step is to generate the new information needed for the update. This step relies on two
components: an input gate layer that uses the sigmoid function to determine which values to update
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and a tanh layer that generates a new candidate value C̃t, which may be added to the cell state. We
combine the values generated by these two layers to perform the update as follows:

it = δ(Wi × xt + Ui × ht−1 + bi) (16)

C̃t = tan h(Wc × xt + Uc × ht−1 + bc) (17)

where it represents the input gate and takes values in [0,1], Wi, Wc ∈ RH×d, Ui, Uc ∈ RH×H and
bi, bc ∈ RH.

Then, we update the old cell state. First, we multiply the old cell state by ft to forget the information
we do not need and then add it·C̃t to the result to obtain the candidate value. Together, these first and
second steps constitute a process of discarding unnecessary data and adding new information. Thus,
Ct is calculated as follows:

Ct = ft × Ct−1 + it × C̃t (18)

The final step is to determine the output of the model. An initial output is first obtained through
a sigmoid layer and then the value of Ct is scaled to the range of [−1,1] by a tanh layer; finally, the
sigmoid output is multiplied pairwise with the tanh output to obtain the model output. Thus, ot and
ht are obtained as follows:

ot = δ(Wo × xt + Uo × ht−1 + bo) (19)

ht = ot × tan h(Ct) (20)

where ot represents the output gate and takes values in [0,1], Wo ∈ RH×d, Uo ∈ RH×H, ht ∈ RH and
bo ∈ RH.

Thus, the activation vector for the middle memory block at time step t is obtained. b represents
the bias, we denote the memory dimensionality of the LSTM network by d and the dimensionalities of
the hidden layer and input are H and h, respectively.

2.3. Microservices Architecture

This paper realized a microservices architecture by using Java and Python web technology.
Network services realized by Java in the whole cluster provide the functions of assigning tasks and
updating the particle swarm. The main function of multiple network services realized using Python is
to calculate the fitness of multiple particles. The microservice architecture adopted in this paper is
shown in Figure 2.
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The Java service is implemented based on the Springboot framework, while the Python services
are implemented based on the Flask framework. Different services communicate with each other
through the HTTP protocol. Using Java as the service master node is intended to better extend the
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business-level logic in the future, while Python will focus on providing data analysis capabilities.
Meanwhile, SVR and LSTM are implemented using the Python machine learning toolkits scikit-learn
and TensorFlow, respectively.

2.4. PSO Algorithm

PSO is a population-based metaheuristic for global optimization [22]. The PSO algorithm solves
optimization problems by means of cooperation and information sharing among the individuals in a
group [23]. Suppose that there are n particles in a D-dimensional space. The position of a particle can
be described by Xi = (Xi1, Xi2, Xi3, Xi4,..., Xid). The velocity of the particle can be denoted by Vi = (Vi1,

Vi2, Vi3, Vi4..., Vid). Each particle has a fitness value that is determined by the objective function of the
optimization problem and its best location so far (Pbest) and its current location (Xi), which represents
the particle’s flight experience, are known. Moreover, from the experiences of the other particles, each
particle also knows the best position so far for the entire swarm (Gbest), which is the best value of Pbest

among all particles. The velocity is updated as follows:

v(t+1)
i = ωvt

i + c1r1(pi − xt
i) + c2r2(pg − xt

i) (21)

where xt
i , vt

i , pi, pg,ω, c1 and c2 are the current location, the current velocity, the best position in the
particle’s history, the best position in the history of the entire particle swarm, an inertia weight and two
learning factors, respectively. c1 and c2 are nonnegative constants that control the maximum step size;
usually, c1 and c2 are usually equal to 2 because of better convergence. r1 and r2 are random numbers
in the range of [0,1]. In this paper, r1 is equal to 0.6 and r2 is equal to 0.3. The location is updated as
follows:

x(t+1)
i = xt

i + v(t+1)
i (22)

where x(t+1)
i , xt

i and v(t+1)
i represent the position at the next moment in time, the current position and

the speed at the next moment in time, respectively.

2.5. The Parallel PSO-LSTM Algorithm

In the proposed method, when the PSO algorithm is initialized, the position variable of each
particle is defined as a two-dimensional variable representing the number of time steps and the learning
rate of the LSTM network model. In this paper, the position and velocity of each particle are initialized
as random numbers in (0,5]. The position and velocity are updated based on the average MAE and the
average RMSE; PSO optimization ends when the maximum number of iterations is reached.

However, as the data volume grows and the number of particles increases, serial computing
becomes inefficient. Thus, in this paper, the PSO-LSTM algorithm is parallelized via the
microservices architecture.

A flowchart of the resulting parallel PSO-LSTM model for water quality forecasting is shown
in Figure 3. In the parallel PSO-LSTM algorithm, the first operation is the construction of the initial
particle swarm in the Java service node. Then, according to the ids of the particles, the particles are
assigned to the node of the Python service for model training. Finally, the whole particle swarm is
updated in the master node according to the training results of each node.
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2.6. Z-score Test

Because water quality data are approximately normally distributed [4], for abnormal value
detection, a Z-score test is used to identify the approximate normal distribution of the data and to find
abnormal values among the numerical values of a single factor. Suppose that a value is measured
multiple times with equal precision to obtain x1, x2,..., xn; the arithmetic average of these measurements
is x and the residual errors are vi = xi − x (i = 1, 2, . . . ..., n). The standard deviation σ is calculated
according to Bessel’s formula. Then, the Z-score for observation xi (|zi|, 1 <= i <= n) is given as follows:

|zi| =
∣∣∣xi − x

∣∣∣ /σ (23)

xi is considered to be a poor measurement with a gross error and thus an abnormal value, if
|zi| > 3 according to the Pauta criterion.

3. Development of the Method

3.1. Framework of the Method

The basic flow of the water quality data cleaning framework proposed in this study is as follows:
Step 1: Water quality data are obtained from the Gaobeidian wastewater treatment plant. Any

values of the ammonia nitrogen (NH3-N), biochemical oxygen demand (BOD), chemical oxygen
demand (COD), dissolved oxygen (DO), total phosphorus (TP), total nitrogen (TN), pH, chlorides
(CLS) and oil-related (OIL) quality indicators that violate logic are set as abnormal values. For example,
the pH value cannot be less than 0 or greater than 14.

Step 2: The Z-scores for single factor indicators are calculated. Data with Z-scores greater than 3
are marked as abnormal values. Then, the total number of abnormal values and missing values in
the dataset at each moment of time are counted. Any data point representing a moment in time at
which the total number of abnormal values and missing values is greater than 4 is removed. For the
remaining data, SVR is applied to fill in the missing values and abnormal values for each data point.
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First, an available dataset for SVR is built. If there are no abnormal values or missing values for
any indicators at time Ti, then the data point at time Ti is added to the available dataset. For example,
suppose that for the water quality data point at time T0, the value of COD is missing and the value
of DO is abnormal. The available dataset is used to train an SVR model, with DO and COD as the
outputs and the remaining indicators as the inputs. Finally, the trained SVR model is used to fill in
the values of DO and COD at time T0. That is, the values of DO and COD at time T0 are obtained in
accordance with the values of NH3-N, BOD, TP, TN, pH, CLS and OIL at that time.

The procedures for identifying and filling in abnormal values are shown in Figure 4. Four rounds
of filling in abnormal values and missing values were conducted in this study. After the last round of
filling, there were almost no abnormal data.
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Step 3: The parallel PSO-LSTM algorithm is used to forecast water quality indicators when all
indicators are missing at a certain point in time. For example, suppose that NH3-N, BOD, TP, TN, pH,
CLS, OIL, DO and COD are all missing at time T0. These missing indicators will be predicted based on
the data of multiple moments before T0. The validity of each model is evaluated on the basis of the
MAE and RMSE.

3.2. Simple Data Analysis

The Gaobeidian wastewater treatment plant is located in Chaoyang District, Beijing Gaobeidian
rural territory. It is the largest wastewater treatment plant in Beijing and the third largest wastewater
treatment plant in China. Its current processing capacity is 100 million cubic meters per day. The water
dataset used in this paper contains historical monitoring data from 1 July 2013 to 14 March 2016; one
point of water quality data was recorded every hour. In theory, this dataset should contain 23,712 h of
water quality data. In fact, however, it contains only 23,268 h of water quality data because there are
444 h of missing water quality data. This dataset contains 9 water quality indicators: TN, TP, NH3-N,
DO, pH, CLS, COD, BOD and OIL. Among the 23,268 h of data, 17,952 h of data are complete, 5316 h
of data contain missing indicators. Among the initial data observations, a large number of missing
data and numerical errors can be found. For example, there are many instances of continuous loss of
DO data, which make it difficult to perform data mining on these water quality data. Therefore, data
cleaning is necessary before water quality prediction can be performed. The data used in this paper
were obtained from the Beijing Municipal Water Affairs Bureau. The statistics of the data available for
each water quality indicator are presented in Table 1.

Table 1. The statistics for each water indicator.

Index TN TP NH3-N DO pH CLS COD BOD OIL

Number of data 19,946 21,117 22,001 21,680 23,131 202,09 223,20 21,779 19,785
Number of missing data 3766 2595 1711 2032 581 3503 1392 1933 3927
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3.3. Model Evaluation Criteria

Appropriately chosen evaluation criteria are essential for assessing model performance. Because
Krause has found that no single efficiency criterion can provide a full description of model
performance [4] and each available criterion has certain benefits and drawbacks, we chose to apply
two criteria: the MAE and the RMSE [6].

The MAE can be defined and calculated as follows:

MAE =
1
n

n∑
1

|Oi −Xi| (24)

where Oi and Xi are the observed and predicted values, respectively. The MAE can effectively reflect
the true prediction error in terms of the absolute deviation. The RMSE can be defined and calculated
as follows:

RMSE =

√√
1
n

n∑
1

(Oi −Xi)
2 (25)

The RMSE is very sensitive to the maximum and minimum errors, which enables it to effectively
reflect the accuracy of the prediction results [4]. The closer MAE and RMSE are to 0, the more accurate
the prediction. This paper uses the MAE and RMSE to compare the prediction performance of different
prediction models when the same dataset is used.

The mean absolute percentage error (MAPE) is used in this paper to compare the prediction
performance of water time series prediction models when different datasets are used. The MAPE is
defined and calculated as follows [24]:

MAPE = 100%×
1
n
×

n∑
1

|Oi −Xi|

Oi
(26)

The MAPE not only considers the error between the predicted value and the true value but also
considers the ratio between the error and the true value.

4. Results and Discussion

First, the values of the NH3-N, BOD, COD, DO, TP, TN, pH, CLS and OIL indicators that violate
logic are marked as abnormal values. Then, the Z-scores are calculated for each water quality indicator
to identify abnormal values. The statistics for the number of abnormal values plus the number of
missing values are shown in Table 2. As illustrated in Table 2, the water quality data points are
categorized into those for which the total number of abnormal values plus missing values is one, two,
three, four or more than four. In this paper, it is considered that the data prediction error will be higher
when more values are missing. In addition, the data points for which the total number of abnormal
values and missing values is less than or equal to four times account for 99% of the dataset. Therefore,
SVR is used only in these cases. The remaining 1% of the data are removed from the dataset. After
removal, this dataset contains 23,036 h of data to be subjected to SVR processing. The SVR model
is used to fill in the abnormal and missing values of each single factor indicator. Table 3 shows the
numbers of abnormal values of the water quality indicators before and after filling. As illustrated in
Table 3, to reduce the possibility of errors in data analysis, the SVR algorithm can be used to reduce
the impact of abnormal and missing values on subsequent water quality analyses. As the number
of abnormal values decreases, the training accuracy of the LSTM networks can be greatly increased.
Especially in the case of a large increase in the amount of data collected in the future, a correspondingly
large number of abnormal values could make it difficult to train an accurate model.
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Table 2. Statistics for the number of abnormal values plus the number of missing values.

Index Equal to 1 Equal to 2 Equal to 3 Equal to 4 Greater than 4

Data
proportion 78% 12% 8% 1% 1%

Table 3. The number of abnormal values of each water indicator.

Index TN TP NH3-N DO pH CLS COD BOD OIL

Before filling 213 197 177 189 179 202 200 169 202
First round of filling 24 31 19 37 34 20 20 23 20

Second round of filling 6 7 4 11 13 7 9 8 10
Third round of filling 1 0 0 0 1 1 0 0 2

Fourth round of filling 1 0 0 0 1 1 0 0 1

After the above analysis, a dataset without outliers was obtained. Through the analysis of the
time series, it was found that there were still 676 time points in the data set for which all water quality
indicators were missing. Before establishing the parallel PSO-LSTM model to predict the time series,
this paper analyzes the features of consecutive missing data in this dataset, as shown in Figure 5.
As illustrated in Figure 5, separate counts are presented for segments of continuous missing data
of different durations, including 1 consecutive hour, 2 consecutive hours, 3 consecutive hours, 4
consecutive hours, 5 consecutive hours, 6 consecutive hours, 7 consecutive hours and more than 7
consecutive hours. The distribution of missing data is clearly random. For example, data missing for 2
consecutive time points happened just ten times, so in Figure 5, when the number of consecutive hours
is equal to 2, the amount of data is 20.
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Considering the distribution of the missing data, segments of data for which the water indicators
can be obtained for at least 30 consecutive hours are regarded as available for training and testing.
For example, there are 1920 consecutive hours of data from 1 July 2013, to 18 September 2013 in this
dataset. Therefore, these data can be added to the available dataset. Once the available dataset has
been constructed, these data are used as testing data and training data for the LSTM networks to
construct a predictive model for past time series to be used in predicting future time series. The
shortest consecutive segment that has values in the available dataset has a duration of 30 h and the
longest has a duration of 3312 h. Thus, the available dataset consists of multiple segments of data
that are continuously distributed over time. Taking the COD time series as an example, it is assumed
that the timesteps of LSTM network are equal to 4 to construct the input and output datasets. The
process is shown in Figure 6. Other water quality indicators are also predicted by building data sets in
this manner.
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In the parallel PSO-LSTM model, the position variable of each particle is defined as a
two-dimensional variable representing the value of time steps and the learning rate of the LSTM
network model and the position and velocity of each particle are initialized as random numbers in
(0,5] at the start of the PSO algorithm. Particles are assigned to hosts in the cluster based on their id
values and will be updated.

The following experiment takes the process of predicting the COD value as an example. In this
experiment, the maximum number of PSO iterations is 160, the number of particles in the particle
swarm is 100, the number of hidden layer neurons in the LSTM network is 120 and the ratio of the
training set to the test set is 8:2. As illustrated in Table 4, as the number of iterations increases, the
values of the LSTM network parameters come closer to optimality. As illustrated in Table 4, when the
learning rate of the LSTM networks equal to 0.002876 and the number of timesteps is equal to 4, it is
most accurate to predict COD at the next moment by using the values of the first four moments.

Table 4. Iterative results of using PSO to predict chemical oxygen demand (COD).

PSO Iterations Time Steps Learning Rate MAE RMSE

20 4 0.781033 154.25 176.63
40 4 0.197025 94.80 110.27
60 4 0.098331 76.21 87.58
80 4 0.002876 72.84 83.12
100 3 0.003004 48.99 56.84
120 4 0.002904 39.44 45.63
140 4 0.002876 22.52 25.79
160 4 0.002876 20.05 23.11

The performance of the parallel PSO-LSTM model is presented in Table 5 along with the
performance results of four other models for comparison. In this experiment, other machine learning
models are also used to build training and test sets using 4 time steps. As illustrated in Table 5, the
optimized LSTM network model achieves better prediction accuracy, especially when compared to the
Bayesian network model. Figure 7 shows the prediction of COD time series using each model for 40
moments in time. As illustrated in Figure 7, when PSO-LSTM is used to predict water quality time
series, the results are closest to the original data, so this model is the most accurate.
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Table 5. Accuracy comparison of the PSO-LSTM model and other machine learning models.

Index Optimized
LSTM LSTM BP Neural

Network
Bayesian
Network

Decision
Tree

MAE 20.05 39.25 61.83 80.62 91.06
RMSE 23.11 44.56 53.88 68.19 78.4
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As illustrated in Table 6, the microservices architecture implementation greatly improves the
program execution efficiency of the prediction model compared to that of a PSO-LSTM model with a
serial implementation. The table compares the experimental findings with regard to the time taken
to complete various numbers of PSO iterations for the serial and parallel implementation of the
PSO-LSTM algorithm.

Table 6. Time consumption comparison of parallel and serial PSO-LSTM implementations.

PSO Iterations Serial PSO-LSTM Time (s) Parallel PSO-LSTM Time (s)

20 160.88 53.33
40 330.73 118.27
60 510.78 180.12
80 809.54 282.84

100 1213.79 404.69
120 1410.88 479.34
140 1702.58 583.42
160 2013.64 701.82

This paper uses the PSO-LSTM model trained in the above experiment to predict the TN, TP and
pH values. As shown in Figures 8–10 and Table 7, this model has a good prediction performance for
water quality time series prediction.
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Table 7. Accuracy of the PSO-LSTM model.

Index TN TP pH

MAE 4.89 0.45 0.76
RMSE 5.62 0.67 0.87

To further illustrate that the PSO-LSTM model used in this paper has higher accuracy in predicting
water quality time series, this paper compares it with the prediction results of literature [24], who used
a hybrid optimized BP network model to predict dissolved oxygen time series. The results are reported
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in Table 8. As indicated in Table 8, the PSO-LSTM model used in this paper generally has a smaller
MAPE value, which indicates a good performance at predicting water quality time series.

Table 8. Accuracy of the water quality time series prediction models.

Index MAPE

literature [24] dissolved oxygen 6.7219
PSO-LSTM COD 5.3845
PSO-LSTM TN 7.0321
PSO-LSTM TP 5.9364
PSO-LSTM pH 6.3451

5. Conclusions

With continuously increasing demand for prediction accuracy and efficiency, the complexity
of algorithms is also increasing; moreover, the amount of abnormal and missing values is growing,
leading to challenges in water quality analysis. To satisfy the need for water quality data of high
integrity and accuracy, a framework for water data cleaning of time series data is proposed in
this paper. First, a Z-score test is used to identify abnormal values and an SVR algorithm is used
to fill in abnormal and missing values. The PSO algorithm is used to optimize the selection of
the parameters for LSTM networks. To reduce the model execution time in a complex computing
environment, a parallel implementation of the PSO-LSTM algorithm is realized based on a microservices
architecture. In addition, the MAE and RMSE are used to evaluate the performance of the prediction
model. Experiments based on data from the Gaobeidian wastewater treatment plant have verified the
effectiveness of the presented model.

The experimental results presented in Section 4 show that the proposed parallel PSO-LSTM
method can provide accurate predictions and analytics regarding comprehensive water quality and it
can also perform increasingly complex computations in less time than standalone serial algorithms.
This model can be applied to forecasting and cleaning for any datasets similar to water quality time
series data; thus, this model has widespread application potential. Moreover, this study is valuable as
a reference for water quality forecasting. The results of this study promote the application of machine
learning algorithms to water quality prediction and the predicted results can guide decisions for future
water management. The framework proposed in this paper can be used as a general model for cleaning
time series data.

Based on the models proposed in this paper, further work will proceed as follows. The PSO
algorithm has a certain blindness and randomness; these shortcomings need to be studied and solved
in the future to determine the most appropriate value of the inertia weight used in this algorithm.
Future studies should further investigate the correlations of time series data in the time dimension
to fill in outliers more accurately. In addition, the communication between clusters uses the HTTP
protocol, while the HTTP protocol is a text protocol, so a large amount of bandwidth is wasted. More
efficient binary protocols should be studied in the future.
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