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Abstract: In this study, we investigated extreme droughts in the Indochina peninsula and their relationship
with the Indian Ocean Dipole (IOD) mode. Areas most vulnerable to drought were analyzed via statistical
simulations of the IOD based on historical observations. Results of the long-term trend analysis indicate
that areas with increasing spring (March–May) rainfall are mainly distributed along the eastern coast
(Vietnam) and the northwestern portions of the Indochina Peninsula (ICP), while Central and Northern
Laos and Northern Cambodia have witnessed a reduction in spring rainfall over the past few decades.
This trend is similar to that of extreme drought. During positive IOD years, the frequency of extreme
droughts was reduced throughout Vietnam and in the southwestern parts of China, while increased
drought was observed in Cambodia, Central Laos, and along the coastline adjacent to the Myanmar
Sea. Results for negative IOD years were similar to changes observed for positive IOD years; however,
the eastern and northern parts of the ICP experienced reduced droughts. In addition, the results of the
statistical simulations proposed in this study successfully simulate drought-sensitive areas and evolution
patterns of various IOD changes. The results of this study can help improve diagnostic techniques for
extreme droughts in the ICP.

Keywords: extreme drought; Indochina Peninsula; Indian Ocean Dipole; intentionally biased
bootstrap method

1. Introduction

Since the 1950s, an increase in atmospheric moisture demand and changes in atmospheric
circulation patterns due to global warming have contributed to increased aridity in many areas [1,2].
Furthermore, drought risk in the twenty-first century, indicated by model-simulated drought indices [3]
and soil moisture [4], is expected to increase.

Drought is often divided into four types [5]: meteorological or climatological, agricultural,
hydrological, and socio-economic. Of these four types, we chose to analyze meteorological drought
because this type of drought results in water shortages due to reduced rainfall [6]. To better anticipate
drought-related disasters in Southeast Asia, we studied the Indochina Peninsula (ICP). Several studies
focusing on the impacts of droughts have been conducted in the ICP. Recently, Le et al. [7] attempted to
ascertain the relationship between meteorological drought in the Khánh Hòa Province (Vietnam) and
climate signals, such as the Southern Oscillation Index and the Bivariate El Niño Southern Oscillation
(ENSO) time series. Their work shed light on the importance of climate signals of oceanic and
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atmospheric circulations in forecasting meteorological drought. However, little attention has been
paid to drought mitigation in this area [7–10].

An international Drought Management Program has been implemented by the Mekong River
Commission Secretariat for the Mekong River Basin. It aims to demonstrate the social impacts of
increased mitigation measures for droughts in the area [9]. To obtain a comprehensive view on drought
assessments, climate projections under different scenarios have also been used for a river basin in the
Vietnamese central highlands, an important area for coffee production and generating hydropower [10].
Herein, the importance of the regional climate model in investigations of water supply and water
balance in the region for future planning and adaptation has been highlighted. To improve rice yield,
Shu et al. [11] studied drought in Thailand and Laos, which are prone to early- and late-season droughts,
both of which have strong negative influences on crop yields in this region. It was proposed that
crop losses due to limited water supplies can be effectively reduced by using more drought-resistant
cultivars, applying appropriate fertilizers, and controlling sowing time.

To improve the predictability of droughts, their relationship with climate signals has been widely
investigated [6,12,13]. The Indian Ocean Dipole (IOD) mode represents anomalous and strong zonal
Sea Surface Temperature (SST) gradients in the tropical Indian Ocean (TIO), which has a distinct dipole
structure [14]. During the positive phase of the IOD, above-normal SST and precipitation are observed
in the Western Indian Ocean, while cooling and drying phenomena are dominant in the Eastern Indian
Ocean. The opposite is true during the negative phase. The impact of the IOD on SST is consistent
with that of rainfall over the central equatorial Indian Ocean. Wind anomalies induced by the IOD
can significantly enhance the SST difference and alter the thermocline in the Indian Ocean as positive
feedback, which is similar to the effects of the ENSO on the tropical Pacific [14,15]. Similarity between
the IOD and the ENSO and their strong local coupling mechanism have attracted significant research
attention [16,17], and because of this, the remote impacts of the IOD on ocean climate have been
widely detected.

To understand the global impacts of the IOD in detail, Saji et al. [18] examined its influence
on global temperature and precipitation independent of the ENSO. A strong correlation was found
between the IOD and rainfall and temperature across Europe, Northeastern Asia, America, and South
Africa. The impacts of the IOD on Australian [19–21] and South America rainfall [22] have also
been investigated. The anomalously cool SST of the Eastern Indian Ocean, induced by the positive
phase of the IOD, causes anomalous anticyclonic circulation over the Australian continent, which
reduces rainfall [19]. Inter-annual precipitation variability in Brazil also appears to be influenced by
the IOD through a mid-latitude wave train. Positive correlation between spatially averaged North
Atlantic and Indian Ocean SSTs might suggest a complex mechanism between the IOD and regional
precipitation [23]. Although the frequencies of the positive and negative IODs are not projected to
change, a decrease in the difference in magnitude between them is expected [24], which might have
impacts on the regional climate. An investigation of IOD events from 1880 to 2004 revealed a link
between the occurrence of intense and frequent positive IODs and regional climate [25].

This study aimed to improve drought prediction in the ICP, whose correlation with IOD has
not been investigated in detail. To this end, spring precipitation and extreme drought changes
caused by ocean warming in the Indo-Pacific region were analyzed. In addition, the IOD-sensitive
hotspots for extreme droughts in the ICP were identified using an intentionally biased bootstrap (IBB)
approach based on statistical simulations of observational data to determine drought predictability.
Moreover, trends in spatio-temporal variations in seasonal precipitation and extreme droughts in the
ICP were identified because the analysis of this trend will help in future predictions of droughts in the
area by improving our understanding of local climate variabilities.

2. Data and Methods

This study used the high-resolution (0.5◦ × 0.5◦) daily Climate Prediction Center Global Unified
Precipitation data for a period of 40 years (1979–2018) provided by the National Oceanic and
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Atmospheric Administration Earth System Research Laboratory, Boulder, Colorado, USA, to identify
spring (March–May) precipitation variability over the ICP region, which consists of six countries:
Myanmar, Thailand, Laos, Cambodia, Vietnam, and Malaysia (Figure 1). For extraction of two types of
El Niño events, a simple transformation proposed by Ren and Jin [26] was applied using the Niño 3 and
Niño 4 indices. To classify the IOD events, we used the monthly SST data obtained from the National
Oceanic and Atmospheric Administration in the TIO region. The three-month running average was
applied to the peak phase of the IOD mode during August–October, with ±1σ (standard deviation) to
identify positive and negative patterns of the IODs. Finally, 12 events (1961, 1963, 1967, 1972, 1977,
1982, 1994, 1997, 2006, 2012, 2015, and 2017) and 11 events (1954, 1958, 1960, 1964, 1971, 1975, 1989,
1992, 1996, 1998, and 2010) were selected as the strongest positive IOD years and negative IOD years,
respectively. The selected IOD years were used for composite analysis to investigate changes in the
long-term mean (1981–2010) of seasonal precipitation and extreme drought in the ICP.
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Figure 1. Indochina Peninsula (90◦ E–115◦ E, 5◦ N–25◦ N). The Indian Ocean Dipole (IOD) mode is
defined as the difference in the sea surface temperature between the western (10◦ S–10◦ N, 50◦–70◦ E) and
southeastern region (10◦ S to the equator, 90◦–110◦ E) of the tropical Indian Ocean, shown on the left panel.

In this study, the Standardized Precipitation Index (SPI) [27] was adopted to extract drought
information on a daily basis for each drought duration, using precipitation data from 1979–2018.
During the calculation of the SPI, n-day precipitation data was aggregated after each day from March
1 to May 31 to obtain the probability fitted to the gamma distribution, which was then converted
to a standardized normal distribution with a mean of 0 and a standard deviation of 1 [28]. In this
study, the extreme drought is defined as the number of drought events occurring during March–May
by applying a −1.5 threshold to the SPI calculated on a 30-day basis. The technique of approximate
conversion that transforms the cumulative probability of precipitation into a standardized variable Z
was developed by McKee et al. [27].

SPI = Z =

 −
(
t− c0+c1t+c2t2

1+d1t+d2t2+d3t3

)
, f or 0 < H(x) ≤ 0.5,

+
(
t− c0+c1t+c2t2

1+d1t+d2t2+d3t3

)
, f or 0.5 < H(x) < 1.

(1)

where

c0 = 2.515517, c1 = 0.802853, c2 = 0.010328,
d0 = 1.432788, d1 = 0.189269, d2 = 0.001308.

t =


√

ln
[

1
(H(x))2

]
, f or 0 < H(x) ≤ 0.5,√

ln
[

1
(1−H(x))2

]
, f or 0.5 < H(x) < 1.

(2)
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where x is precipitation, and H(x) is the cumulative probability of the observed precipitation.
Trend testing aims to specify whether an increasing or decreasing trend exists in time series

data. Since parametric tests require several assumptions involving normality, stationarity, and/or
independence of variables, non-parametric methods are preferred in meteorological and hydrological
studies. One of the widely used nonparametric trend tests is the Mann–Kendall (M–K) test [29,30].
Herein, we adopted a modified M–K test to consider autocorrelation in time-series data [31].
The accuracy of the modified M–K test was significantly improved by using autocorrelated data
to test the null hypothesis (H0) that no trend exists in the sample data. Using the modified M–K test,
we classified the confidence levels of the trends for the 90% and 95% intervals. In this study, trend
analysis was performed to identify spatio-temporal variations in seasonal precipitation and extreme
droughts in the ICP.

The Intentionally Biased Bootstrapping (IBB) method was developed by Hall and Presnell [32]
to adjust a “uniform” bootstrap by reducing bias or variance, or by setting some characteristics as
predetermined quantities. The IBB method makes it possible to apply the nonlinear relationship
between two parameters as the resampling probability to predict one of the parameters. Using the IBB
method, the change in the mean of the predicted parameter can be estimated according to the change
in the mean of the base parameter. Recently, Lee [33] employed the IBB method to assess the impact of
regional temperature on rainfall based on historical data before evaluating future changes in the global
warming scenarios of seasonal rainfall over the Korean Peninsula. The IBB approach can assess the
impact of rainfall as temperatures increase with the current climate horizon. Thus, the IBB method is
suitable for determining the sensitivity of regional rainfall with changes in SST in the Indian Ocean.

Briefly, after obtaining expected increase or decrease (∆µ) of the mean of the base parameter,
we resampled the parameter pairs with weights based on the sequence of the base parameter (arranged
from small to large) as follows:

Sr
i,n = (i/n)r (3)

where n is the number of parameter pairs, i = 1, . . . , n, and the weight order (r) is used to generalize
the weights. Then, using the equation below, we estimated r, and hence the resample weights.

∆µ =
1
ψr

n∑
i=1

Sr
i,nxi −

1
n

n∑
i=1

xi (4)

where ψr =
∑n

i=1 Sr
i,n

3. Results of the Analysis

3.1. Trends in Spring Precipitation and Extreme Drought

Trends in precipitation during spring (March–May) and extreme drought (1979–2017) in the ICP
are depicted in Figure 2. As shown in Figure 2a, the regions exhibiting increased spring rainfall are
mainly distributed along the east coast (Vietnam) and the northwest regions of the ICP, while central
and Northern Laos and Northern Cambodia experienced a decrease in spring precipitation during the
past four decades. This trend is similar to that of the extreme drought shown in Figure 2b, in which
Vietnam experienced fewer extreme droughts while the central and northern parts of Laos suffered
more extreme droughts. The increasing trend in extreme droughts appears across the ICP, except for
Vietnam, but this is not statistically significant.



Water 2019, 11, 1302 5 of 10
Water 2019, 11, x FOR PEER REVIEW 5 of 10 

 

 
(a)                                   (b) 

Figure 2. Trends in (a) spring precipitation and (b) extreme drought in the Indochina Peninsula. The 
modified Mann–Kendall (M–K) test was applied; statistically significant changes are highlighted in 
red (increasing trend) and blue (decreasing trend) for 90% (significant) and 95% (highly significant) 
confidence intervals. 

3.2. Composite Anomaly of Extreme Drought for IOD Modes  

Figure 3 shows the composite anomalies of extreme drought during the spring season (March–
May) for positive and negative IOD years. During the positive IOD years, negative anomaly patterns 
of drought were dominant throughout Vietnam and the southwestern region of the Yunnan Province 
in China. However, a positive anomaly became evident over central Cambodia and Laos, with 
distinct abnormalities occurring along the coastline adjacent to the Myanmar Sea; in some areas, 
abnormalities recorded were more than 160% higher than usual. Furthermore, if both positive IOD 
years and El Niño events occurred simultaneously, the spatial distribution of extreme drought was 
observed to intensify only compared to drought anomaly patterns during the positive IOD years. The 
change in extreme drought during negative IOD years was similar to the change in positive IOD 
years. Positive anomaly of extreme drought around Myanmar’s coastline was weakened, and positive 
anomalies were more evident across Cambodia. The results for negative IOD years were similar to 
the changes for positive IOD years; however, the anomalies increased towards Northern Laos, 
Northeastern Myanmar, and Northern Thailand. These changes were more evident when the 
negative IOD years coincided with La Niña events.  

 
(a)                                (b) 

Figure 2. Trends in (a) spring precipitation and (b) extreme drought in the Indochina Peninsula.
The modified Mann–Kendall (M–K) test was applied; statistically significant changes are highlighted
in red (increasing trend) and blue (decreasing trend) for 90% (significant) and 95% (highly significant)
confidence intervals.

3.2. Composite Anomaly of Extreme Drought for IOD Modes

Figure 3 shows the composite anomalies of extreme drought during the spring season (March–May)
for positive and negative IOD years. During the positive IOD years, negative anomaly patterns of
drought were dominant throughout Vietnam and the southwestern region of the Yunnan Province
in China. However, a positive anomaly became evident over central Cambodia and Laos, with
distinct abnormalities occurring along the coastline adjacent to the Myanmar Sea; in some areas,
abnormalities recorded were more than 160% higher than usual. Furthermore, if both positive IOD
years and El Niño events occurred simultaneously, the spatial distribution of extreme drought was
observed to intensify only compared to drought anomaly patterns during the positive IOD years.
The change in extreme drought during negative IOD years was similar to the change in positive IOD
years. Positive anomaly of extreme drought around Myanmar’s coastline was weakened, and positive
anomalies were more evident across Cambodia. The results for negative IOD years were similar
to the changes for positive IOD years; however, the anomalies increased towards Northern Laos,
Northeastern Myanmar, and Northern Thailand. These changes were more evident when the negative
IOD years coincided with La Niña events.
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3.3. Changes in Extreme Drought Using the IBB method

Figures 4 and 5 show the results of composite anomalies of extreme drought (shown as a
percentage of the normal) during spring in relation to positive and negative IOD simulations over the
ICP. An increase of 0.25σ in IOD (Figure 4) resulted in more extreme drought across Laos and along
the coastline adjacent to the Myanmar Sea, and less extreme droughts than usual across Southern
Cambodia, Vietnam, and Northwest Myanmar, adjacent to the Bay of Bengal. As IOD increases,
drought changes appear more severe. The northwestern region of Myanmar was observed to have
a statistically significant increase in extreme drought for more than 0.5σ of the IOD. Some parts of
Southern Thailand and Western Cambodia showed a statistically significant negative anomaly pattern
of extreme drought. These patterns tended to be reinforced when drought symptoms appeared from
+0.75σ to +1σ of the IOD. In addition, statistically significant patterns of positive anomalies in extreme
droughts in some areas along the coastline of the Myanmar Sea were observed in cases of more than
+1σ of IOD changes.
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Figure 4. Percentage changes in extreme drought over the Indochina Peninsula (departures from the
1981–2010 norms). The climatology mean of IOD (1981–2010) was deliberately increased by 0.25σ
through IBB simulations to analyze the sensitivity of extreme drought to the warming phase of IOD in
the tropical Indian Ocean. In each figure, the median results derived from 1000 simulations are shown
and the statistically significant area of change at 95% significance level is represented by “x”.

Figure 5 shows a 0.25σ decrease in the IOD. When negative IODs were strengthened, it was found
that extreme droughts were less frequent throughout Laos, Vietnam, and the southwestern region of the
Yunnan Province in China. However, in Northwestern Myanmar, some parts of Thailand, and in regions
adjacent to the Andaman Sea, extreme drought increased, leading to greater drought vulnerability.
In addition, IOD-sensitive areas with more extreme droughts emerged in the northwestern parts of
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Myanmar, especially as changes in negative IOD became apparent. However, the eastern and northern
parts of the ICP showed a contrasting response to negative IOD. The simulated results indicated that
extreme droughts throughout Northwestern Myanmar and Thailand were more frequent than usual.
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4. Discussion and Conclusions

IOD in the Indian Ocean and ENSO in the Pacific Ocean are the results of atmospheric–ocean
interactions in each region. Both phenomena can be identified by SST anomalies and are reported to
have a direct impact on rainfall occurring globally [14,17,34–36]. The ENSO phenomenon has been
officially observed since 1985 [37] and is relatively well known for its anomalous convection, wind
patterns, and predictable short–term behaviors [38–41] within the global climate system. However, there
is still a lack of understanding of interactions, evolutionary patterns, and predictability of new forms
of El Niño [42].

Long-term drought conditions in Southeast Asia generally relate to El Niño, while wetter
conditions tend to be associated with La Nina [43]. These changes are consistent with the results of
the composite analysis of IOD and ENSO conducted in this study. When positive IOD and El Niño
occur simultaneously, the spatial distribution of spring rainfall is significantly reduced compared to
the rainfall anomaly pattern that takes into account positive IOD years only. Results for negative IOD
years are similar to the changes observed for positive IOD years, but it is expanding to Northern Laos,
Northeastern Myanmar, and Northern Thailand. These changes are more evident when the negative
IOD years coincide with La Niña events.

Although different forms of El Niño have been reported to occur with increasing frequency in
the central Pacific since the 2000s [36,40], the exact causes of these occurrences and their impacts on
the Indian Ocean and Pacific Rim countries—according to the evolution patterns of different types
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of El Niño events—are still unknown. Identification of different types of El Niño is evidence that
ENSO events are not well understood and are certainly unpredictable [42]. Furthermore, ENSO and
IOD–rainfall linkages in the ICP show significant spatial and seasonal variations. Recent studies
suggested that the slowdown in the observed global average atmospheric temperature rise is closely
related to substantial heat transfer from the Pacific Ocean to the Indian Ocean through Indonesian
throughflow [44–46]. Despite similarities with ENSO, the IOD is an even more recent discovery with
even less understood implications [14,18].

The spatio-temporal connection between SST and winds shows a strong coupling of precipitation
and ocean dynamics in the Indian Ocean. However, with regards to the IOD phenomena,
few quantitative studies provide a complete picture of extreme drought fluctuations across the
ICP. Therefore, in this study, areas most vulnerable to drought were analyzed through statistical
simulations of IODs using the IBB method based on historical observations.

The results of the long-term trend analysis show that the areas where spring rainfall has increased
are mainly distributed along the eastern coast (Vietnam) and the northwestern portions of the ICP,
while central and Northern Laos and Northern Cambodia have experienced a reduction in spring
rainfall over the past few decades. This is because of the Truong-Son Mountains in Vietnam, which are
adjacent to the South China Sea, have relatively abundant rainfall, whereas Laos has seen relatively
little rainfall. This trend is similar to that of extreme droughts. Vietnam experienced less severe
droughts, but central and Northern Laos suffered more severe droughts. During positive IOD years,
extreme drought occurred less than usual throughout Vietnam and Southwestern China, while more
droughts were observed in Cambodia and central Laos, as well as along the coastline adjacent to the
Myanmar Sea. Results for negative IOD years are similar to changes observed for positive IOD years;
however, the eastern and northern parts of the ICP are experiencing a decrease in droughts. In addition,
the results of the statistical simulations proposed in this study successfully simulate drought-sensitive
areas and evolution patterns for various IOD changes.

Investigating SST changes in the Indo-Pacific Ocean can help improve the understanding
of regional–scale climatic variability as well as quantitatively diagnose this variability.
Moreover, the sensitivity analysis of extreme drought to IODs based on the statistical simulations
demonstrates the importance of further investigation of the mechanisms of IOD impacts on drought
evolution in the ICP, which may include complex coupled oceanic–atmospheric processes. Although the
results obtained herein were based on limited observations, the study’s findings have strong implications
for improving extreme drought predictions in the ICP.
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