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Abstract: A fully coupled simulation of ecophysiological, hydrological and biochemical processes is
significant for better understanding the individual and interactional impact of sophisticated land
surface processes under future disturbances from nature and human beings. In this study, we
spatially explicitly modelled evapotranspiration (ET) and photosynthesis (GPP) using a distributed
hydrological model, Dynamic Land Model DLM-Ecohydro, over the Upper Heihe watershed for the
years of 2013 and 2014. After considering the lateral water movements, the model fairly captured
the variations in ET (R2 = 0.82, RMSE = 1.66 mm/day for 2013; R2 = 0.83, RMSE = 1.53 mm/day for
2014) and GPP (R2 = 0.71, RMSE = 5.25 gC/m2/day for 2013; R2 = 0.81, RMSE = 3.38 gC/m2/day for
2014) compared with the measurements from the Arou monitoring station. Vegetation transpiration
accounted for total ET of around 65% and 64% in 2013 and 2014, respectively. A large spatial variability
was found in these two indicators (14.30–885.36 mm/year for annual ET and 0–2174 gC/m2/day for
annual GPP) over the watershed. Soil texture and vegetation functional types were the major factors
affecting ET and GPP spatial variability, respectively. The study manifested a coupled water–carbon
mechanism through the strong linear relationship between the variations in ET and GPP and the
control of hydrological processes on the carbon cycle at the watershed scale. Although the model had a
reasonable performance during most parts of the growing seasons, the lack of a soil freezing–thawing
scenario caused inevitable discrepancies for the simulation of soil water and heat transfer mechanisms,
hence inaccurately estimating the biophysiological processes in the transition period of winter to
spring, which should be further improved especially for alpine regions.

Keywords: coupled water–carbon processes; hydro-ecological modeling; lateral water fluxes;
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1. Introduction

The land surface ecological processes significantly affect the cycling of energy, mass and moisture
between the soil, vegetation and atmosphere. These dynamics also make the land surface an important
energy and moisture source, sink and reservoir, and hence contributed a lot to terrestrial and climate
systems [1,2]. However, the sophistication of individual, and interactions between, hydrological,
ecophysiological and energy cycles are hard to comprehend because of the related nonlinear feedback
mechanisms, especially for landscape-scaled ecohydrological processes and the uncertainty of natural
and anthropogenic disturbances [3]. The tight linkage between water and carbon dynamics is expressed
in many hydrologically controlled ecological processes, for instance, respiration [4], photosynthesis [5],
water use efficiency [6] and crop coefficient analyses [7].

Currently, there are many ecophysiological modeling researches published at multiple
spatio-temporal resolutions and spans, including point scales [8,9], mesoscales [10,11] and global
scales [12] at yearly [13] or minute time-steps [1], while few of them completely considered the soil water
processes and the non-linear relationship between it and vegetation ecophysiological processes. Due to
the limited understanding of water–carbon interactions, many researches (regardless of modeling
or measurement) often regard them as an isolated process [2]. At mesocales, especially for the
watershed scale, where the land surface ecological processes are highly sensitive to local water balance,
topography is an important contributor for local water cycling and, furthermore, ecophysiological
processes. Many researches [14–16] suggested that the overlook of topographical-controlled lateral
water fluxes would cause significant biases in local estimation of water (evapotranspiration, runoff and
soil moisture) and carbon fluxes (GPP: Gross primary productivity, NPP: Net primary productivity
and NEP: Net ecosystem productivity). For the traditional hydrological models, although they can
completely consider the watershed hydrological processes, they always neglect or simplify the impact
of vegetation on soil water and their ecophysiological processes.

Evapotranspiration (ET) and photosynthesis (as GPP) are two critical ecophysiological processes
for the connection between land surface water, energy and carbon cycling, and both of them are highly
governed by local soil hydrological processes. For GPP, the surrounding water content of the rhizome
controls photosynthesis efficiency through the effect of vegetation stomatal and enzyme activity [17].
ET has a stronger interaction with the local water and energy balance. About 70% of the precipitation
that falls on the land surface gets back to the atmosphere by vegetation ET, and in arid areas ET loss can
be up to 90% [18]. Simultaneously, because vaporization and sublimation would take the absorption of
heat, it is also important for local thermal balance. The coupling of water and carbon cycling can better
explain these ecohydrological processes and, therefore, help make more efficient decisions for local
environmental management.

The Heihe River is the second largest inland river in northwest China and originates from the
Qilian Mountains which is in the northern margin of the Tibetan Plateau. It is located in the center
of the Eurasian continent, playing an important role in the ancient Silk Road [19]. The upper stream
of the watershed takes up around 7% of the Heihe basin area, and is the water source of the whole
basin with a wide distribution of grassland which plays a significant role for local carbon assimilation
and water cycling [20]. Influenced by the westerly belt circulation and the cold continental polar
air mass, the Upper Heihe watershed has an arid to semiarid climate with scarce and concentrated
precipitation [21,22]. The water shortage and complex topography are major reasons for sparse
vegetation coverage, and hence a more fragile ecological environment [23]. Hitherto, the estimations
of ET and GPP in the Upper Heihe watershed were isolated. Yang [24] utilized micro-lysimeters to
test the performance of four energy balance methods for ET estimation in the meteorological station
of Qilian Mountains, and found that the FAO-56 Penmen-Monteith provided the highest accuracy.
Wang [25] established the relationship model between four stations’ eddy-covariance-based GPP
and the leaf area index (LAI), with vegetation indexes extracted from Moderate Resolution Imaging
Spectroradiometer (MODIS) in the Heihe River basin. Yan [20] utilized a remote sensing-based light
use efficiency model (MODIS MOD_17) to simulate the GPP of the Upper Heihe watershed, and found
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that temperature and vapor pressure deficiency had a positive relationships with GPP. These researches
lack the description of an ecological water and carbon-coupled mechanism, neither considering the
effect of rhizosphere soil water on carbon assimilation rate, nor considering the feedback of the soil
carbon pool, biological carbon pool and vegetation growth on the ecosystem water cycle. Sun [26]
compared the performance of two land surface models—Community Land Model 4.0 (CLM 4.0) and
Dynamic Land Model 1.0 (DLM 1.0)—in the simulation of soil organic carbon of the Upper Heihe
watershed, and found that these land surface modes had low accuracies for soil moisture estimation
in this cold alpine region. The coupling of the distributed-hydrological and traditional biological
models is needed for the watershed scale ecophysiological simulation, because it considers not only
the microclimate and topographically controlled soil water movement, but also vegetation-unique
ecophysiological characters.

This study utilized a process-based ecohydrological model (DLM-Ecohydro) to simulate two
ecophysiological processes, evapotranspiration and photosynthesis, in the cold alpine region. We will
test how the model performed after considering topographically controlled lateral water movement
and the coupling of the water cycle and carbon assimilation at daily time steps. Through the study of
spatiotemporal differentiation of ET and GPP in the Upper Heihe watershed, we will also explore the
driving mechanism of ecosystem water and carbon flux variations.

2. Materials and Methods

2.1. Study Area

The eco-hydrological simulation focused on the Upper Heihe watershed which covers around
10,009 km2 in the northeastern part of the Tibetan Plateau, China (Figure 1). The distributions of
precipitation and landscapes have strong spatial heterogeneity with a significant topographic relief
(from 1600 to 5100 m above sea level). The annual precipitation ranges from 250 mm in lower altitude
areas, to 500 mm in higher zones. Melting water from glaciers and snow effectively compensates
surface overland and subsurface runoff during spring and early summer [27]. The Upper Heihe
watershed is a classical alpine-cold climate with most of the typical landscapes of cold regions, include
alpine grassland, alpine meadow, forest, glacier, barren and so on. According to Qin [28], more than
98% of forests fall in the 2000–4000 m a.s.l. area in the watershed. Glaciers lie in places over 4500 m
a.s.l. and takes up around 3.4% of the whole watershed area. Grassland and shrubland are mainly
distributed in the 1700–4900 m a.s.l. and 2900–5066 m a.s.l. areas, respectively. The annual temperature
of the Upper Heihe watershed is lower than 2 ◦C. Biogeographically, solar and topographic condition
are important factors which control the composition of vegetation species. In terms of grassland,
Reaumuria soongorica and Sympegma regelu are the main species on sunny slopes, while for shady slopes,
it majorly consists of Polygonum viviparum and Carex atrata [29]. Clay is the major soil type within
the watershed.

2.2. Model Discription

This study utilized a processed-based model, DLM-Ecohydro, which was developed from the
Boreal Ecosystem Productivity Simulator (BEPS)-TerrainLab V2.0 [15] and DLM [30]. It modified the
modeling period of BEPS-TerrainLab V2.0 from one year to multi-year and localized the vegetation
characters for an arid-cold mountain region. Depending on the input datasets, the model is able
to resample and run at any spatial resolution. It is carried out using a “four-leave” approach to
separate leaf stratifications according to different soil moisture and sunshine states and then spatially
upscaled from the leaf to the canopy level. Figure 2 shows a flow chart of the model. Under the input
datasets, the model obtains the necessary meteorological and geological conditions, the biophysiological
characteristics of local vegetation and the initial ecohydrological status of the watershed. The input
energy and precipitation to ecosystem are intercepted according to a hierarchical order at the canopy
scale. Rather than a simple bucket model used in Boreal Ecosystem Productivity Simulator (BEPS),
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DLM-Ecohydro completely considers the effects of lateral fluxes on the above ecophysiological
processes by solving a water balance equation. After considering the interactions between ecosystem
energy, biochemical and hydrological processes, the model could fairly represent the dynamic states of
ecological and hydrological indicators.

Figure 1. Location of the Upper Heihe watershed.

Figure 2. Flow chart of the DLM-Ecohydro model.
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2.2.1. Ecophysiological Processes

The DLM-Ecohydro model separates canopy into overstory, understory, moss and soil surface.
According to different light conditions and soil moistures states of the rhizosphere, the leaves of each
part were divided into sunlit and shade, saturated and unsaturated states. Taking overstory canopy,
for example, the conceptualizations of leaf-specific physiological processes is listed as follows:

Po,sun,sat = fx
(
Rsun, gs,sun,sat

)
,

Po,sun,unsat = fx
(
Rsun, gs,sun,unsat

)
,

Po,shade,sat = fx
(
Rsahde, gs,shade,sat

)
, and

Po,shade,unsat = fx
(
Rshade, gs,sahde,unsat

)
,

(1)

where Po is overstory canopy transpiration or photosynthesis from: Sunlit leaves with saturated
soil water condition (Po,sun,sat); sunlit leaves with unsaturated soil water conditions (Po,sun,unsat);
shaded leaves with saturated soil water condition (Po,shade,sat); and shaded leaves with unsaturated
water condition (Po,shade,unsat). Function fx can be either the Penman-Monteith equation for each
sub-component of ET (except for sublimation) or the Farquhar model [31] for GPP simulation. R is
overstory net radiation for ET and short wave radiation for GPP calculation for sunlit (Rsun) or shaded
(Rshade) leaves; gs, overstory stomatal conductance of H2O and CO2 for ET and GPP, respectively, from:
Sunlit leaves with saturated soil water condition (gs,sun,sat); sunlit leaves with unsaturated soil water
conditions (gs,sun,unsat); shaded leaves with saturated soil water condition (gs,shade,sat); and shaded
leaves with unsaturated water condition (gs,shade,unsat). The up-scaling scheme employed a specific
LAI and root fraction as weighting terms, expressed as follows:

Po = [Po,sun,sat × LAIsunlit × µo + Po,sun,unsat × LAIsunlit × [1− µo]]+

[Po,shade,sat × LAIshade × µo + Po,shade,unsat × LAIsahde × (1− µo)],
(2)

where Po is overstory canopy ET or GPP, and LAI is the function of the solar zenith angle to divide
sunlit (LAIsunlit) and shaded (LAIshade) leaves. µo represented overstory roots in the unsaturated zone
and (1 − µo) was that in the saturated zone. The fraction of root µ was the function of the root extinction
coefficient and water table depth based on the specific pixel and Julian day [32]. The upscaling scheme
defaulted the understory canopy just as has shaded leaves. There was no upscaling of soil surface
physiological processes because the model deemed it as a single layer with ground specific radiation
and soil conductance.

2.2.2. Water Balance Calculation

In the DLM-ecohydro model, the detailed water balance equation considers the lateral water flux
by the description of surface overland floor (Fsurface) and sub-surface baseflow (Fsubsurface) at the pixel
scale and daily time steps. Once the infiltration process reaches its max capacity [33], the ponded
water would appear on the soil surface and move laterally as Fsurface. The topography derived
lateral subsurface baseflow is the difference between subsurface inflow and outflow within eight
neighboring pixels as described in [15]. Water balance calculations are composed with storage changes
at unsaturated (∆Wunsat) and saturated (∆Wsat) soil parts which are presented below:

∆Wunsat = I− Fsurface + C− P− Tunsat − Efloor, (3)

∆Wsat = P− Fsubsurface − Tsat −C, and (4)

∆W = I− Fsurface − Fsubsurface − Tunsat − Tsat − Efloor (5)

where I is total infiltrated water which is comprised of through-fall, snowmelt and stem flow [34],
P is percolation and represented the water in the unsaturated zone downward to the saturated part
under the impact of gravity, while C is capillary rise upward from the saturated to vadose zone
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appearing under extreme surface dryness. Tunsat and Tsat are the transpirations from roots situated
in the unsaturated and saturated zones, respectively. Efloor is soil evaporation and sublimation of
snowpack. The complete soil profile storage change is the sum of two soil zones (Equation (5)).

2.3. Data Preparation

2.3.1. Spatial Datasets and Model Initialization

Most of the spatial datasets were generated based on the combination of GIS, remote sensing,
field monitoring and modeling. All of these datasets were resampled to the same spatial resolution
(100 m × 100 m) and projected in World Geodetic System-1984 Coordinate System (WGS-84). The digital
elevation model (Figure 3a) was obtained from a 30 m Advanced Spaceborne Thermal Emission and
Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) dataset. It was crucial for
the computing of lateral hydrological processes and spatial interpolation of various meteorological
parameters. Watershed land cover (Figure 3b) was obtained from a 30 m global LC dataset, GlobaLand30,
and merged as part of the classifications to fit DLM-Ecohydro. After model parameters localization and
optimization, the biophysical parameters for the major land cover types in the Upper Heihe watershed
are shown in Table 1. A soil texture map (Figure 3c) was obtained from a 1 km Harmonized World Soil
Database (HWSD) dataset established by the FAO and IIASA. The key hydraulic properties of the four
main soil types in the Upper Heihe watershed are shown in Table 2. The watershed annual maximum
LAI (Figure 3d) was generated from Moderate Resolution Imaging Spectroradiometer (MODIS) LAI
production (MOD15A2), July 2013. In addition to the spatial datasets above, an initial water table depth
(WTD) and ecosystem C-pools (including four biomass C-pools and nine soil C-pools) were necessary
for the eco-hydrological and biogeochemical module of DLM-Ecohydro. We used CLM4.0 [35] to
spin up WTD based on 2013 meteorological and topographical data, and similar iteratively running
processes for current sizes of ecosystem carbon pools were based on the CLM4.0 biogeochemical
module. The spun up WTD and ecosystem carbon pools were input as 2013 initial datasets and
subsequently used for two years of simulation.

Figure 3. Main spatial dataset of the Upper Heihe watershed prepared for model input: (a) digital
elevation model (DEM), (b) land cover, (c) soil texture, and (d) maximum leaf area index (LAI).
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Table 1. Biophysical parameters of major landscape types in the Upper Heihe watershed.

Parameter Names Unit Conifer Deciduous Grassland Wetland

Canopy clumping index - 0.5 0.8 0.9 0.9
Maximum stomatal conductance m/s 0.0016 0.005 0.0055 0.005

Root decay rate - 0.94 0.96 0.95 0.93
Maximum carboxylation rate at 25 ◦C µmol/m2/s 33 60 40 33
Precipitation interception coefficient mm/LAI/day 0.2 0.3 0.25 0.1

Max. leaf N content % 1.6 1.8 1.6 1.2
Ration of gs,max of overstory to understory - 1.7 0.5 1.2 1
Optimum temperature for photosynthesis ◦C 20 25 20 20

Table 2. Hydraulic properties of four main soil types in the Upper Heihe watershed.

Soil Hydraulic Parameter Unit Clay Loam Clay Loam Sandy Loam

Field capacity - 0.4 0.27 0.3 0.23
Wilting point - 0.27 0.12 0.2 0.1

Porosity % 0.457 0.463 0.464 0.453
Max. surface conductance mm/s 0.2 0.8 0.5 1

Ksat,ver m/day 0.11 1.8 1.2 3.2
Ksat,hor m/day 10 2.5 1.5 3.5

Ks decay rate m−1 0.02 0.04 0.029 0.042
The exponent of the

Brokes–Corey parameter - 11.4 5.39 5.5 4.9

2.3.2. Meteorological Datasets and Flux Measurement

The input meteorological datasets included daily maximum, minimum and average temperature
(◦C), median dew point (◦C), total precipitation (mm), wind speed (m/s) and total short-wave radiation
(W/m2). These datasets were derived from the Heihe Warershed Allied Telemetry Experimental
Research (HiWATER) at the Arou Superstation, which is located in the southeastern part of the study
area (100.46◦ E, 38.05◦ N) [36,37]. Except for the input datasets above, the energy and carbon fluxes and
soil moisture data were also prepared for model validation. Simulated volumetric soil water content
(VSWC) were compared with a 0–40 cm average measurement with cosmic-ray probes buried at the
Arou station, with a footprint scale of 700 m in diameter [38]. The eddy covariance (EC) technique
was used in the Arou footprint tower for continuous and long term monitoring of energy and CO2

fluxes. GPP was derived from the fluxes of net ecosystem exchange (NEE) measured at the EC tower.
Based on the Lloyd–Taylar model [39], the relationship between temperature and respiration during
the night was used to estimate the daylight respiration rate, thereafter GPP flux could be detected from
monitored NEE. The evapotranspiration was converted from measured latent heat fluxes (LE, W/m2)
as shown below, where λ is 2.501 × 106 J/kg from [35].

ET = LE/λ. (6)

3. Results and Discussion

3.1. Temporal Patterns of Hydrological Indicators

Volumetric soil water content (VSWC) was affected by precipitation, melting runoff, soil
temperature and other hydrological or meteorological factors. The model was able to capture
the reasonable magnitude and fluctuation of VSWC during most parts of the growing seasons. Figure 4
reveals that the VSWC was between 0.25–0.45 from day of the year (DOY) 170 to DOY 300 and rapidly
responded to daily precipitation at the Arou station. The VSWC reached to field capacity (0.4) around
DOY 190 of both years because of the adequate water input from snow melting and rainfall. While
experiencing days lacking precipitation (DOY 210–230 of 2013; DOY 190–215 of 2014), the VSWC
dropped under the permanent wilting point (0.27). And during this time, ecosystem evapotranspiration



Water 2019, 11, 1242 8 of 17

and lateral water fluxes were the major reasons for soil water losses. There was a dense precipitation
after DOY 230 which made the VSWC remain over field capacity. On the other hand, 2013 experienced
a prolonged drier autumn that induced a gentle but continuous fall down of VSWC until below the
permanent wilting point. While the model overestimated the VSWC during spring and winter when
the soil was in a frozen state, it was probably because the model did not take the soil freezing–thawing
process into consideration. During the soil frozen period, the permeability would decrease and soil
hydraulic characteristics would consequently change. Rather than infiltrated into soil profile, most of
the precipitation would drain out as surface overland flow. The lack of these dynamic transformations
in the model domain might trigger an unrealistic estimation for soil moisture state. The study area is
located in the cold alpine region where the negligence of melting runoff from glaciers and accumulated
snowpack might cause the underestimation of soil water especially during spring and early summer.

Figure 4. Temporal dynamics of volumetric soil water content (VSWC) between day of the year (DOY)
170–300 in 2013 (a) and 2014 (b).

Figure 5 shows the temporal patterns of two years of lateral water fluxes in the Arou site.
On account of the lack of validation data, we only compared it with the daily precipitation. The model
captured a rapid response of lateral water fluxes to precipitation in spring and early summer. Under a
denser precipitation, the lateral water fluxes of 2014 were much higher than that of 2013. Because in
DLM-Ecohydro the surface overland flow (SOLF) was estimated only when saturated water diffuses
up to the land surface, i.e., WTD ≤ 0, subsurface baseflow ( SSB) took the major part of the lateral
hydrological fluxes. It could reach to 9 mm/day in 2013 and 10 mm/day in 2014 during May and June,
respectively. This simulation is more suitable for the soil texture with high hydraulic conductivity,
while for clay, it might underestimate the SOLF during dense rainfall periods when the infiltration rate
is much lower than the precipitation rate.
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Figure 5. Temporal dynamics of simulated subsurface baseflow (SSB) and surface overland flow (SOLF)
and precipitation in 2013 and 2014 at Arou Station.

3.2. Spatial and Temporal Patterns of ET

The temporal patterns and magnitudes of ET are well simulated through the DLM-Ecohydro
model, which were able to explain 82% (RMSE = 1.66 mm/day) and 83% (RMSE = 1.53 mm/day) of
the variability in 2013 and 2014, respectively. The model agilely captured the seasonal patterns of ET
losses at the Arou station of both years: With a fluctuated rise during the early summer until up to
the top magnitude (around 5 mm/day) at mid-summer and then decrease to lower than 1 mm/day
within September and October (as shown in Figure 6). Although the model could capture most of
the variation during a year, there was a general underestimation especially in the winter and early
summer. One possible reason for winter ET underestimation was the snow sublimation might cause
an increase of latent heat measured through the EC tower. Snowfall is a crucial part of the ecosystem
water cycle in the Tibetan Plateau of China [40], which has quite a number of accumulated snowpack
during winter. According to the findings of Molotch [41], there could be a rapid response of the
EC tower to detect the intercepted snow sublimation from the upper canopy. This contributed to
a higher observed ET that the model underestimated. At the same time, the only water input of
the DLM-Ecohydro model was precipitation which converts to rainfall or snowpack accumulation
depending on air temperature. However, above 4500 m a.s.l. alpine region, ice and snowpack covered
all year, which induced an increased snowmelt runoff during spring and summer. Li and Wang [42],
utilizing snowmelt runoff model (SRM), demonstrated that May and June are major melting months,
and the melting runoff can take more than 50% of the total runoff in the Upper Heihe watershed.
The negligence of melting runoff from high altitude snow/ice pack might contribute to the considerable
underestimation during early summer. One the other hand, the model calculated plant stomatal
conductance with the ambient air temperature, while considering the freezing–thawing process in
alpine cold regions, the change of soil temperature usually lagging behind that of air temperature,
with a relatively gently periodic variation [43]. It might cause an uncertainty in simulation of stomatal
conductance and further cause the discrepancy of ET estimation. For this problem, Govind [34]
provided a rectified Jarvis algorithm, including a soil temperature scalar as an environmental factor to
calculate stomatal conductance. For further development of the DLM-Ecohydro model, it is necessary
to take this modification into consideration. Figure 7 reveals simulated sub-components of Arou
station ET in two years. Because the underlying surface of the station is grassland (understory LAI
was set as 0), only overstory canopy was took into consideration. In both years, canopy transpiration
was the most important component, and took around 65% and 64% of ecosystem ET for 2013 and 2014,
respectively. Previous research also demonstrated that ET loss from transpiration can reach 60–80%,
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especially during the growing season [44]. The flowing loss forms were soil evaporation and canopy
intercepted evaporation, accounting for 22–24% and 11–14% in both study years, respectively.

Figure 6. (a) Time-series comparison of modeled and observed evapotranspiration (ET) for 2013 and
2014 in the Arou footprint area. (b) Combined comparison between simulated and measured ET for
2013 and 2014.

Figure 7. Simulated magnitudes of ecosystem ET sub-components in the Arou footprint area in 2013
and 2014, between DOY 1 and 365.

The findings of the simulation showed that the annual ET of the Upper Heihe watershed
was around from 14.3 to 885 mm in two study years (Figure 8). Theoretically, the differences in
ecophysiological properties (e.g., gsmax, Ω and vegetation height) between vegetation functional types
might highly govern the ET losses distribution through their effects of transpirational loss [45]. At the
same time, the architectures of different vegetation canopies would affect the over/understory radiation
transfer mechanisms [46]. However, spatial heterogeneity of annual total ET had a huge diversity even
within the same vegetation stand in the Upper Heihe watershed. The spatial average values of annual
ET in deciduous and conifer stands had little discrepancy (131–145 mm) in both years. Annual potential
ET losses in the watershed were much more reliant upon soil texture, topography and LAI distribution.
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Figure 8. Simulated spatial patterns of annual total ET for 2013 (a) and 2014 (b) in the Upper
Heihe watershed.

In terms of three major soil textures in Upper Heihe, the annual average modeled ET of silt loam
was 340 mm in 2013 and 320 mm in 2014. For loam, it was 237 mm in 2013 and 219 mm in 2014, while
clay only had average values of 162 mm in 2013 and 147 mm in 2014 even if it was the most widely
distributed soil type in the watershed. One reason for the minimum ET loss of clay was because it
had a lower vertical hydraulic conductivity that restricted the water infiltration from soil surface and
further limited vegetation transpiration rate. And from HWSD, soil depth of clay was much shallower
than that of others. As a result, under the same amount of water input, the rhizosphere of clay was
more likely to be located in the saturated zone in the modeling domain. This could cause a lower
ET efficiency because the transpirational losses in the saturated zone are much lower than that in
unsaturated zone, as shown in Figure 7.

Additionally, annual ET was also highly in concordance with the DEM and LAI distributions in
the simulation. Savenije [47] pointed out that topography is one of the most important factors affecting
hydrological behavior in watershed scale, and closely related with distribution of plant functional
types, soil properties and climate factors. The watershed with a relatively higher ET loss (>200 mm) is
mainly concentrated in the south-eastern part of the watershed and near the river outlet area, which
has a relatively lower altitude and gentle slope. Comparing with a high elevation mountainous area,
the climate of a lower and outlet contiguous area was much warmer and wetter. However, it is
important to note that the spatial distribution of soil texture and LAI were obtained from 1 km datasets.
Although they were upscaled to 100 m to fit the model, they cannot provide such detailed spatial
information. Considering the high dependence of ET on these two variables, the coarse spatial datasets
might lead to unrealistic driving forces to some extent. For instance, the inaccurate classification of
clay might over/underestimate total ET because of its restricted effect on vegetation transpiration.

3.3. Spatial-Temporal Patterns of GPP

Figure 9 reveals the comparison between simulated and observed daily GPP at the Arou footprint
site in 2013 and 2014. The model fairly captured seasonal variations of GPP and explained 71%
with RMSE = 5.25 gC/m2/day in 2013 and 81% with 3.38 gC/m2/day in 2014. The model had a good
performance in the estimation in GPP magnitudes of two study years. Nevertheless, comparing with
measurements, there was a general overestimated GPP in spring and autumn while during June and
July there was an underestimation in both years. Li [6] explored the spatiotemporal variations of water
use efficiency (WUE), which represents the ratio of CO2 assimilation to vegetation transpiration [48]
in the Heihe River Basin, and pointed that especially in the upper watershed, summer has the
highest value of WUE, which is around 1.0–1.2 gC/mm/H2O/m2 comparing with the other seasons
(0–0.4 gC/mm/H2O/m2). It validated temporal congruency between ET and GPP in the underestimated
summer period when the melting runoff was possibly underestimated. From Figure 8b we can see there
was a general overestimation of GPP within two years’ estimation. This discrepancy might be mainly
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attributed to the inexact representation of vegetation physiological characteristics consequent on the
soil moisture statuses. As discussed above, due to the lack of simulating the soil freezing–thawing
process, the model treated each soil texture in the watershed with constant hydraulic properties and
remained in the optimal soil moisture condition whole year round. It triggered an overestimated GPP
through two major reasons. One is the unrealistic higher stomatal conductance which would speed
up photosynthetic process [49]. According to the Jarvis algorithm [50] embedded in DLM-Ecohydro,
VSWC has a positive relationship with plant stomatal conductance when it is between the field capacity
and permanent wilting point. Actually, for both frozen and thawing period, the infiltrated rate would
not be as high as the model representation and quite a number of precipitation or snow melting water
probably concentrate on the soil surface and drain out as lateral water fluxes, which would contribute
to an increase in soil surface evaporation. This might explain why there was rare overestimation
for simulated total ET although it is under the same gs as the GPP calculation. The experiment
from Sonnentag [51] also manifested that compared with GPP, there was less sensitivity for ET in
different soil moisture conditions. Another possible reason for the bias of modeled GPP was an
inaccurate representation of ecosystem nitrogen (N) availability. Via the overestimation of gs, the model
exaggerated local photosynthesis, which would raise the soil respiration and soil carbon decomposition
and further created a conducive status for increasing biomass and N mineralization. It synergistically
promoted photosynthesis and constituted a regional feedback mechanism [52–54]. On the other hand,
the overestimated soil moisture also positively affected the leaf N content and further overstated GPP
through the increased maximum carboxylation rate [55].

Figure 9. (a) Time-series comparison of modeled and observed gross primary productivity (GPP) for
2013 and 2014 in the Arou footprint area. (b) Combined comparison between simulated and measured
GPP for 2013 and 2014.

The simulated GPP was between 0 and 2119 gC m2/year in 2013 and from 0 to 2174 gC m2/year in
2014 (Figure 10). Generally, the location near a stream had a higher annual photosynthetic efficiency
and the highest GPP were assembled in the north-eastern part of the Upper Heihe watershed where the
terrain is flatter. And the location with higher elevation (higher than 3900 m a.s.l.) in the north-western
and central part had the lowest efficiency of photosynthesis for both years.

The photosynthetic efficiency highly depended on the biophysical characters of different plant
function types. From the simulated presentation, deciduous stands had a higher average annual GPP
(482.81 gC m2/year in 2013 and 455.79 gC m2/year in 2014) compared to conifer forests (363.01 gC m2/year
in 2013 and 343.11 gC m2/year in 2014) even if the distribution of conifer stands were mainly located
in the outlet of the watershed with lower altitude, warmer climate and more adequate soil water
resource. That is because deciduous stands had a higher stomatal conductance (gs,max = 5mm/s) and
leaf N content (Nmax = 1.8%) than that of conifers (gs,max = 1.6mm/s; Nmax = 1.6%). Additionally,
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conifer canopy was more densely clumped than deciduous stands, with a clumping index of 0.5 and
0.8, respectively. It would decrease the ratio of sunlit leaves in the conifer canopy. Grassland had the
most wide distribution within the Upper Heihe and also had the most spatially heterogeneous annual
GPP, which ranged from 1.76 to 2119.18 gC m2/year in 2013 and 1.75 to 2174.46 gC m2/year in 2014.
The spatial variability of grassland GPP had a high congruency with LAI, which reveals that the leaf
abundance also took a significant contribution of grass photosynthetic efficiency, because it controlled
vegetation surface energy balance through the interception of water and solar energy.

Figure 10. Simulated spatial patterns of annual total GPP for 2013 (a) and 2014 (b) in the Upper
Heihe watershed.

The distribution of GPP depended on complex interaction effects between topographic conditions,
plant function types, vegetation biomass, regional meteorology, soil moisture, temperature and N
dynamics in the model. The quantitative relationships and feedbacks between these spatial factors
should be further explored. Theoretically, the model could run at any spatial resolution depending on
the input dataset availability, while the lack of high-resolution soil types and LAI limited the ability of
spatial patterns simulation. To fit the fusion of multi-source datasets, the spatial downscaling of DEM
and land cover from 30 m to 100 m would also damage the original data qualities and further decrease
the ability of model to explain GPP distribution due to the high correlation between these two factors
and photosynthesis.

3.4. Co-Drive Mechanism of Ecosystem ET and GPP

According to the above research we found that there is a strong synchronism between ecosystem
evapotranspiration and photosynthesis. Figure 11 illustrates that the simulated ET and GPP have
a significant positive liner relation (R2 = 0.88) within two study years. Except for a consistent
seasonal variation with a same peak period at July and August, they also have a similar spatial
heterogeneity. Previous research also pointed the consistent diurnal variation between ecosystem
water and carbon fluxes [56], and Steduto [57] found that the annual accumulated carbon assimilation
and evapotranspiration have a stable linear relationship. Except for the impact of soil moisture, another
major reason is probably because the driving energies of ecosystem C–water cycle have a synchronous
change. Canopy intercepted net radiation for ET and short-wave radiation for photosynthesis have a
similar co-linear relation with input solar radiation. Additionally, as a common organ for transpiration
and photosynthesis, the growth of leaves synchronously controls canopy ET and GPP fluctuation and
this control is hardly affected by soil water and fertilizer conditions [58]. It also explains the similar
spatial distribution between C–water fluxes and regional LAI discussed above. Furthermore, daily
temperature and wind speed can also synchronously affect the exchange rate of CO2 and H2O between
vegetation and the atmosphere through the control of enzymatic activity, stomatal conductance and
vaporizing rate.
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Figure 11. The relationship between simulated ET and GPP in two study years.

4. Conclusions

Based on two fundamental ecophysiological indicators, ET and GPP, this study utilized the
DLM-Ecohydro model to simulate the exchanges between energy, water and carbon assimilation in the
Upper Heihe watershed with a tightly coupled manner. The combination of in situ measurements and
remotely sensed datasets provided detailed environmental disturbances from both nature and human
beings, contributing a regionally accurate and spatially explicit simulation. The land surface model
fully took topographical influence into consideration, modeling the lateral hydrological processes by
solving a water balance equation. In order to accurately represent the ecophysiological processes in the
watershed, the model separately simulated sunlit and shaded leaves and flexibly derived soil profiles
as multiple layers according to the moisture regimes.

The simulation suggested that in spatial and temporal patterns, ET and GPP have significantly
synchronous variations in the Upper Heihe watershed. Although the precipitation was mainly
concentrated during May and September in the watershed, soil water content was still a major
limiting factor for vegetation transpiration and photosynthesis efficiency in mid-summer. The spatial
distribution of ET highly depends on soil texture. Silt loam and clay had the maximum and minimum
annual ET loss, respectively, mainly because of their different abilities of hydraulic conductance.
Vegetation transpiration accounted for the most part of ecosystem ET losses in the two study years.
Photosynthesis was more sensitive to plant functional types: Deciduous forests had the highest annual
carbon assimilation rate owing to it having a higher stomatal conductance and leaf nitrogen content
and a lower canopy clumping index. LAI and topography, however, made a strong contribution for
both ecophysiological processes simultaneously.

There are also some limitations of this study. Because the model did not consider the dynamics
of frozen soil and the melting runoff from glaciers in the alpine regions, it would cause an unreality
estimation of soil moisture regimes during the frozen and major melting seasons. While overall,
the model showed a fair performance for the simulation of hydro-ecological processes, especially
during vegetation growing seasons.

Author Contributions: Conceptualization, B.C.; data curation, H.J., S.S. and X.L.; formal analysis, H.J., S.S., S.M.,
X.L. and L.G.; funding acquisition, B.C.; investigation, H.J., S.S.; methodology, B.C., H.J., S.S., H.Z. and S.M.;
project administration, B.C.; resources, B.C.; software, H.J., S.S. and H.Z.; supervision, B.C.; validation, H.J., S.S.
and L.G.; visualization, H.J., S.S. and L.G.; writing – original draft, H.J.; and writing – review and editing, B.C.
and S.S.

Funding: This research was funded by the National Key R&D Program of China (2018YFA0606001,
2017YFA0604301, 2017YFA0604302, 2017YFC0503904), an international partnership program of Chinese Academy
of Sciences (Grant #131A11KYSB20170025), a research project funded by the State Key Laboratory of Resources
and Environmental Information System (O88RA901YA, O8R8A085YA) and a project funded by the National
Natural Science Foundation of China (41771114).

Acknowledgments: We thank the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) program
for providing the ecophysiological validation of datasets of the Arou station in the Upper Heihe watershed.



Water 2019, 11, 1242 15 of 17

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Chen, B.; Chen, J.M.; Ju, W. Remote sensing-based ecosystem-atmosphere simulation scheme (EASS)—Model
formulation and test with multiple-year data. Ecol. Model. 2007, 209, 277–300. [CrossRef]

2. Govind, A.; Cowling, S.; Kumari, J.; Rajan, N.; Al-Yaari, A. Distributed modeling of ecohydrological processes
at high spatial resolution over a landscape having patches of managed forest stands and crop fields in SW
Europe. Ecol. Model. 2015, 297, 126–140. [CrossRef]

3. Govind, A.; Kumari, J. Understanding the Terrestrial Carbon Cycle: An Ecohydrological Perspective.
Int. J. Ecol. 2014, 2014, 712537. [CrossRef]

4. Biederman, J.A.; Scott, R.L.; Goulden, M.L.; Vargas, R.; Litvak, M.E.; Kolb, T.E.; Yepez, E.A.; Oechel, W.C.;
Blanken, P.D.; Bell, T.W.; et al. Terrestrial carbon balance in a drier world: The effects of water availability in
southwestern North America. Glob. Chang. Biol. 2016, 22, 1867–1879. [CrossRef] [PubMed]

5. Gea-Izquierdo, G.; Guibal, F.; Joffre, R.; Ourcival, J.M.; Simioni, G.; Guiot, J. Modelling the climatic drivers
determining photosynthesis and carbon allocation in evergreen Mediterranean forests using multiproxy
long time series. Biogeosciences 2015, 12, 3695–3712. [CrossRef]

6. LU, L.; LI, X.; HUANG, C.; Frank, V. Analysis of the Spatio-Temporal Characteristics of Water Use Efficiency
of Vegetation in West China. J. Glaciol. Geocryol. 2007, 29, 777–784.

7. Wang, P.; Qiu, J.; Huo, Z.; Anderson, M.; Zhou, Y.; Bai, Y.; Liu, T.; Ren, S.; Feng, R.; Chen, P. Temporal
Downscaling of Crop Coefficients for Winter Wheat in the North China Plain: A Case Study at the Gucheng
Agro-Meteorological Experimental Station. Water 2017, 9, 155. [CrossRef]

8. Richardson, A.D.; Anderson, R.S.; Arain, M.A.; Barr, A.G.; Bohrer, G.; Chen, G.; Chen, J.M.; Ciais, P.; Davis, K.J.;
Desai, A.R.; et al. Terrestrial biosphere models need better representation of vegetation phenology: Results
from the North American Carbon Program Site Synthesis. Glob. Chang. Biol. 2012, 18, 566–584. [CrossRef]

9. Rodríguez, N.C.; Melgarejo, L.M.; Blair, M.W. Purple Passion Fruit, Passiflora edulis Sims f. edulis, Variability
for Photosynthetic and Physiological Adaptation in Contrasting Environments. Agronomy 2019, 9, 231.
[CrossRef]

10. Gennaretti, F.; Gea-Izquierdo, G.; Boucher, E.; Berninger, F.; Arseneault, D.; Guiot, J. Ecophysiological
modeling of photosynthesis and carbon allocation to the tree stem in the boreal forest. Biogeosciences 2017, 14,
4851–4866. [CrossRef]

11. Nadal-Sala, D.; Keenan, T.F.; Sabaté, S.; Gracia, C. Forest Eco-Physiological Models: Water Use and Carbon
Sequestration. In Managing Forest Ecosystems: The Challenge of Climate Change; Bravo, F., LeMay, V., Jandl, R.,
Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 81–102.

12. Li, L.; Wang, Y.; Arora, V.K.; Eamus, D.; Shi, H.; Li, J.; Cheng, L.; Cleverly, J.; Hajima, T.; Ji, D.; et al. Evaluating
Global Land Surface Models in CMIP5: Analysis of Ecosystem Water- and Light-Use Efficiencies and Rainfall
Partitioning. J. Clim. 2018, 31, 2995–3008. [CrossRef]

13. Baldocchi, D.D.; Wilson, K.B. Modeling CO2 and water vapor exchange of a temperate broadleaved forest
across hourly to decadal time scales. Ecol. Model. 2001, 142, 155–184. [CrossRef]

14. Emanuel, R.E.; Epstein, H.E.; McGlynn, B.L.; Welsch, D.L.; Muth, D.J.; D’Odorico, P. Spatial and temporal
controls on watershed ecohydrology in the northern Rocky Mountains. Water Resour. Res. 2010, 46. [CrossRef]

15. Govind, A.; Chen, J.M.; Margolis, H.; Ju, W.; Sonnentag, O.; Giasson, M. A spatially explicit hydro-ecological
modeling framework (BEPS-TerrainLab V2.0): Model description and test in a boreal ecosystem in Eastern
North America. J. Hydrol. 2009, 367, 200–216. [CrossRef]

16. Sonnentag, O.; Talbot, J.; Chen, J.M.; Roulet, N.T. Using direct and indirect measurements of leaf area index
to characterize the shrub canopy in an ombrotrophic peatland. Agric. For. Meteorol. 2007, 144, 200–212.
[CrossRef]

17. Zhengkun, Z.; Guangcan, Z.; Shunsheng, L.; Bin, P.; Zhiqiang, X.; Ping, X.; Xia, L. Effects of soil moisture on
photosynthesis diurnal changes of Prunus sibirica L. Sci. Soil Water Conserv. 2012, 10, 99–104.

18. Liu, Z.H.; McVicar, T.R.; Li, L.T.; Van Niel, T.G.; Yang, Q.K.; Li, R.; Mu, X.M. Modeling spatial distribution of
pan evaporation based on quinat-variate thin plate spline function. Sci. Soil Water Conserv. 2006, 4, 23–30.

http://dx.doi.org/10.1016/j.ecolmodel.2007.06.032
http://dx.doi.org/10.1016/j.ecolmodel.2014.10.019
http://dx.doi.org/10.1155/2014/712537
http://dx.doi.org/10.1111/gcb.13222
http://www.ncbi.nlm.nih.gov/pubmed/26780862
http://dx.doi.org/10.5194/bg-12-3695-2015
http://dx.doi.org/10.3390/w9030155
http://dx.doi.org/10.1111/j.1365-2486.2011.02562.x
http://dx.doi.org/10.3390/agronomy9050231
http://dx.doi.org/10.5194/bg-14-4851-2017
http://dx.doi.org/10.1175/JCLI-D-16-0177.1
http://dx.doi.org/10.1016/S0304-3800(01)00287-3
http://dx.doi.org/10.1029/2009WR008890
http://dx.doi.org/10.1016/j.jhydrol.2009.01.006
http://dx.doi.org/10.1016/j.agrformet.2007.03.001


Water 2019, 11, 1242 16 of 17

19. Dang, S.Z.; Liu, C.M.; Wang, Z.G.; Wu, M.Y. Analyses on temporal variations of snowmelt runoff time in the
upper reaches of Heihe River and its climate causes. J. Glaciol. Geocryol. 2012, 34, 920–926.

20. Yan, M.; Li, Z.Y.; Tian, X.; Chen, E.X.; Gu, C.Y. Remote sensing estimation of gross primary productivity and
its response to climate change in the upstream of Heihe River Basin. Chin. J. Plant Ecol. 2016, 40, 1–12.

21. Shang, X.; Jiang, X.; Jia, R.; Wei, C. Land Use and Climate Change Effects on Surface Runoff Variations in the
Upper Heihe River Basin. Water 2019, 11, 344. [CrossRef]

22. Bi, L.M.; Hou, H.Y.; Yang, L.F. Analysis on change trend of runoff in Yingluoxia station of Heihe River.
Yellow River 2013, 35, 23–25.

23. Wang, R.; Cheng, Q.; Liu, L.; Yan, C.; Huang, G. Multi-Model Projections of Climate Change in Different RCP
Scenarios in an Arid Inland Region, Northwest China. Water 2019, 11, 347. [CrossRef]

24. Yang, Y.; Chen, R.; Han, C.; Qing, W. Measurement and estimation of the summertime daily evapotranspiration
on alpine meadow in the Qilian Mountains, northwest China. Environ. Earth Sci. 2013, 68, 2253–2261. [CrossRef]

25. Wang, Y. Remote Estimation of Carbon Fluxes and Carbon Sequestration Capacity over Cropland Based on
Eddy Covariance Observation. Master’s Thesis, Henan Polytechnic University, Heinan Province, China, 2015.

26. Sun, S.; Chen, B.; Ge, M.; Qu, J.; Che, T.; Zhang, H.; Lin, X.; Che, M.; Zhou, Z.; Guo, L.; et al. Improving soil
organic carbon parameterization of land surface model for cold regions in the Northeastern Tibetan Plateau,
China. Ecol. Model. 2016, 330, 1–15. [CrossRef]

27. Wang, Y.H.; Yang, D.W.; Lei, H.M.; Yang, H. Impact of cryosphere hydrological processes on the river runoff

in the upper reaches of Heihe River. J. Hydraul. Eng. 2015, 46, 1064–1071.
28. Qin, J.; Ding, Y.; Wu, J.; Gao, M.; Yi, S.; Zhao, C.; Ye, B.; Li, M.; Wang, S. Understanding the impact of

mountain landscapes on water balance in the upper Heihe River watershed in northwestern China. J. Arid
Land 2013, 5, 366–383. [CrossRef]

29. Lu, L.; Li, X.; Cheng, G.D. Landscape evolution in the middle Heihe River Basin of north-west China during
the last decade. J. Arid Environ. 2003, 53, 395–408. [CrossRef]

30. Chen, J.; Chen, B.; Black, T.A.; Innes, J.L.; Wang, G.; Kiely, G.; Hirano, T.; Wohlfahrt, G. Comparison of
terrestrial evapotranspiration estimates using the mass transfer and Penman-Monteith equations in land
surface models. J. Geophys. Res. Biogeosci. 2013, 118, 1715–1731. [CrossRef]

31. Farquhar, G.D.; von Caemmerer, S.V.; Berry, J.A. A Biochemical Model of Photosynthetic CO2 Assimilation
in Leaves of C3 Species. Planta 1980, 149, 78–90. [CrossRef]

32. GALE, M.R.; GRIGAL, D.F. Vertical root distributions of northern tree species in relation to successional
status. Can. J. For. Res. 1987, 17, 829–834. [CrossRef]

33. Voinov, A.A.; Fitz, H.C.; Costanza, R. Surface water flow in landscape models: 1. Everglades case study.
Ecol. Model. 1998, 108, 131–144. [CrossRef]

34. Govind, A.; Chen, J.M.; McDonnell, J.; Kumari, J.; Sonnentag, O. Effects of lateral hydrological processes on
photosynthesis and evapotranspiration in a boreal ecosystem. Ecohydrology 2011, 4, 394–410. [CrossRef]

35. Oleson, K.W.; Lawrence, D.M.; Gordon, B.; Flanner, M.G.; Kluzek, E.; Peter, J.; Levis, S.; Swenson, S.C.;
Thornton, E.; Feddema, J. Technical Description of Version 4.0 of the Community Land Model (CLM); NCAR
Technical Note, NCAR/TN-478+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2010.

36. Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe Watershed
Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bull. Am.
Meteorol. Soc. 2013, 94, 1145–1160. [CrossRef]

37. Liu, S.M.; Xu, Z.W.; Wang, W.Z.; Jia, Z.Z.; Zhu, M.J.; Bai, J.; Wang, J.M. A comparison of eddy-covariance and
large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrol. Earth
Syst. Sci. 2011, 15, 1291–1306. [CrossRef]

38. Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L.; et al. The Heihe Integrated
Observatory Network: A Basin-Scale Land Surface Processes Observatory in China. Vadose Zone J. 2018, 17.
[CrossRef]

39. Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [CrossRef]
40. Pan, X.; Li, X.; Cheng, G.; Chen, R.; Hsu, K. Impact Analysis of Climate Change on Snow over a Complex

Mountainous Region Using Weather Research and Forecast Model (WRF) Simulation and Moderate
Resolution Imaging Spectroradiometer Data (MODIS)-Terra Fractional Snow Cover Products. Remote Sens.
2017, 9, 774. [CrossRef]

http://dx.doi.org/10.3390/w11020344
http://dx.doi.org/10.3390/w11020347
http://dx.doi.org/10.1007/s12665-012-1907-5
http://dx.doi.org/10.1016/j.ecolmodel.2016.03.014
http://dx.doi.org/10.1007/s40333-013-0162-2
http://dx.doi.org/10.1006/jare.2002.1032
http://dx.doi.org/10.1002/2013JG002446
http://dx.doi.org/10.1007/BF00386231
http://dx.doi.org/10.1139/x87-131
http://dx.doi.org/10.1016/S0304-3800(98)00024-6
http://dx.doi.org/10.1002/eco.141
http://dx.doi.org/10.1175/BAMS-D-12-00154.1
http://dx.doi.org/10.5194/hess-15-1291-2011
http://dx.doi.org/10.2136/vzj2018.04.0072
http://dx.doi.org/10.2307/2389824
http://dx.doi.org/10.3390/rs9080774


Water 2019, 11, 1242 17 of 17

41. Molotch, N.P.; Blanken, P.D.; Williams, M.W.; Turnipseed, A.A.; Monson, R.K.; Margulis, S.A. Estimating
sublimation of intercepted and sub-canopy snow using eddy covariance systems. Hydrol. Process. 2007, 21,
1567–1575. [CrossRef]

42. Li, H.Y.; Wang, J. The snowmelt runoff model applied in the upper Heihe River Basin. J. Glaciol. Geocryol.
2008, 5, 769–775.

43. Li, Q.; Chen, H.S. Variation of seasonal frozen soil in East China and their association with monsoon activity
under the background of global warming. Clim. Chang. Res. Lett. 2013, 2, 47–53. [CrossRef]

44. Schlesinger, W.H.; Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 2014, 189, 115–117.
[CrossRef]

45. Wilson, K.B.; Baldocchi, D.D.; Hanson, P.J. Leaf age affects the seasonal pattern of photosynthetic capacityand
net ecosystem exchange of carbon in a deciduous forest. Plant Cell Environ. 2001, 24, 571–583. [CrossRef]

46. Garbulsky, M.F.; Penuelas, J.; Gamon, J.; Inoue, Y.; Filella, I. The photochemical reflectance index (PRI) and
the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis.
Remote Sens. Environ. 2011, 115, 281–297. [CrossRef]

47. Savenije, H.H.G. HESS Opinions “Topography driven conceptual modelling (FLEX-Topo)”. Hydrol. Earth
Syst. Sci. 2010, 14, 2681–2692. [CrossRef]

48. Fischer, R.A.; Turner, N.C. Plant productivity in arid and semi-arid zones. Annu. Rev. Plant Physiol. 1978, 29,
277–317. [CrossRef]

49. Chen, J.M.; Liu, J.; Cihlar, J.; Goulden, M.L. Daily canopy photosynthesis model through temporal and
spatial scaling for remote sensing applications. Ecol. Model. 1999, 124, 99–119. [CrossRef]

50. Jarvis, P.G. Interpretation of variations in leaf water potential and stomatal conductance found in canopies in
field. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1976, 273, 593–610. [CrossRef]

51. Sonnentag, O.; Chen, J.M.; Roulet, N.T.; Ju, W.; Govind, A. Spatially explicit simulation of peatland hydrology
and carbon dioxide exchange: Influence of mesoscale topography. J. Geophys. Res. Biogeosci. 2008, 113,
G02005. [CrossRef]

52. Tan, X.; Chang, S.X. Soil compaction and forest litter amendment affect carbon and net nitrogen mineralization
in a boreal forest soil. Soil Tillage Res. 2007, 93, 77–86. [CrossRef]

53. Traoré, S.; Thiombiano, L.; Millogo, J.R.; Guinko, S. Carbon and nitrogen enhancement in Cambisols and
Vertisols by Acacia spp. in eastern Burkina Faso: Relation to soil respiration and microbial biomass. Appl. Soil
Ecol. 2007, 35, 660–669.

54. Govind, A.; Chen, J.M.; Ju, W. Spatially explicit simulation of hydrologically controlled carbon and nitrogen
cycles and associated feedback mechanisms in a boreal ecosystem. J. Geophys. Res. Biogeosci. 2009, 114,
G02006. [CrossRef]

55. Arain, M.A.; Yuan, F.; Black, T.A. Soil–plant nitrogen cycling modulated carbon exchanges in a western
temperate conifer forest in Canada. Agric. For. Meteorol. 2006, 140, 171–192. [CrossRef]

56. Zhu, Z.; Sun, X.; Zhang, R.; Su, H.; Tang, X. Rapid measurements of CO2 flux density and water use efficiency
of crop community. J. Appl. Ecol. 2004, 15, 1684–1686.

57. Steduto, P.; Albrizio, R. Resource use efficiency of field-grown sunflower, sorghum, wheat and chickpea II.
Water use efficiency and comparison with radiation use efficiency. Agric. For. Meteorol. 2005, 130, 269–281.
[CrossRef]

58. Yu, G.R.; Wang, Q.F.; Zhuang, J. Modeling the water use efficiency of soybean and maize plants under
environmental stresses: Application of a synthetic model of photosynthesis-transpiration based on stomatal
behavior. J. Plant Physiol. 2004, 161, 303–318. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/hyp.6719
http://dx.doi.org/10.12677/CCRL.2013.22008
http://dx.doi.org/10.1016/j.agrformet.2014.01.011
http://dx.doi.org/10.1046/j.0016-8025.2001.00706.x
http://dx.doi.org/10.1016/j.rse.2010.08.023
http://dx.doi.org/10.5194/hess-14-2681-2010
http://dx.doi.org/10.1146/annurev.pp.29.060178.001425
http://dx.doi.org/10.1016/S0304-3800(99)00156-8
http://dx.doi.org/10.1098/rstb.1976.0035
http://dx.doi.org/10.1029/2007JG000605
http://dx.doi.org/10.1016/j.still.2006.03.017
http://dx.doi.org/10.1029/2008JG000728
http://dx.doi.org/10.1016/j.agrformet.2006.03.021
http://dx.doi.org/10.1016/j.agrformet.2005.04.003
http://dx.doi.org/10.1078/0176-1617-00972
http://www.ncbi.nlm.nih.gov/pubmed/15077629
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Model Discription 
	Ecophysiological Processes 
	Water Balance Calculation 

	Data Preparation 
	Spatial Datasets and Model Initialization 
	Meteorological Datasets and Flux Measurement 


	Results and Discussion 
	Temporal Patterns of Hydrological Indicators 
	Spatial and Temporal Patterns of ET 
	Spatial-Temporal Patterns of GPP 
	Co-Drive Mechanism of Ecosystem ET and GPP 

	Conclusions 
	References

